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Abstract

The validity of the local equilibrium assumption in hydrated cement systems that a particular chemical reaction is instantaneous with
respect to transport is examined using a dimensional analysis of electrochemical transport in cementitious materials. The transport equation
parameters are scaled, resulting in a dimensionless equation. The dimensionless coefficient for each reaction/transport term determines its
relative contribution to the overall process. The diffusion of ions in a reactive porous medium can be fully described on the basis of six
independent dimensionless numbers. The analysis demonsirates that the kinetics of the reaction determine the appropriate time constant for
the analysis. The formalism is applied to the dissolution of calcium hydroxide under an electrochemical potential gradient. The results are in
agreement with previous observations and demonstrate quantitatively the local equilibrium hypothesis is valid in most practical cases where

ions are transported by diffusion through a saturated material. € 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The transport and reaction of ionic species within con-
crete are not only important in the critical role they play in
the development of deleterious chemical reactions. They
also affect the transport of ions through changes in the
material pore structure. In that respect, the dissolution/
precipitation of solid phases has been found to have a
significant influence on the durability of construction ma-
terials. For instance, the dissolution of calcium carbonate is
one of the main parameters that controls the service life of
sandstone used for architectural applications [1]. The for-
mation of new sulfate or chloride bearing phases is also
known to have detrimental effects on the behavior of coment
systems such as concrete and mortar [2—-4].

* Corresponding author. Tel.: +1-418-656-2079; fax: +1-418-656-
3355.
E-mail address: jmarchan@ci.ulaval.ca (J. Marchand).

In most models developed to predict the service life of
construction materials, the influence of on-going chemical
reactions on the mechanisms of transport is usually taken
into account by simply assuming the existence of a local
chemical equilibrium [5]. According to this hypothesis,
the rate of dissolution/precipitation of the various species
in solution is intrinsically much faster than the rate of
transport. The validity of this assumption rests on the
observations that, in most degradation cases involving
construction materials, chemical reactions usually progress
as fronts originating from the external surfaces of the
solid [6,7].

This aspect of the problem has, however, been the subject
of very few systematic investigations. Furthermore, recent
data tend to indicate that the local equilibrium assumption
may not be valid in cases where ions are being transported
very quickly through the material pore structure [8]. These
cases include the transport of ions under an extecrnally
applied electrical potential.

0008-8846/00/8 - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
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The formalism demonstrated here reduces the governing
transport equation to a dimensionless equation through the
use of scaling variables. The original equation is trans-
formed into one that contains a dimensionless coefficient
for each term in the transport equation. The magnitude of
the coefficient determines the relative contribution by that
term to the overall transport.

While this technique has been used extensively in other
fields of science and engineering, it is an underutilized tool
in the field of concrete materials research. The basic
features of the technique are presented in the following
paragraphs. In Part 2 of this series, this theoretical frame-
work will be applied to research on the electrochemical
migration of calcium, hydroxide and chloride ions in
cement pastes, and then applied in Part 3 to ionic transport
in unsaturated materials.

2. Coupling transport and chemical reactions in
cement-based materials

Consider a fluid-saturated porous material with poros-
ity ®, composed of an insoluble backbone with a single
soluble phase ¢. This soluble phase is composed of
species X, and ¥ in the stoichiometric proportions v,
and w, The liquid phase in the material pore space
contains the cation %, and anion Y, in the respective
concentrations ¢, and ¢, The chemical equilibrium be-
iween the solid phase ¢, and the pore solution can be
described by the following congruent dissolution/precipi-
tation equation:

XX =VaXa + WXp (1)

A diffusive transport equation for the solute species x, and
p is needed that can incorporate the reaction described in
Eq. (1). The condition for chemical equilibrium between the
solute species and the solid can be expressed in terms of the
concentration of each species in solution:

(Vaa)™* (Yo0n)™ = Ky (2)

where K,,P is the equilibrium solubility constant of phase ¢
and +y; is the associated chemical activity coefficient of the
dissolved species X;.

According to Egs. (1) and (2), congruent dissolution/
precipitation reactions can occur in the system to restore the
chemical equilibrium. For instance, ions can precipitate to
form more solid phase ¢. Conversely, when the solid phase
¢ is dissolved, its components x, and ¥, are released into
the solution.

The dissolution/precipitation reactions are generally in-
duced by the transport of ions within the material pore
structure. In a fluid-saturated medium, the diffusion of an
jonic species in the liquid phase can be described by the
extended Nernst—-Planck equation [5,9]. This equation,
homogenized over a representative elementary volume of

the matcria} [9], and including a term for chemical reactions,
is given by the following:

86‘,' ZiF
"'a';' = VD; (Vc,- -+ c,Vln'yi + ﬁ c,V‘IfD)

Tonic transport

(G- o
P ot
®

Chemical reaction (3)

The quantity ¢; is the concentration of ionic species x; in
the liquid phase, z; is its valence, D); is the diffusion
coefficient of this species in the porous environment, y; is
the activity coefficient of the species, ¢ is the concentra-
tion of compound %; in the solid phase and ¥ is the
diffusion potential.

In Eq. (3), the electric coupling is assured through the
diffusion potential ¥,,, which arises from differences among
diffusion coefficients of the ionic species present [5,9,10].
The diffusion potential ¥, can be calculated according to
the Poisson equation (averaged over the representative
clementary volume):

) FX
rv ‘I’D+-€ ZZ;'C( =0 4)

i=]

where I is the tortuosity of the liquid phase, € the dielectric
constant of the medium and N the number of ionic species in
solution. Egs. (3) and (4) represent a complete electro-
chemical description of ionic diffusion transport in a
reactive porous medinm [4].

The term ((8c¥)/(B1))s in Eq. (3) quantifies the ex-
change between the solid phase and the liquid phase of a
given ionic species. When local equilibrium between the
solid phase and the surrounding solution is preserved, this
term can be described either by reaction isotherms {4] or by
calculating the solubility products of the solid phases pre-
sent in the system [5,11].

Another more general way of describing the reaction is
to assume that the rate of the dissolution/precipitation will
increase proportionally as the system deviates from its
cquilibrium condition. The term ((Bc)/(0%), can thus
be expressed as a function of the concentrations in the
pore solution:

O ES) ()] g V, 1Y
e ) L R O NI
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where K, is the reaction rate coefficient of dissolution/
precipitation of the phase ¢. In order to simplify the
problem, the order of the reaction is assumed to be 1. The
reaction rate coefficient is a physical quantity that can be
determined experimentally. The determination of k,, will be
further discussed in the following section.
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Substituting Eq. (5) into Eq. (3) yields the following:

Jc;

Z,‘F
i+ o Viny, + —¢;V
N = VD (Vc, + ¢ Viny, + RT c,T‘I’D)

lonic transport

+ vikg(KY = (Vaa)™ (vyep)™)
Chemical reaction (6)

Any variation in the concentrations of the various ionic
species within the reactive porous medium can be described
on the basis of Eq. (6).

3. Dimensional analysis

The main advantage of using Eq. (6) is that it does not
rely on the local equilibrium assumption. Furthermore, the
kinetic nature of the chemical reaction is delineated by the
last term of the right-hand side of the expression. The rate
of reaction can therefore be compared to the rate of ionic
transport. Such a comparison can be done using dimen-
sional analysis. This method is bricfly described in the
following paragraphs.

3.1. Ideal solutions in non-reactive porous media

As previously emphasized, the dimensional analysis
essentially consists of reducing the governing transport
equation to a dimensionless equation through the use of
scaling variables {12-15]. The approach can be divided in
four different steps:

!. Identification of the characteristic values (scaling
parameters) of the problem.
. Identification of the dimensional quantities and
fundamental units of the problem.
3. Reduction of the governing equations to a dimension-
less expression.
4. Identification of the dimensionless numbers.

3]

As an example of dimensional analysis, consider the dilute
timit approximation for diffusive transport under an electro-
chemical potential. Given the ideality of the 1onic solutions,
activity effects can be ncglected. Furthermore, let us assume
that there is no chemical interaction of the solid phase and the
ionic species in solution. The transport problem for N ions
can therefore be described by the following equation:

%‘3’ — VD (vc,
Egq. (7) can be normalized by using the following
dimensionless variables:

zZiF .
+'R-“T*C,-V‘I’D) i=1,..., N (7)

Ci — X - 14 = ’\y‘[) ‘
’7:-———, =, [z-’ \If:—— 8
¢ Co * Lo T ‘I’o ()

The scaling parameters cg, Lg, T, and W, arc valucs
characteristic of the problem being analyzed [15,16]. For
instance, Lo is the maximum length of the domain.
Similarly, co represents the maximum concentration that
can be reached at any point in the system and the value
of Wy corresponds to the largest drop in potential across
the domain. The scaled variables range in value from 0
to 1.

By introducing these dimensionless variables, Egs. (4)
and (7) may be written in their dimensionless forms [Egs.
(9) and (10)]:

CoLoF (ZZIC.) _o (©)

V¥ +

>

96 _ 1D _ o, L
7 sz(v +Z:~--—c,V‘I’) i=1,..., N (10)

According to Buckingham’s n theorem, if a system is
described by n independent dimensional variables, and if
m fundamental units are necessary to express these
variables, all relations between the n variables can be
expressed by using (n - m) dimensionless numbers (or «’s
as they are called) [12-15]. The system defined by Egs.
(4) and (7) can be fully described by n=8+ N independent
dimensional quantities (co, Lo, 7, Wo, Dy, T, F, R, €) and
m=6 fundamental units (length (m), time (s), mass (kg),
quantity of ions (mol), temperature (°K), and current
intensity (A)). Consequently, according to the theorem, the
relation between the dimensional variables can be
expressed by using (8+N-6=N+2) dimensionless
numbers [Eq. (11)]:

TD; D; COZ%F F¥,
N — =1, , _—
(L(‘) ) I numbers <Dj> (6F‘I’o> and ( RT )

(11)

As previously mentioned, the magnitude of a dimensionless
number indicates its rclative importance on the overall
transport process. A large number (i.e. >>1) indicates that
the phenomenon under consideration dominates the beha-
vior of the system. Phenomena with little influence are
characterized by small dimensionless numbers (i.e. <<1). A
number on the order of 1 reveals that the system is affected
but not dominated by the phenomenon.

The first dimensionless number ((TD)/(Lg%)) provides
information on the characteristic time required by a
given species to diffuse through the system. The num-
bers (D/D;) compare the diffusion coefficient of one
species to the other. The third dimensionless number
((colo*F)/(eT¥y)) characterizes the linearity of the diffu-
sion potential W, distribution across the system. Large
values of ((colo’F)/(eI'¥y)) indicate that the distribution
of the potential is esscntially non-linear (i.e. the electric
field is not constant).
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From the standpeint of modeling, the last dimensionless
number ((F¥,)/(RT)) is quite interesting since it provides
information about the relative importance of the diffusion
potential term on the overall transport process. Such a
comparison is similar to the calculation of the Peclet number
for any hydrodynamic problem [17].

Obviously, the value of (FWo)/(RT)) is directly affected
by the characteristic potential drop W,. Its value can be
established on the basis of numerical simulations or by
experimental measurements. For most practical problems,
Wy is usually on the order of a few tens of millivolts [18,19].
This value is typical of hydrated cement systems for which
the characteristic length Ly is approximately a few centi-
meters (e.g. the thickness of a diffusion cell sample or the
thickness of the cover of a reinforced concrete structure).
Therefore, it can be easily calculated that, at 25°C, ((FW¥,)/
(RT)) is on the order of 1.

This result is particularly important since it clearly
emphasizes the significant contribution of the diffusion
potential to the overall transport process. It also justifies
the use of the Nernst—Plank/Poisson set of equations to
model ionic diffusion problems in hydrated cement
systems and confirms the observation that ionic trans-
port mechanisms cannot be simply modcled by Fick’s
equation (which neglects the effect of the diffusion
potential) [18,20].

3.2. Concentrated electrolytes in reactive porous media
The equation used here for the rate of change in con-
centration for reacting concentrated electrolytes is similar to

that of Eq. (6):

. g F
% =D,V (Vc; + ¢;Viny; + iz——C‘V\PD)

Ot RT
ITonic transport
+ vikg(Ky = (Ya€a) ™ (565)™)
Chemical reaction (12)

As can be seen, contrary to Eq. (6), Eq. (12) is written in
such a way that the diffusion coefficients of the various
species in solution are assumed to be unaffected by the
chemical reaction, so that D; can be taken outside the
gradient operator in the ionic transport part of Eq. {12). This
assumption simplifies the mathematical treatment of the
problem. However, it should be emphasized that this is
clearly an oversimplification of the problem since chemical
reactions are known to modify the transport properties of
hydrated cement systems [6,21,22].

This system defined by Eq. (12) can be fully described
by n=10+ N dimensional quantities {(cy, Lo, 7, Yo, D, T, F,
R, €, K,F, and k) and m = 6 fundamental units (length (m),
time (s), mass (kg), quantity of ions {mol), temperature {°K),
and current intensity (A)). Accordingly, the relation between
the dimensional variables can be expressed by using
(10+ N — 6=4+ N) dimensicnless numbers.

at

Eq. (12) can be normalized using the same dimensionless
variables as those described in Eq. (8):

¢ _ D,
o I3

K .
x(;‘v:%‘v‘;%:%;b) i=1,..., N (13)
0

As can be seen, the normalization of Eq. (13) creates two
new dimensionless numbers [Eq. (14)}:

Ky ;
(Tﬁw) and (n¢'rcg"‘+vb” ) (14)
)

v (V‘éi + Zi%gEiVW) + v,»(%'rc(";‘”""')

. Ky :
The quantity (C——Ai’—h) can be used to verify whether the
(]

system is anywhere close to its equilibrium condition. The
number (keTepr T 7 ') determines the scale of the kinetics
of reaction. From the standpoint of modeling, this number is
particularly important since it provides information on the
relative influence of the reaction term on the global behavior
of the system. For cases for which (keTcy ¥~ 1) is far
greater than ((D,)/(Lo?)), the reaction term will dominate
any changes in concentration. It is on these scales that the
local equilibrium is preserved and one may approximate the
reaction as instantaneous with respect to the ionic transport
process. In these instances, the ionic diffusion problem can
be modeled using Eq. (3), which does not include any
reaction rate coefficient x, and in which instantaneous
chemical reaction is implicit. This represents a significant
practical advantage since values of k, are usually cumber-
some to obtain experimentally.

For cases in which ((+D)/(Lo2)) is far greater than
(keTeyr t™ 1), the behavior of the system will be totally
dominated by the transport process. In some cases, the
contribution of the reaction term can even be neglected
and the problem can be modeled by the following equation

(Eq. (19)]:

: F
% _ pv (vc,. + e Viny, + %c,-vqr,)> (15)

Finally, on scales for which ((tD,)/(Ls%)) is on the order of
(ke ™ 7 1), the behavior of the system will not be
dominated by any of the various processes involved. In
these cases, the problem has to be modeled by Eq. (6),
which requires the determination of the rate coefficients for

cach chemical reaction involved in the system.
3.3. Numerical example: calcium hydroxide leaching

Calcium hydroxide is the most soluble phase produced
by the hydration of cement with water. Its dissolution
contributes to local increases in the porosity. From the
standpoint of durability, the study of the calcium hydroxide
dissolution mechanism is of interest. For this particular
case, the phase ¢ previously defined thus corresponds to



R. Barbarulo et al. / Cement and Concrete Research 30 (2000) 1955-1960 1959

Ca(OH),, Xa=Ca®" and xp=OH ™, v,=1 and v,=2. By
solving Eq. (5) for the disselution of calcium hydroxide, a
relationship between fcp (i.e. the time needed to reach a
99% saturation afler the immersion of the dissolving solid
pure water) and the kinetic constant kcy can be found
[Eq. (16)]:

2.38 1

KO =~ X —
o #xD)} fen (16)

where 1cy is the characteristic time of calcium hydroxide
dissolution in pure water. The equilibrium constant of
Ca(OH), is Kcy™ =107 (mol/m®)’. The value of 1y was
estimated by conductimetry measurements to be approxi-
mately 6 min. Assuming a first-order reaction, this
corresponds to a rate constant ke of 1.3 x 107 > m®mol® s.

Let us consider a concrete sample immersed in pure
water. The pore solution of the material is initially in
equilibrium with calcium hydroxide. The equilibrium
constant of Ca(OH), is K¢y =107 {mol/m>®?, so that
co=18 mmol/l. The diffusion coefficients of the hydroxyl
and calcium ions in the 0.45 water/cement ratio concrete
mixture considered are Don=9.0x 107'% m?s and
Dea=14 %107 "% m%s, respectively [4].

Diffusion and reaction rates are of the same magnitude
when ((TD)(Lo?)) is on the order of (keTcy © ™%~ ). This
implies that [Eq. (17)]:

D; .
LO = T 1.C. L() >~ 46 Jum (17)
K‘¢coﬂ b

Therefore, the distance at which one can neglect the
finite time for calcium hydroxide dissolution is character-
ized by 46 pm. This value was obtained by considering that
the overall process was dominated by the fastest ion (j.e.
D;=Don=9.0 x 10~ '? m?s). Beyond this distance, the
reaction contribution increases proportionally to Ly*. Ata
distance of approximately 100 jum, the contribution from the
reaction term is nearly 10 times greater than that of the
diffusion term, and so dissolution could be considered
instantaneous with respect to diffusion. These results are
quite significant considering that the representative volume
of most hydrated cement systems is on the order of a few
cubic centimeters (or more) and that most practical pro-
blems involve concrete elements, which are at least a few
centimeters thick.

Considering that the hydroxyl ion is one of the fastest
diffusing species found in cement systems, the previous
analysis can probably be directly applied to most practical
cases involving the transport of ions in saturated concrete.
Although the precipitation process of chloride and sulfate-
bearing phases has been found to be somewhat slower than
the dissolution of calcium hydroxide [23,24], the reduction
in the kinetics of reaction is not sufficient to significantly
modify the previous results. In that respect, the dimensional
analysis clearly confirms the assumption that, in meost

practical cases involving the diffusion of ions in saturated
cement systems, the local equilibrium is preserved [6,7].

It should also be emphasized that the technique demon-
strated here also has use in the analysis of experimental data.
In both steady state and transient tests, researchers typically
make the assumption that the reaction rate is relatively
instantaneous by comparison to the other transport mechan-
ism. In most cases, this is probably true. However, it is
conceivable that this assumption may not apply to cases
where ions are transported very quickly through the material
pore structure, for example, by an applied electric field. This
aspect of the problem will be further discussed in Parts 2
and 3 of the present series.

4. Conclusion

The analysis performed here demonstrates a useful tech-
nique for comparing the significance of different contribu-
tions to ionic transport, and the ensuing chemical
degradations, in concrete. It has been shown that the
diffusion of ions in a reacting porous medium can be fully
described on the basis of six different dimensionless num-
bers. The analysis also demonstrates that the kinetics of the
reaction determine the appropriate treatment of the overall
transport problem.

The formalism is applied to dissolution of calcium
hydroxide under an electrochemical potential gradient.
The results are in agreement with previous observations
and demonstrate quantitatively the local equilibrium hypoth-
esis is valid in most practical cases where ions are trans-
ported by simple diffusion through a saturated material.
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