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ABSTRACT. The transfer function for the Differential Mobility Analyzer (DMA) is
derived based on particle trajectories for both nondiffusing particles and diffusing
particles. The effect of particle diffusion is assessed by using a Monte-Carlo method
for particles of sizes 1, 3, 10, 30, and 100 nm. This approach includes both the effect
of wall losses and axial diffusion. The range of validity of the Stolzenburg analysis is
assessed by comparing his transfer function, the peak of his transfer function, and its
dimensionless width with similar calculations based on the Monte-Carlo. For particle
sizes smaller than 10 nm, the Monte-Carlo method indicates large wall losses, which
result in a reduction in the peak of the transfer function by as much as a factor of 10
to 30, sensitivity to the flow-field, and skewness of the transfer function. It is shown
that Stolzenburg’s approximate formula for the standard deviation of the width of the
transfer function agrees with Monte-Carlo simulations for particle sizes of 3 nm and

larger.

INTRODUCTION

The Differential Mobility Analyzer (DMA) is
widely used for sizing and classifying submi-
crometer aerosols. The most widely used DMA
is based on the design developed by Liu and Pui
(1974). Recent modifications of the classifier
include a rapid scanning capability, where a
complete spectrum can be obtained in as fast as
30 s Wang and Flagan [990; Endo et al. (1997),

* This work was partially done while Yudaya Sivathanu was
visiting the Statistical Engineering Division of the National
Institute of Standards and Technology as a visiting scholar
with additional support from an NIST grant.

and a radial DMA by Zhang et al. (1995) for the
characterization of ultra-fine aerosols.

A clear and elegant exposition of the work-
ings of the DMA was presented by Knutson and
Whitby (1975). They model the DMA in terms
of integrated functions, the stream function, and
an electrical flux, rather than using the particle
trajectories. Their main result is the derivation
of the transfer function, defined as the probabil-
ity that an aerosol particle that enters at the inlet
slit will exit via the sampling slit. The beauty
of their method is that the transfer function is
expressed in terms of measurable quantities,
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including flow rates and the electrode voltage.
The transfer function is needed for inferring the
size distribution of polydisperse aerosols from
measurements of particle concentration versus
voltage for particles exiting the classifier.

Stolzenburg (1988) extended the Knutson—
Whitby analysis to the case of diffusing parti-
cles making use of an expansion about a “parti-
cle” stream function with no diffusion. Unfortu-
nately his excellent study has not been published
in a refereed journal. Independently, Tammet
(1970) analytically calculated the effect of par-
ticle diffusion on the DMA transfer function.
The analysis of diffusional effects in a short-
ened DMA by Roswell-Llompart et al. (1996)
provides an overview of these two studies. The
study by Zhang et al. (1996) contains explicit
expressions of the transfer equation in terms of
four dimensionless quantities, though one must
refer to Stolzenburg’s thesis to obtain an explicit
expression for the diffusional spreading for the
cases of plug flow and fully developed viscous
flow.

The great advantage of the analysis by
Stolzenburg is its generality. One can assess
the effect of diffusion on the transfer function
as a function of the particle size, the flow ra-
tio through the classifier, and the length of the
classifier. However, there are several issues not
resolved by this analysis. One issue is a real-
istic description of the flow through the classi-
fier, especially the inlet and outlet region. Chen
and Pui (1997) have obtained results on the flow
within the classifier for nanometer aerosol par-
ticles. Using a three-dimensional (3-D) flow
code, they find for the standard DMA design
that a flow recirculation develops in the DMA
inlet for a 20:1 flow ratio of sheath air flow to
aerosol flow. The recirculation is not present for
a 10:1 ratio of flows, which is the most widely
used condition. A second effect is the effect
of fringing of the electrical field, again near the
inlet and outlet. There is also modeling evi-
dence of penetration of the electrical field into
the aerosol inlet (Chen and Pui 1997); a detailed
model of the field in the vicinity of the out-
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let with multiple holes has not been developed.
The third effect concerns the modeling of the
diffusion with wall losses and streamwise dif-
fusion included. Rosell-Llompart et al. (1996)
include streamwise diffusion in their analysis of
the optimal length of a DMA based on a delta
function initial position of the aerosol. The ap-
proach of Chen and Pui (1997) is the only model
that includes wall losses. A major focus of our
study is the use of the Monte-Carlo method for
assessing the influence of streamwise diffusion
and wall losses on the transfer function. Our
Monte-Carlo approach is compared to the anal-
ysis of Stolzenburg. We include the resulting
equations from Stolzenburg’s thesis for making
the comparison.

There are two reasons for needing an im-
proved understanding of the effect of diffusion
on the transfer function: to quantify the resolu-
tion of the particle size distribution and to quan-
tify the accuracy of the electrical mobility mea-
surements. The driving force in the first case
is the need for accurate measurements of the
widths of narrow size distributions. Such mea-
surements are important in the development of
monodisperse spheres synthesized by emulsion
polymerization. The specific issue addressed
is the effect of particle diffusion on size reso-
Iution as a function of the ratio of the aerosol
flow to the sheath flow. In the second case, the
concern is the accuracy of the DMA measure-
ment for the mean particle size. This is impor-
tant for the application of the DMA for sizing
measurements of particle size calibration stan-
dards such as the 100 nm particle standard is-
sued by NIST (NIST Standard Reference Ma-
terial 1963). The specific issue is the effect of
particle diffusion on sizing accuracy as a func-
tion of flow ratio. Because we are using the
Monte-Carlo method to investigate diffusional
effects on the transfer function, our approach is
trajectory based. We set up a model flow condi-
tion of plug and parabolic and explicitly define
the inlet and outlet condition. These conditions
are implicit in the work of Stolzenburg. First,
it is shown that when the diffusion coefficient
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equals zero, both the trajectory approach and the
Knutson-Whitby approach give the same trans-
fer function.

THE DMA

Figure 1 contains a schematic of the actual clas-
sifier as well as a simplified version of it. The
classifying region is bounded by a stainless steel
outer cylinder with an inner radius of length r;
and a coaxial, stainless steel center rod with a
radius r;. The center rod is maintained at a volt-
age of Vp, and the outer cylinder is grounded.
Thus, an electric field, E(r, 9, z), is established
in the annular region between the two cylinders.

Clean sheath air flows through the annular re-
gion along the center rod with velocity profile
u(r,0,z). Asmaller, polydisperse aerosol flow
enters through an axisymmetric opening along
the outer cylinder. The two flows meet with-
out mixing and then flow through the classify-
ing region. Near the bottom of the classifying
region, a slit on the center rod extracts a fraction
of the air flow consisting of nearly monodisperse
(single-sized) aerosol particles. The remainder
of the air flow exits through the end of the an-
nular region as excess air. The length of the
classifying region, L, is defined as the axial dis-
tance from the aerosol entrance to the aerosol
exit at the slit in the center rod. The instrument
settings are listed in Table 1.

The flow pattern inside the actual classifier
is complicated. A simplified flow pattern is il-
lustrated in Figure 1b. One can model the flow
as either plug flow or fully developed parabolic

TABLE 1. DMA settings®.

Inner radius ry = 0.947 cm
Outer radius rp = 1958 cm
Cylinder length L =4cm

Aerosol flow Q. = 16.67 cm’/s
and 4.167 cm®/s
Sheath or excess flow Q. = 166.67 c;®/s

“The geometric values given in Table 1 are slightly differ-
ent from the TST DMA values with ry = 0.937 cm, r, =
1.958 cm and L = 44.44 cm. The value of L/1n(r2/r1) is
60.57 for Table 1, compared to 60.30 for the TSI values.
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flow. Inlet and outlet slits are depicted in the fig-
ure, but these should be viewed as virtual slits.
That is, they have no effect on the flow. The in-
let boundary simply represents the fact that all
of the aerosol is in the outer cylindrical region.
The radii r, and r, are chosen so that a certain
fraction of the flow goes through the inlet slit
and an equal fraction of the flow goes through
the outlet slit. Of course, the slit widths will be
different for the two types of flows. None of the
possible complications, such as shear flow and
vortex formation, that might occur in an actual
inlet or outlet are included in this analysis. If
there is no diffusion, the transfer function is the
same for these two flows; in fact, it is indepen-
dent of flow provided the flow is laminar. Here
we compute the transfer function for these same
two flows, but including the effect of particle
diffusion.

Our analysis was carried out for particle di-
ameters, dp, of 1,3, 10, 30, and 100 nm with
corresponding diffusion coefficients, D, of
537 x 107% cm%s, 5.99 x 107 cm?s,
5.47 x 107* cm?/s, 6.42 x 1075 cm?/s and
6.80 x 1076 cm?/s. We have used the following
expression for the Cunningham slip correction:

C(d,) =1+ K,[1.142 + 0.558¢ 0999/ Kn ],

where K, is the Knudsen number (K, = 21/d,)
with mean free path A = 67.43 nm.

THE TRAJECTORY METHOD
Monte-Carlo simulations is the tool we use to
understand the DMA transfer function of diffus-
ing aerosol particles. The Knutson and Whitby
(1975) approach that uses streamlines to model
the passage of an aerosol particle through the
DMA classifier does not lend itself easily to
Monte-Carlo simulations. Instead, a trajectory
model is needed for Monte-Carlo simulations.
In this section we present a trajectory approach
for analyzing the DMA classifier and show how
it leads to the same exact expression for the non-
diffusive transfer function as that in the stream-
line method.
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We assume that the airflow is axisymmet-
ric, laminar, and incompressible, as done in
Knutson and Whitby (1975). Let u,(r, z) and
u,(r, z) denote the radial and axial components
of the airflow velocity. Similarly, let E, (r, 2)
and E,(r, z) denote the radial and axial compo-
nents of the electric field. Neglecting particle
inertia and Brownian motion, the particle tra-
jectory is described by the system of differential
equations

d
- u,(r,z) + Z,E.(r, 2), M
dt
d
£=mmo+aamo, @)
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.  FIGURE 1. Schematic of the DMA
classifier (a) and the simplified version
(b) used in the calculations.

where Z, denotes the particle’s electric mobility
and is given by

_€C(dy)

© 3mud,’

P

¢ is the charge of the electron, and u is the air
viscosity. Particle inertia is neglected in this
analysis. The validity of this approximation
is evident from considering 100 nm spheres,
which have a relaxation time of 9 x 1078 s.
The maximum aerosol velocity is of the order of
40 cm/s, which corresponds to a stopping dis-
tance of 40 nm for the 100 nm particles and
even smaller stopping distances for the other
sizes. Thus the particle inertia can be neglected.
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Implicit in writing the equations in this form
is the assumption that the flow is steady; that
is, there is no time dependence in the velocity.
This assumption rules out the possibility of vor-
tex dynamics at the entrance and exit slits of the
analyzer. The steady flow assumption, for this
application, is equivalent to saying the flow is
laminar,

The electric field for concentric cylinders (as
the classifier) is given by

Vo

E(r,2) =E.(r) = —m,

E,(r,z) =0.

The transfer function, denoted by Q(cZ p)s
can now be defined as

Q(cZ,) = the probability that an aerosol
particle which enters the DMA
at the inlet will leave via the
sampling slit.

¢ is a constant depending on the electric field,
specified later. Inherent in the definition is the
fact that when the particle intersects the wall of
the cylinder it sticks.

The probabilistic nature of the nondiffusive
transfer function is a result of the random inlet
distribution of particles entering the classifier.
For the diffusive transfer function, diffusion is
another source of randomness. Analysis based
on the particle’s trajectory requires that the en-
trance probability be a function of radial loca-
tion. Particles enter the sampling region from a
random radial location (R, 0), wherer, < R <
r, and R has probability density function which
depends on the velocity profile at the inlet. For
example, for auniform velocity profile this prob-
ability density function is given by pp(R) =
27 RUy/Qu = 2R/(r? — r2); U is the mean
axial flow velocity and Q, is the aerosol flow
rate. For a general velocity profile, R will have
probability density function given by

pgen(R) = 2 Ru (R, 0)/Q,,
Fg < R <. (3)
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Here we assume that u,(R,0) > 0. This dis-
tributional assumption is consistent with Knut-
son’s and Whitby’s uniform initial condition
based on streamlines.

Introduce anr, z-coordinate system within the
spectrometer, as shown in Fig. 1, with the posi-
tive z axis pointing in the direction of the flow,
and let t be the solution of the equation

zZ(ty =L, t>0

given that the particle starts at (R, 0). z(t) is
the z-component of the aerosol particle’s mo-
tion when it first reaches a position parallel to
the sampling slit. The particle passes through
the sampling slit at time 7 if and only if

ry <r(t) <rp;

i.e., the radial component lies between the coor-
dinates of the sampling slit. The transfer func-
tion is thus the probability

Q(cZ,) = Plr; <r(r) <rpl 4)

As illustrative examples, we consider the
inviscid flow and the viscous flow. For in-
viscid (plug) flow, u,(r,z) = 0, u,(r,2) =
U(), E,(r, Z) = —V()/r ln(k),k = rz/r], and
E.(r,z) = 0. Substituting into Equations (1
and 2) gives the following differential equations
describing the trajectory of an aerosol particle
in a plug flow:

dr _ ZpVO —_

p iyt (r(0), z(0)) = (R, 0),
dz

a = Yo

It is easily shown that these separable equa-
tions have solutions

/ 2Z,Vo
—_ 2_Z7p
r@) =,/R ) ®)

Z(f) = U()I. (6)

For viscous flow, u, (r, z) = 0and the axial com-
ponent of air flow satisfies
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u,(r) = Ar* + Bin(r) + C, )
1 dp
=—— 8
4 dz ®)
B = _id_p_;:%—_rlz’ (9)
4p dz In(ry/ry)

1 dp r22—r]2 5
= =1 — , (10
4u dz I:ln(rz/rl) n(ry) = ri (10

where u is the viscosity of air and ‘;—’Z’ denotes
the constant pressure gradient. Although not
given here, similarly, the equation of motion
of an aerosol particle in a viscous flow can be
solved explicitly.

Tlustrative trajectories are given in Figure 2
for plug flow with the sheath and aerosol flows of
166.7 cm®/s and 16.7 cm?/s, respectively. Fig-
ure 3 contains particle trajectories for the vis-
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cous case. The zero velocity condition on the
wall for the viscous flow causes the flattening of
the trajectories near the inner and outer walls.
The inlet and outlet widths are chosen so that
there is no discontinuity in the axial velocity
profiles. The inlet and outlet widths are greater
for the viscous flow because of the zero veloc-
ity at walls. For plug flow all three trajecto-
ries shown in Figure 2 have the same residence
times within the classifier of about 550 ms. As
indicated in Figure 4, plots of time versus axial
location for the viscous case, the shape of the
curve and total residence time depends on the
starting location and varies from about 470 ms
to about 530 ms. Even though the velocity van-
ishes at the walls, the particles spend more time
in the central region of the classifier, leading to
a shorter residence time than for the plug flow.
Consider the trajectory approach for plug
flow. For plug flow 7 = L /Uy, as can be seen

FIGURE 2. The innermost, central,
and outermost particle trajectories for
a DMA classifier with plug flow.
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Inflow

FIGURE 3. The innermost, central,
and outermost particle trajectories for
a DMA classifier with viscous flow.
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from Equation (6). Starting with Equation (5),
substituting this expression for r (r) in Equation
(4), and squaring both sides of the inequality
gives

QADHZ,)
= Priry < r(L/Uy) < rp]
2Z,Vo L 2Z.Vo L
=P 2 p’Y = R2 2 Py =
r[r‘+ w® Ue KT hm vl
an
where Adg = —pf-L, k = ry/r1. The right-

hand side of Equation (11) can be easily com-
puted for uniform random variables using the
following result.

Result 1: For a uniform random X defined
on the interval [c, d]

Pria < X < b}
=[b-t—(@a-c)" —@b-a)7
+(a—d)*1/(d - o), (12)

where x* = max(0, x), that is, for all real x,
xV is zero if x < 0 and simply x if x > 0.

Result 1 can be shown to hold true by exhaust-
ing all the possible locations of a, b with respect
toc,d.

Since R? in general will not have a uniform
distribution, we cannot apply Result 1 directly
to Equations (11), but by transforming R? to a
uniform random variable using Result 2 (Hogg
and Tannis 1983), we can apply Equation (12).

Result 2: Let X be a random variable such
that ¢ < X < d with continuous probability
density function p(x) and with strictly increas-
ing, cumulative distribution function F(x) =
fcx p(r)dr. Then the random variable, defined
by Y = F(X), has a uniform distribution on
[0, 1].

Result 2 is useful because it says, for any ran-
dom variable X, in order to compute Pric <
X < x], transform the inequality as follows,
Prlc < X <x]= Pr[F(c) < F(X) < F(x)],
and then apply Result 1.

R is a random variable with cumulative dis-
tribution function, see Equation (3),
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Gplug (%) :[ pgen(r)dr

a

2
= H”Uooﬂ/z —r2/2),
ry <x <r3. a3

Thus by Result 2, G(R) = ZQ—” Uog(R%/2—r%/2)
is uniform on [0, 1]. Thus, the transfer function
for plug flow can be computed by transforming
the inequality on the right-hand side of Equation
(11) by adding —r2, dividing by 2, multiplying
by 27 Uy/Q,, on both sides of the inequalites,
and then applying Result 1 as done below:

Q(Z,Ad)

= Pr [2Q—”[U0(r12/2 —r2/2) — Z,A®]
< G(R) < 2Q—”[U0(r,§/2 —r2/2)
— ZPA%]]

2
= ZE1(Qc + Qu)/27 + Z,A00)*

a

—(Qm/27 + Z,ADp)"
—(Q. /27 + ZpA¢0)+

+((Qn — Q)/2m + Z,A®0) ). (14)

In the lastequality, Up(ri/2—r2/2) = — Q. /27
and Uy(r2/2—r%/2) = —(Qm— Q.)/27, where
Q., Q. are the sheath air flow rate and the ex-
cess flow rate, respectively.

This expression for the transfer function is
equivalent to the expression of Knutson and
Whitby, but is written more succinctly and is
easier to apply. Stolzenburg (1988) also simpli-
fies Knutson’s and Whitby’s expression for the
transfer function using the relation | a + b5 | +
la—b|=2max(|a|,| b|) and derives the
above expression for 2 (Z, A®y).

The same steps done for plug flow can be
applied to all laminar, axisymmetric, and in-
compressible flows. Indeed, since E; = 0 and
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E, = —Vy/riIn(k), Equations (1 and 2) can be
written as follows:

d_r =u,(r,7) — M, (15)
dt r
3—? =u.(r, 2) (16)

(r(0), 2(0)) = (R, 0).

In order to use Results 1 and 2, transform the
trajectory (r(t), z(¢)) as follows,

y(t) = G(r(0), z(1), an

for some twice differentiable (both variables)
function; G (r, z) to be specified later. The trans-
formed trajectory, y(¢), satisfies the following
differential equation,

dy _3Gdr  3Gdz
dt _ or dt 3z dt’

or equivalently the integral equation

y(0) = G(R, 0),

3G
y() = G(R,0) +/ —a——(r(S), z(s))
0 r

u,(r(s), z(s))ds

Z,Vo
T —8—'(r(s) z(s))—ﬁds

+ f ig;-(r<s),z(s))u;(r(s),z(s))ds.
o 9z

Now, freely choose G (r, z) such that

190G

2
=2 ) = wa, D, (18)

Qa

then the second integral becomes — E%’z( )
the first integral becomes

'ZQZ / r($)uz(r(s), 2(s)ur (), 2(5))ds,
a JO

and the third integral stays the same. If
is chosen such that

(r1 &)

—ru,(r, 2)—,
d

aG
8_Z(r’ Z) -
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then the first and third terms cancel one another
and one gets the equation

pv() et
In(k) ()Qa

That there is such a well-defined function
G (r, z) satisfying the above conditions follows
from the incompressible condition of the air
flow, that is, %ruz(r, Z7) = —%ru,(r, z). The
following equation is satisfied:

Gr(®,z2(0) =G(R,0) —

Z V() 2

L____
k) Q.

Using Equation (18), take G(r, z) = %’f

frr xu.(x, z)dx. Note thatforr, <7 < r;

G@r(v), L)=

G(R,0) —

G

2
S20) = (g, 0)>—Q’£ = Pgen(r);

see Equation (3). Thus integrating
60,0 = [ pun(rrix

and by Result 2, G (R, 0) is a uniform (0,1) ran-
dom variable.

Since G (r, L) is a nondecreasing function of
r, the following calculations hold:

QZ,ADy)
= Prlr <r(r) <rpl
= Pr[G(ri, L) < G(r(r), L) < G(rp, L)]

Z,Vo 2_7T
Ink) Q.
< G(R,0) < G(rp, L)

= Pr [G(rl, L)+

ZPV() 2n
+1n(k>L§J
—Pr|: 2n QC—Z ACDOE—— < G(R,0)
Qa Q.
27f Qm - Qa _ ZpA¢02_ni| '
Qa 2 Q.
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Asin the calculations for plug flow, see Equation
(14); by applying Result 2, this equation reduces
to the Knutson-Whitby transfer function.

EFFECTS OF BROWNIAN MOTION

As a result of random collisions between
the aerosol particles and the air molecules,
aerosol particles undergo diffusion. Diffu-
sion is reflected in the aerosol particle’s tra-
jectory as a random perturbation. These per-
turbations are described by Brownian mo-
tion. The probability p(x, ) that at time ¢
the perturbation is of of length x is given by
pp(x, ) = 2«/]m exp{—x2/4Dt}, where D
denotes the diffusion coefficient. For sherical
particles D = k,TC(d,)/3mud,, where ky is
Boltzmann’s constant, T is temperature, C(d,,)
is the Cunningham slip correction, and p de-
notes viscosity.

Introduce the variable x(f) = mB(t),
where B(t) is standard Brownian motion, and
the increment B(t + A) — B(¢) is a mean zero
Gaussian random variable with variance equal
to A. Then, the variance of the random dis-
placement due to Brownian motion satisfies

Var[x(t + A) —x(1)] = 2DA

and has density ppa(x, #). Let (B.(t), B,(1),
B, (1)) denote 3-D standard Brownian motion,
independent of R; then the equations of mo-
tion in rectangle coordinates, (x(t), y(t), z()),
of the aerosol particles are given by

dx =luy(x,y,2) + Z,Ex(x,y, 2)]dt
++2Dd B, (1),

dy =luy(x,y,2) + Z,E,(x,y, 2)]dt
+v2Dd B, (1),

dz =1lu(x,y,2) + Z,E.(x, y, 2)ldt
++2Dd B, (t). (19)

It is convenient to orient an xyz coordinate sys-

tem so that the yz plane contains the particle tra-
jectory; that is, z is at the center of the collection

DMA Transfer Function 49

rod, y is equivalent to the radial position of the
particle, and x is nominally zero except for the
contribution from Brownian motion. Provided
the minimum value of y is large compared to a
diffusion length scale, the 3-D trajectory reduces
to a two-dimensional (2-D) yz trajectory defined
by the last two of the three expressions given in
Equation (19). In the Appendix it is shown for
plug flow that the 3-D trajectory in cylindrical
coordinates can be accurately represented by a
2-D trajectory, provided the minimum value of
¥, Ymin, satisfies the following equation:

Ymin > + (DL/2Up).

For the DMA configured as described above,
¥min 1S approximately ! cm and the quantity on
the right-hand side (RHS) of the equation corre-
sponding to the diffusion coefficient of a 1 nm
sphere is about 0.25 cm. So even in this extreme
case of a I nm sphere, the condition in Equation
(20) is satisfied. A condition for parabolic flow
is also given in the Appendix. For notational
convenience we use r rather than y, noting that
in two dimensions, y and the radial variable are
identical. The basic reasons for the simplifica-
tion from 3-D to 2-D are that the motion is inde-
pendent of the azimuthal angle (see Appendix)
and that the diffasional motion is small com-
pared to electric field induced motion. The re-
sulting equations are given by

(20

dr =[u,(r,2) + Z,E(r, 2)]dt
++v2Dd B, (1),

dz =lu,(r,2) + Z,E (r, 2)]dt
+v2Dd B, (t).

‘We shall not treat the Brownian motion prob-
lem in its full generality, but shall assume that
uy(r,z) = 0, u(r, ) = u,(r). This simplifica-
tion includes many useful flows, e.g., plug flows,
viscous flows through a cylinder, flows through
an annular region, etc.

Under these modifications, the equations of
r(¢) and z(t) reduce to
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dr = Mm ++v2Dd B, 1), (1)
dz = u (r)dt + v2Dd B, (). 22)

Even for simple plug flow, solving the sys-
tem of Stochastic Differential Equations (21)
and (22) in closed form is not possible. The
method we take is to solve the Stochastic Dif-
ferential Equations (21) and (22) for the trajec-
tories, directly, using a weighted Monte-Carlo
method. Then the transfer function

QZ,ADg) = Prlr; <r(r) <rp]

is calculated as described below for both plug
flow and parabolic flow. Other methods, notably
Stolzenburg’s, result in analytic approximations
for the transfer function. The Monte-Carlo sim-
ulations are compared to Stolzenburg’s results.

STOLZENBURG’S RESULTS

Stolzenburg’s (1988) analysis starts by writing
the position vector in terms of the curvilinear
coordinates: s the arc length along the stream-
line and x the perpendicular distance from the
streamline due to diffusion. Then, the aerosol
velocity vector is expanded into a first-order
Taylor series expansion about x = (. With
additional simplifications, e.g., neglecting wall
losses, the problem reduces to the diffusion of a
one-dimensional (1-D) Brownian particle in an
infinite medium. Stolzenburg’s transfer func-
tion is a convolution of the nondiffusive trans-
fer function with a Gaussian distribution and is

given by
. o V-—(1+8
Q) =

™ ﬁﬂ{( =)

. V—(1-8
V2o

V-1
—2¢ ( o )], 23)
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where

e(x) =xerf(x) + Lﬂ exp(—xz),

NG
B=0./0.,
V=Vo/ Vg,
v Q. In(ry/r2)
0 = A_71~ >

2wLZ,
o= GD,
~  2nLD
D= ,

Q.

4(1 + B)?

G= —(l_—ﬁ)[ly(y) + QU1+ B2,
y =(n/r),

k= Lro/(r} = r])

for plug flow
Ly)=30+y)
and for inviscid flow
L{y)=

[0 =90 =y + ZA —yHT-y)

xIn(y) + (1 —y* - In’(y)]
[ ==+ ) m0) - (1 = F]

We have used the dimensionless voltage V as the
independent variable, since in our simulation the
particle mobility is fixed and the voltage is var-
ied. This set of equations was used in comput-
ing the transfer function for comparison with the
Monte-Carlo results. There are two limiting re-
sults that are useful for comparing the overall be-
havior of the transfer function. One is the peak
value of the transfer function, Q(V =1),asa
function of § and o and the other is the standard
deviation, § (‘7), of the reduced electrical mobil-
ity. Setting V = 1 in Equation (23), one obtains

- 1
QV =1 = —(ew) - ()

— erf(w) — w—lﬁ(l — exp(—w?)),
24)
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where w = :/%—a Next we write the expression

for the standard deviation given by Stolzenburg:
. 1 1/2
SV=1= [8’32 +o%(1+ 252)]

= Spa |:1+—3—2(1+202):|, (25)
w

where S, is the standard deviation in the ab-
sence of diffusion. For particle sizes larger than
3 nm, the o term is small so that the standard
deviation can be approximated by

_ 172
S(V:l):Snd[1+—2] .
w

We see that both the peak in the transfer function
and the standard deviation of the reduced mobil-
ity are functions of w, which is proportional to
B/o. For sheath flow of 166.7 cm*/s and the
DMA dimensions given above one obtains the
following expression for w:

w——-—————Cﬁ
(1 +AVD’

where ¢ is a constant equal to 0.3055 with di-
mensions cm/4/s, D is the diffusion coefficient,
and cm and s refer to the units of centimeters
and seconds. So this analysis will fully define
the unit performance for a fixed sheath flow. For
other sheath flows the explicit expression would
change, since as indicated in the equation, D
is inversely proportional to the sheath flow rate.
Of course, if the geometry changes, this would
change both the flow function G and D. To min-
imize the effects of diffusion, one wants to re-
duce the residence time in the DMA by increas-
ing the flow rate and/or decreasing the length of
the classifier.

Monte-Carlo: The Stochastic Differential
Equations (21) and (22) were solved using an
Euler solver in conjunction with a Monte-Carlo
simulation, i.e., let

ZpVo/In®) +a(t)

r@+ Aty =r(t) — s
(26)
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Z(t + At = z(&) + u, (r (1)) At + b(1), 27

where a(t) and b(t) denote independent incre-
ments of Brownian motions, i.e., Gaussian ran-
dom variables with means zero and root mean
square (RMS) given by

VE[a2(t)] = v/2D A,
VER (D] = V2DAt,

where At is the time step of the simulation
(Kloeden and Platen 1992). Ar was set at 0.002
s for the simulations. u; is the axial velocity
which is obtained either as a constant for the
inviscid flow or as a parabolic function of ra-
dial location for the viscous flow. The inlet re-
gion of the aerosol is a concentric cylinder with
inner radius r, and outer radius r;. The area,
n(r? —r?), corresponds to the area required for
the aerosol flow with the given velocity profile.
This area is divided into 100 concentric rings,
and the volume flow of the aerosol through each
ring is calculated. For any voltage Vp, the par-
ticle trajectories are started from the center of
each ring with a weight equal to the fraction of
aerosol flow through that ring. 200 particles are
started from each ring, and the particle trajec-
tory is terminated if the particle touches either
the inner (r;) or outer (r;) wall. If the particle
does not touch either wall, its radial location at
the outlet boundary z = L is obtained. If thisra-
dial location is smaller than the outlet port (r),
then the particle passes through the counter and
its weight is added to a running total. r; is ob-
tained by finding out the area required for the
entire aerosol flow to pass between the inner rod
ry and r. This total is divided by 200 at the end
of the simulation to yield the transfer function
for the particular voltage.

For the viscous flow, the mass flux through
a ring was obtained by multiplying the cross-
sectional area of the ring by the local velocity
profile, u,(r), given in Equation (7). Then the
probability of any particle starting at a specific
radial ring is obtained by dividing the local mass
flux by the total mass flux of particles. This is
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the weight given to each trajectory used in a
weighted Monte-Carlo simulation.

‘We now analyze the Monte-Carloresults. The
effect of diffusion on the transfer function for
two flow settings of the classifier is considered:
acommonly used 10:1 flow ratio and a high res-
olution40:1 flow ratio. The high resolution flow
ratio is used for measuring the widths of the
size distribution of monodisperse polystyrene
spheres (Mulholland et al. 1996, Kinney et al.
1991). The transfer functions of two flow pro-
files (a plug flow and a viscous flow) are consid-
ered.

Also, it is possible to solve for the transfer
function by setting up a boundary value prob-
lem using Dynkin’s equation, which leads to a
partial differential equation representation of the
transfer function (Schuss 1980). This approach
was taken by Hagwood et al. (1995).

Aerosol Science and Technology
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RESULTS

Sample trajectories obtained with and without
taking into account the random component are
shown in Figure 5 for a 100 nm diameter parti-
cle for plug flow. The two sample trajectories
influenced by diffusion terminate near the edge
of the outlet slit, while the trajectory without dif-
fusion terminates at the center of the outlet slit.
Thus it is not surprising that the peak value of
transfer function will be reduced as a result of
this diffusion process.

The transfer function for the 100 nm particles
is plotted in Figure 6 for the 10:1 flow ratio. It
is seen that in this case diffusion has very lit-
tle effect on the transfer function. However, for
the 30 nm particles the peak value of the trans-
fer function decreases from about 1 to about
0.88 as a result of the particle diffusion, as
shown in Figure 7. It is also seen that the trans-

FIGURE 5. The effect of diffusion on
the central trajectory in a DMA classi-
fier with plug flow and at a 10:1 flow
ratio for the 100 nm particles.
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FIGURE 6. The transfer function for
a DMA classifier with 100 nm parti-
cles, 166.7 cm/s of sheath air, and 16.67
cm?/s of aerosol flow.
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fer function for both the plug and the vis-
cous flows are almost identical. Also, the
Monte-Carlo calculation and Stolzenburg’s re-
sult (Equation (23)), were almost identical.

To obtain accurate size distributions it is im-
portant to operate the classifier at a high ratio of
sheath to aerosol flow rate. Sample trajectories

FIGURE 7. The transfer function for
a DMA classifier with 30 nm particles,
166.7 cm3/s of sheath air, and 16.67
cm?/s of aerosol fiow.

220

for the 30 nm particle and for a 40:1 flow ratio
are plotted in Figure 8. In this case it can be seen
that the sample trajectories miss the outlet slit by
a wide margin, indicating a greater diffusional
effect on the transfer function. Figures 9 and 10
give the transfer functions for the 100 nm and
30 nm particles at this high flow ratio. It is seen
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N FIGURE 8. The effect of diffusion on
the central trajectory in a DMA classi-
fier with plug flow and at a 40:1 flow
ratio.
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FIGURE 9. The transfer function for
a DMA classifier with 100 nm parti-
cles, 166,7 cm>/s of sheath air, and 4.167
em?/s of aerosol flow.
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FIGURE 10. The transfer function for
a DMA classifier with 30 nm particles,
166.7 cm’/s of sheath air, and 4.167
cm3/s of aerosol flow.
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that the peak values of the transfer function are
significantly reduced in both cases. Comparing
Figures 7 and 10, we can see that for the same
particle size, diffusion has a greater impact on
the higher flow ratio case. Quantitatively, the
reason is that the outlet target area for the parti-
cles is smaller for the higher flow ratios. Using
a triangular transfer function would result in a
significant error for particles of 100 nm or less
for these high flow ratios. The fact that both the
viscous and plug flow cases show similar results
indicates that the present conclusions are not de-
pendent on the particular flow profile. Again
it is seen that the Monte-Carlo calculations are
essentially identical to the results from Stolzen-
burg’s analysis.

Monte-Carlo calculations were carried out for
particle sizes 10 nm, 3 nm, and 1 nm to deter-
mine at what size the assumptions of no wall
loss affects Stolzenburg’s results. The results
for the 10 nm particles are given in Figures 11
and 12. The first discrepancy between the the-
ory and the Monte-Carlo simulations is evident
for the 4.167 cm®/s flow rate. It can be seen
that for this particular flow rate, the Monte-Carlo
simulations show a greater diffusion effect for

200

the plug flow case as compared to the parabolic
case. In addition, there is a skewness of the
profile. For the plug flow, the flux of particles
that pass very close to the wall is higher than for
the parabolic flow. Therefore, for small particle
sizes and small exit orifices, the number of par-
ticles that impinge on the wall is higher for the
plug flow, reducing the transfer function. It is
noted that such affects were not present for the
larger particles, since the wall losses are almost
negligible.

The skewness for the low voltages could be
due to the effect of lower radial velocities at
low voltages. The diffusion “velocities” rela-
tive to the radial velocity leads to increased wall
loss. This produces a significant skewness to the
transfer function.

For the 3 nm particle size, the reduction in
the transfer function for the plug flow relative
to the parabolic flow becomes more apparent as
indicated in Figures 13 and 14. For the case
of the aerosol flow of 4.167 cm?/s, the Stolzen-
burg results overestimate the peak in the trans-
fer function by a factor of about 2. Because of
the large diffusion coefficient, the width of the
transfer function at this flow rate is only slightly
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smaller than the case for an aerosol flow rate
that is four times larger. For the 100 nm parti-
cle size the width of the transfer function for the
smaller flow was narrower than the larger flow
by a factor of 4.

The Monte-Carlo results for the 1 nm parti-
cles shown in Figures 15 and 16 are a factor of
3 to 30 lower than the Stolzenburg results. The
wall loss becomes a dominant effect for this par-
ticle size and DMA configuration. Monte-Carlo
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simulations including axial diffusion were also
carried out, and the results were essentially the
same as those without axial diffusion.

Two graphical summaries of the calculations
are contained in Figures 17 and 18. From the

plot of the peak in the transfer function versus
diameter, it is seen that there is good agreement
between the Monte-Carlo results and Stolzen-
burg’s analysis for particle diameters of 10 nm
and larger. It is apparent that the agreement is
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much better for the parabolic flow than for the
plug flow.

Figure 18 provides a comparison of the re-
duced width of the transfer function with par-
ticle diameter. The results include the Monte-
Carlo simulations, the moment analysis of Equa-
tion (23), and the simplified expression obtained

by Stolzenburg, Equation (25). It is seen that
the standard deviation is more sensitive to wall
loss than the peak with a small difference ob-
served between the Monte-Carlo simulation and
Stolzenburg’s results for the 30 nm particles with
the low flow ratio. The difference increases
with decreasing size. Surprisingly, the approxi-
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mate formula derived by Stolzenburg agrees bet-
ter with the Monte-Carlo simulation with sig-
nificant difference only apparent for the 1 nm
particle size. It is important to comment that
our analysis is based on a monodisperse particle
size. Stolzenburg obtains a somewhat differ-
ent result based on analyzing Equation (23) for

a fixed voltage but a range of particle diame-
ters/mobilities.

The preceding results are based on a classi-
fier of length 44 cm. Recently, classifiers have
been fabricated with lengths reduced by a factor
of 4 and by a factor of 16. In these cases the
diffusion broadening will have less impact. The
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broadening for a 10 nm diameter particle for a
full length classifier equals the broadening for a
5 nm diameter particle for a 1/4 length classi-
fier and equals the broadening for about 2 2.5 nm
diameter particle for a 1/16 length classifier.

CONCLUSION

1. The effect of particle diffusion on the DMA
transfer function can be conveniently as-
sessed by using Monte-Carlo simulations
without having to neglect axial diffusion or
wall losses.

2. The Stolzenburg analysis, which neglects
wall losses, agrees with the Monte-Carlo re-
sults for particle diameters larger than 10 nm
for an aerosol to sheath flow ratio (8) of 0:1.

3. For particle sizes smaller than 10 nm and
B = 0.1, the Monte-Carlo method indicates
large wall loses resulting in reduction in the
transfer function by as much as a factor of
10 to 30, sensitivity to the flow field, and
skewness of the transfer function. For the
case where 8 = 0.025, a small effect on the
width of the transfer function is already ap-
parent for a particle diameter of 30 nm.

APPENDIX

If the motion is written in rectangular coordi-
nates as in Equation (19), then the radial loca-
tion r () satisfies r(t) = /x2(t) + y2(1), so by
a change of variables using Ito’s formula, see
below:

D
dr = [u,(r, D+ ZyE(r,z2) + - dt

-

++/2D[cos(0)d B, (¢) + sin(6)d B, (1)]

D
= l:u,.(r, )+ Zy,E (r,2) + 7 dt

++v2DdB, (1), (28)

where B, (t) denotes 1-D Brownian motion and
@ is the azimuthal angle. That cos(8)d B, (¢) +
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sin(@)d B, (r) is Brownian motion is also shown.
Since #, and E, are independent of 8 and be-
cause of the geometry of the DMA, in cylin-
drical coordinates the motion is indepedent of
the azimuthal angle. So, if the term (D/r)dt is
negligible, the motion can be described by the
Brownian perturbation model

dr =[u,(r, 2) + Z, E,(r, 2))dt
+v2DdB, (1), (29)
dz = [u,(r,2) + Z, E,(r, 2)}dt
+v2DdB_(1). (30)

To measure the importance of the term
(D/r)dt, consider a particle that travels at an
average axial velocity v. At this velocity, it
takes time L /v to traverse distance L in the z
direction. During this time, B, (¢) will perturb
the distance traveled by an amount of V2DL/7
and the displacement associated with the term
(D/r)dt will always be less than DL /r, ¥, thus
the displacement due to (D/r)dt will be small
compared to Brownian motion if

DL/r% <« \/2DL/5.

For plug flow v = Uj and the term (D/r)dt
is negligible provided ry > /DL/2U,. For
parabolic flow ¥ = Q./(m(r? — r})) and the
term D/r is negligible if r2/(r? — r2) >
DLx Q.; the RHS is a measure of the fraction
of r| contained in the separation between the
cylinders r, — ry.

Ito’s formula: For the change of vari-
able rule for stochastic differential equations,
Gard (1988) states that if y(t) = F(x(z),
x2(1), ..., x,(t)), where

dx;(t) = fi(x1 (), ..., x,(t))dt + 0;d B; (1),
i=1,...,n,

then for every function F having continuous par-
tial derivatives up to order two,
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Brownian motion: The reason cos(8)d B, ()
+sin(@)d By (t) = dB,(¢) follows from the
fact that dB,(t) = B,(t + At) — B,(t), thus
it is independent of B,(r) and thus of 6 =
O(Bx(t), By()). A similar statement can be
made for d B, (7). By conditioning on (By, By)
and using the Markov property of Brown-
ian motion, one can see that cos(f)dB,(t) +
sin(6)d B, (1) is just Brownian motion.

We would like to express our sincere gratitude for one of the
referees, whose rigorous review made this a better paper.
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