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fnd

Microgravity smolder spread aver a thin cellulosic fuel was studied with the Radiative Ignition and
Transition to Spread Investigation (RITSI) apparatus in the Glovebox Facility on the STS-75 USMP-3
space shuttle mission. Radiative smoldering ignition was initiated by a focused beam from a tungsten/
halogen lamp at the center of the smolder-promoted filter paper. The external airflow velocity was varied
from 0.5 cm/s to 6.5 em/s. The ignition and subsequent smolder spread events were recorded by avideo
camera, a 35-mm camera, and six thermoconples (two in the gas phase and four in the sampler. Nonpiloted
smoldering ignition of the paper in microgravity by external thermal radiation was demonstrated for the
first time. Unlike the uniform normal gravity smolder front, a complex, unexpected finger-shaped char
growth pattern was observed in microgravity. The preferred direction of smolder finger propagation was
apstream into the fresh oxidizer. Downstream smolder was less viable and slower. Increasing external flow
velocity increased the number of localized smoldering fronts, the number of the char fingers they Teft
behind, and the frequency of bifurcations from the fingers. An analytical “oxygen shadow” model indicated
that each localized smolder front cast an oxygen shadow that depleted the ambient oxygen in an egg-shaped
region around itself. These oxygen shadows are a plansible explanation of the fingering smolder patterns
observed in the experiments.

Introduction rates to the wood surface and the subsequent highly
exothermic char oxidation rate. Reverse smolder
(upstream smolder) was slower due to convective
cooling, Tt was also insensitive to the airflow, possibly
due to the comparable magnitudes of the buoyant
flow (estimated here to be 20 cm/s) and the experi-
mentally imposed flow (10 to 25 cm/s).

Two previous smolder experiments have been con-
ducted in space [3,4], using thick, porous polyure-
thane foam. In a quiescent environment, even at el-
evated oxygen concentrations, smolder through the
foam was not self-sustaining. With even a weak flow
(1-2 mm/s), smolder in air was self-sustaining, and
uniform smolder spread rates were between upward
and downward normal gravity smolder rates, in
keeping with oxygen supply to the smolder front,

Fingering combustion was observed for thin solids
on Farth [5] when the buoyant oxidizer flow is very

Smoldering is a common mode of initiation of fircs
in normal gravity and creates hazardous conditions
due to high CO yield. Few smolder studies have
been published even for normal gravity. Although
smoldering heat release rates are smaller than those
from flaming, the smolder surface temperatures are
as high as 1000 K, and induced buoyant flow cannot
be neglected in normal gravity. The induced buoyant
flow makes it difficult to quantify or control the sup-
ply rate of oxygen to the smoldering front in normal
gravity, Because oxygen supply to the smoldering
front is a critical parameter that controls smolder
spread, this makes it difficult to predict smoldering
behavior in the subbuoyant flow typical of spacecraft
in microgravity.

Moussa et al. [1] found for thin cellulose cylinders
that the critical smolder spread mechanism is char

oxidation, which provides the heat flux needed to
sustain pyrolysis. Extinction was observed when the
feedback portion of the heat flux (heat release minus
heat losses) was insufficient to sustain pyrolysis.
Ohlemiller [2] found that forward smolder rates
over wood {(downstrecam smolder) increased with air
supply, due to the acceleration of oxygen transfer

strictly limited by using a Iie]e—S]lziW-t)pe thin hor-
izontal channel with very slow forced flow, and with
significant heat losses to the solid substrate. A sta-
bility analysis of filtration combustion in porous me-
dia [6] finds for these types of conditions there is a
cellular (fingering) solution to the Saffinan-Taylor
formulation of the problem, where mass diffusion is
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F1G. 7. (a) Egg-shaped oxygen shadow region around a
single smolder spot computed from the oxygen transport
model. Surface mass fraction contours {grey) induced by a
smolder spot (shown in black for Y/¥, = 0) arc plotted in
increments of Y/Y, of 0.1. White is ambient oxygen levels.
X and Y are in units of the Stokes length scale 2D/U..
(b) Surface mass fraction contours induced by two spots
located one Stokes length apart, with the linc connecting
them aligned at 45° angle with the flow direction. The ox-
ygen shadow in the region between the two spots is much
deeper than it is around a single spot. It is not hard to
visualize geometries where an array of spots can drive the
local flux between spots to such low levels that smoldering
can no longer be sustained in over a substantial fraction of
the surface.

corresponding to the glowing tips of the smolder fin-
gers. Two distinct temperature and heat release
peaks were observed a few millimeters apart during
smolder propagation. The lesser peak may be an ox-
idative pyrolysis reaction {paper blackening), which
occurs from 470-700 K, measured with a differential

MICROGRAVITY COMBUSTION

scanning calorimeter for the same material in air;
and the greater peak may be a char oxidation peak
(glowing char), which occurs from 770-1030 K. The
dip in temperature between the two peaks was un-
expected but very consistent in all tests. Tt is dis-
cussed further in the following.

Oxygen Transport Model

Because combustion occurs at the surface of the
thin paper samples, the smolder is like a pathological
kind of diffusion lame. To describe the oxygen trans-
port to the smolder spots as it relates to the fingering
patterns observed in the experiments, a mathemat-
ical model of oxygen consumption by discrete smol-
der elements on a thermally thin surface was for-
mulated. The convective-diffusive balance in the gas
phase with an Oseen approximation for low Reyn-
olds number conditions is solved over a surface with
discrete smolder spots. Away from smolder spots,
the surface oxygen gradient is zero, but the small
smolder sites of radius [ are assumed to be “catalytic”
and consume oxygen at a rate sufficient to drive the
surface oxygen concentration to zero across cach
smolder spot. Far from the surface, oxygen concen-
trations are ambient.

The solution for the local oxygen concentration
and the total flux to each smolder spot are obtained
using a matched asymptotic expansion for 4 = Ul
2D < 1 to leading order in A (The natural length
scale is the gas-phase Stokes length scale, I, =
2D/U,, where D is the mass diffusivity of oxygen in
air.) Then, the local oxygen concentration Y is

Y =Y M o D
= - r, z
T dmpDl T 7
LT |
. exp[% x — x5 — Jr? :2)] (3)

where

¢(r, z, 1) = arctan

{ - ]
22— B 2+ 22— PR 4R
(4)

and r = [(x — x,)® + (y — y,)?]"2is the magnitude
of the surface vector from source to field point. M
= 8pDIY_, is the total mass flux to both sides of the
spot. The exponential term in equation 3 shows that
the oxygen shadow is a strong function of imposed
flow and is strongly biased to the downwind side of
each spot. Each smolder spot produces an egg-
shaped oxygen shadow wake, as shown in Fig, 7a for
a single spot.

The radial dependence of the surface oxygen mass
flux is m,(r) = M/[4n/(2 — r2)'2]. This implies that
the burning rate on each smolder spot is peaked in
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finger-shaped char pattern was observed in micro-
gravity. Each “fingertip” had a glowing smolder front
that pr()paguted, frequently bifurcated, and ocea-
sionally extinguished. Smolder fronts preferentially
propagated upstream into fresh oxidizer. Down-
stream propagation was slower and less viable, At
low imposed flows, onset of downstream smolder
was delayed until completion of upstream smolder,
due to the oxygen shadow cast by the upstream smol-
der fronts.

Normalized smolder area, a fraction of the arca
available that smoldered, linearly increased with flow
and approached unity (uniform front) at imposed-
flow velocities of 9 1o 10 em/s. Smolder front spacing
decreased with imposed flow and approached zero
{uniform front) at the same 9 to 10 cmn/s How. Av-
erage smolder front width (“fingertip”) was indepen-
dent of flow velocity. The smolder fronts exhibited
bifurcation, merging, and extinction rates that were
direetly proportional to the semicircular circumfer-
ence available for smolder.

Analysis of oxygen transport revealed that cach
smolder front cast an oxygen shadow that influenced
the oxygen mass flux to adjacent smolder fronts. The
oxvgen mass flux to each smolder front depended
strongly on the proximity of other smolder fronts,
and weakly on the nondimensional smolder spot
size. The derived ring-shaped maximum in the oxy-
gen mass Hux implied that the smolder front is ring-
shaped, which is consistent with the observed two
heat release peaks.
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COMMENTS

Paul Ronney, University of Southern California, USA.
My congratulations on a fascinating sct of experiments.
Your explanation of the fingering instability discnsses oxy-
gen transport but does not address the issue of why heat
diftusivity does not smooth out the fingers. T propose a
difterent explanation for your fingering instabilities. Oxy-
gen transport can oceur only thr()ngh the aas phusc on a
length seale D, /U, where Dy, is the oxygen diffusivity and
U is the opposed How velocity. Heat transport can occur in
the gas phase on alength scale /U, where a is the thermal
diffusivity, or a,/U,, where U, is the smolder velocity. At
large U, gas-phase heat transport dominates and the effee-
tive Lewis number is a/Dg,,. which is close to ity for
gases. In contrast, at low U, radiative Toss may Suppress
gas-phase heat transport but cannot affect oxygen trans-
port, thus the effective Lewis number is closer to a/Dy,,

which is much smaller than unity. Thus a diffusive-thermal
mechanism hased on a hybrid gas-phase/solid-phase Lewis
number may deseribe your observations. This explanation
would also explain the observations of the paper by Zik and
Moses [1], where, in their case, conductive loss to the chan-
nel ceiling when the height is sufficiently small would sup-
press gas-phase heat transport,

REFERENCF,
1. Zik, O. and Moses, E., in Ticenty-Seventh Symposium
(International) on Combustion, The Combustion Insti-

tute, Pittsburgli, 1998, pp. 2815-2820.

Anthor’s Reply. We thank Paul for his kind remarks.
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However, we do not think that fingering is a Lewis Number
effect in the sense he describes. The controlling/limiting
transport mechanism for the fingering behavior is mass
transport, via gas-phase convection/diffusion. Gas-phase
heat diffusivity has a very small effect; the predominant
mode of heat transfer for propagation is solid-phase con-
duction. The appropriate gas-phase diffusive length scale
is Dy, - n,/U, which varies from 0.2 mm at 10 cm/s imposed
flow to 4 mm at 0.5 cm/s imposed flow. The appropriate
solid-phase conduction length scale is a,/V, ~ 0.2 mm
(constant).

If we ratio these length scales, we see they are of order
unity at imposed flows of 10 cm/s, where we predict a uni-
form smolder front would occur. As flow is reduced, the
diffusive length scale becomes much larger than the ther-
mal length scale, and we observe increasingly sparse fin-
gering. The imbalance in length scales is entirely consistent
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with our hypothesis that fingering is due to the local de-
pletion of ambient oxygen around the smolder fronts,
which suppresses smoldering adjacent to the fronts. In-
deed, the model presented in our paper assumes that the
fuel is burning as fast as the available oxygen supply per-
mits. However, the supply is so feeble that the isolated
spots are the only possible arrangement consistent with any
combustion at all.

Other papers are consistent with this view. Altenkirch et
al. (this session) describe an every increasing mismatch in
the (constant) thermal and (ever-growing) mass diffusion
length scales throughout their space experiment, leading
to the flame’s eventual extinction due to insufficient oxygen
diffusion. Zik and Moses also conclude that fingering is due
to the local oxygen deficiency at their very low forced flow
rates.




