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Introduction

A primary objective of residential smoke detection is to increase the time available for
evacuation [1]. In a recent experimental study, only 200 to 300 seconds of available egress
time was provided by a smoke detector located in the room of origin with a smoldering fire.
In some cases the smoke detector in an adjacent room actuated after untenable conditions had
developed in the room of origin [2].

The time to detection is a function of the sensitivity of the detector. However, a highly
sensitive detector may provide a high frequency of unnecessary alarms because contemporary
smoke detectors cannot discriminate between fire and non-fire sources of smoke and odors.
Data from U.S. fire incidents during the 1980's indicates that 95% of all alarms from smoke
detectors were unnecessary [3]. One solution proposed by Thuillard for minimizing
unnecessary alarms without sacrificing prompt activation involves using intelligence along
with combinations of current sensor technology [4]. Grosshandler outlined advances in
sensor technology along with intelligence that could be implemented to improve detection
time while limiting the frequency of unnecessary alarms [5].

An interdisciplinary team from the Departments of Fire Protection Engineering and Chemical
Engineering at the University of Maryland has conducted research to determine the
characteristics of an advanced fire detector which is sensitive and can discriminate between
airborne products from fire and non-fire sources. The fire protection engineering team
concentrated on selecting the fire and non-fire sources and characterizing the signatures from
each source. The chemical engineering team applied analytical methods such as neural
networks and multivariate statistical methods to investigate the signature and sensor response
patterns and provide the discrimination capability between the flaming fire, non-flaming fire
and non-fire sources. This effort has been conducted in three phases.

Small-Scale Experimental Program

Small-scale tests are conducted to characterize the signatures from fire and non-fire sources
and confirm the observations by Okayama [6,7]. Modifications to Okayama’s study are
incorporated to provide a greater range of measurements for describing the signature.

The small-scale experimental apparatus is a simplified tunnel with the airborne products of

the sources introduced into a hood located at the inlet. Relatively elementary measurements
are collected to provide a rudimentary view of the signatures. Measurements include
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temperature at the inlet and outlet of the apparatus. At the center of the apparatus, light
obscuration, gas species concentrations (CO, CO, and O,) and presence of any oxidizable gas
are measured. The presence of oxidizable gases is measured by a Taguchi metal oxide sensor.

Sources of the smoke or odor are placed under a hood at the inlet end of the apparatus. A
variety of fuels and non-fire (nuisance) sources are selected to be representative of a
residential environment. Airborne products are generated from a wide range of conditions:
samples with flaming and pyrolyzing combustion, heated samples and aerosols.

An elementary expert system formulated from a manual review of the data successfully
classifies 28 of 31 sources in the small-scale tests. The rules of the expert system are:

e Flaming fires are indicated by a CO, concentration greater than 1500 ppm.
Pyrolyzing solids provide signatures with a peak CO concentration of at least 28 ppm
and the Taguchi detector response is less than 6V.

e All other signatures are acquired from nuisance sources.

An ellipsoidal neural network provides an improved classification rate of the small-scale
data. Data from two-thirds of the tests is used for training and the remainder for testing [8,9].
All sources except one smoldering source is accurately classified, where the improperly
classified source is identified as a flaming source, i.e. is still detected as a “fire”. The level of
success attained from the small-scale experimental program confirms the feasibility of the
concept presented by Okayama.

Large-Scale Experimental Program

Effort in the subsequent phases continued by conducting large-scale experiments and

- expanding the number of sources to determine whether the trends identified in the small-scale
experimental effort are also applicable in full-scale. The large-scale experiments are similar
to the small-scale experiments where signatures from a wide variety of fire and nuisance
sources are monitored, with the sensor response patterns explored. In the second phase,
either fire or non-fire sources are introduced alone. In contrast, in the third phase multiple
sources including both fire and non-fire sources are provided simultaneously.

The large-scale experiments are conducted in a 3.6 x 3.6 m room with a height of 2.4 m [10-
12]. The room is unconditioned, with the temperature and humidity dictated by atmospheric
conditions. Measurements include temperature, mass loss of the fire source, CO, CO, and O,
concentrations, light obscuration and the voltage output from two metal oxide sensors
(Taguchi models 822 and 880). In addition, two commercial smoke detectors (one
photoelectric and one ionization) are located on the ceiling, at the center of the room. A
diagram of the room, including the relative locations of the sensors, is provided as Figure 1.

The Taguchi 822 and 880 metal oxide sensors are sensitive to the presence of a wide range of
oxidizable gases and environmental odors respectively. Mass loss measurements are used to

13

SO T ———



estimate the yield fractions of the signatures from the fire sources. Yields of the non-fire
sources are estimated based on the auantitv of material introduced Recanca tha tacte ara
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conducted in an unconditioned space, data is collected for at least two minutes prior to
introducing any source in order to document variations in ambient conditions and be able to
note the change in conditions posed by a fire or non-fire source.

ingle ce Experime

The variety of sources used in the second phase to generate conditions within the room are
summarized in Table 1 [10,11]. The sources are intended to be representative of fire and
nuisance sources in residential environments. The 87 tests included 34 flaming sources, 16
smoldering sources and 37 nuisance sources, with several sources repeated in numerous tests.
The method of generating the airborne signatures varied for each of the source categories. A
detailed description of the methods and measurements is provided by Hagen [10].

Table 1 Test Sources

Heated Fuels
Environmental Sources
Liquid Solid Gas
heptane, paper, cotton, propane || propane, aerosols (disinfectant,
1-propanol, polystyrene, furniture polish, cooking spray, hair
methanol, pine, cardboard, spray), nail polish remover, ammonia-
toluene, cheesecloth, based window cleaner, bleach, water
vegetable oil' toast® mist, boiling water, toast, cigarette
smoke, coffee
B0111ng only
Pyrolyzmg only

Data from the sensors is reviewed for the purpose of identifying patterns associated with the
categories of sources. General trends are noted from a manual review of the maximum
values recorded for each sensor leading to the development of another elementary expert
system similar to that developed for the data from the small-scale tests. This expert system
gave insight into the patterns present in the experiments.

A multivariate statistical analysis is applied to the maximum values recorded for each sensor
during each test to identify the nature of the source. The type of statistical analysis, a
principal component analysis (PCA) makes use of the experimental maxima, arranged in a
data matrix, X [11-15]. Each row of X consists of one set of readings for all m sensors of the
x; variables under consideration. The number of rows in X equals the number of
experiments. PCA determines the linear combinations of the maxima that are capable of
explaining most of the variations in the measurements. The linear combination are called
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scores, ¢; , and the number of #;’s used is typically much smaller than the number of sensors.
These scores are used to reconstruct the raw sensor measurements. The squared difference
between the raw sensor values and the reconstructed values is called the squared prediction
error (SPE). The SPE is used to detect abnormal situations [14]. Both the scores and the
SPE reflect all of the sensor measurements because both the scores and the SPE involve data
compression as well as synthesis.

Measurements from the following six sensors are applied to develop the PCA model: CO,
CO,, two Taguchi sensors (T880 and T822), temperature and light obscuration. The data for
each sensor is scaled to zero mean and unit variance. The data collected from each sensor
prior to the introduction of the source is used to establish normal, background conditions for
that test. Three PCA components are selected for the analysis, based on a desire to obtain the
greatest accuracy with the least number of components. and explain approximately 76% of
the variability in the ambient data (collected for two minutes prior to the introduction of any
source). Consequently, three components are used to classify the sources.

The SPE is used to flag abnormal situations, with its confidence limit set at 99.5%. Three
successive values outside of the established limit identified conditions resulting from the
introduction of a source to be abnormal. The SPE is successful in identifying all 87 tests as
differing from normal conditions. The scores (¢; ) are used to distinguish the type of source,
using the following rules:

e if 1;>5, then the source is a flaming fire
e if -8<t, <0, then the source is a smoldering fire
e otherwise the source is a nuisance source.

The results of applying the above rules are summarized in Table 2. All of the flaming
sources are properly classified, with smoldering sources classified properly in 88% of the
tests. Commercial detectors responded to 97% of the flaming fires (one was missed) and
25% of the non-flaming fires. Nuisance and ambient sources were classified properly in 73%
of the tests by the prototype detector. 27% of the nuisance source cases are misclassified as
smoldering sources and hence represent false alarms.

In addition to the improved classification rate, the time for detection of the signatures from
fire sources is significantly less with the measurements included and the PCA-based
intelligence (the "prototype detector™) than that for the commercial detectors. The time
required for detection of flaming fires is reduced by an average of 45 s (representing a
decrease of 57%), with the detection time for the prototype detector being 6 to 244 s less than
that for the first responding commercial detector. The decrease in detection time was greater
for the non-flaming fires, having an average reduction of 245 s and a range of 182 to 332 s.
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Table 2 Classification of Test Sources

Classification Summary
Nuisance/
Flaming Smoldering  Ambient Total % Correct

Flaming Fire

34 34 100
Smoldering
Fire 14 2 16 88
Nuisance/
Ambient 10 27 37 73
Total 87 86

Discrimination between smoldering and nuisance sources is relatively good, especially
considering the ambiguity that can be present relative to the two types of sources, e.g., when
is “burning toast” a fire hazard or merely an inconvenience (being inedible)? Despite the
challenges in distinguishing between the two sources for a person with five senses, recently
effort has been expended to improve the distinction for a detector through the use of rates of
rise of the concentration of CO,.

Preliminary analysis of the long-term average (on the order of 300 s) of the rate of rise of the
CO, gas concentration is able to distinguish between smoldering and nuisance sources. Only
2 of the nuisance sources had prolonged rates of rise of CO, in excess of 0.10 ppm/s. In
contrast, all except three of the smoldering sources had prolonged rates of rise of CO, in
excess of 0.10 ppm/s. Examples of the CO, history and rate of rise for two nuisance sources
and two smoldering sources are presented in Figures 2-5 and summarized in Table 3. Of
these four noted tests, the commercial detectors actuated only in the test with the smoldering
cotton cloth (missing the smoldering bread and properly not responding to the nuisance
sources). The PCA approach properly classified both of the smoldering sources, but
misclassified both of the nuisance sources as smoldering.

Table 4 Maximum Rate of Rise of CO, Concentration

Description of Source Type Maximum rate of CO, (ppm/s)
Cotton Cloth Smoldering 0.15
Bread on Hotplate Smoldering 0.08
Cigarette Smoke Nuisance 0.03
Bread in Toaster Nuisance 0.02
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Multiple Source Experiments

The sources used in the third phase to generate signatures from combinations of sources used
in the second phase are summarized in Table 4 [12]. The methods of introduction for the fire
and non-fire sources is similar to that used in the second phase, with a detailed description of
each method provided by Hopkins [12]. In general, the combinations are produced by
recording ambient conditions for two minutes, followed by the introduction of the nuisance
source for 90 s throughout the room. Except for the boiling water source which is continued
along with the fire source, the nuisance source is discontinued and the fire source initiated.

Table 4 Combinations of Fire and Non-Fire Sources

Non-fire Sources

Aerosol Window Aerosol Boiling
Fire Sources None Disinfectant Cleaner Hairspray Water
None - X X X X
Heptane X X X X X
Paper X X X X X
Cloth X X X X X
Hamburger X X X X p 4

The history of the CO/CO, ratio for each of the tests with heptane is presented as Figure 6.
The curves for the combination sources have been shifted such that zero time is associated
with ignition of the heptane, following the 90 s introduction of the nuisance source. As
indicated in the figure, the difference in the ratio for the case with the flaming heptane alone
and the cases with the flaming heptane and the additional sources is relatively modest. The
greatest value of the ratio is obtained for the aerosol spray, which contained an assortment of
hydrocarbons. The average CO/CO, ratio for the entire duration of the test for the other fire
sources with the nuisance sources is presented in Table 5.

Table 5 Average CO/CO, Ratio for Fire and Nuisance Source Combinations

Nuisance Source
Fire Source None Disinfectant Window Hairspray Boiling
Cleaner Water
Heptane 0.01 0.02 0.01 0.02 0.01
Flaming Paper 0.11 0.09 0.08 0.14 0.06
Pyrolyzing Cotton 0.37 0.24 0.49 0.29 0.23
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As indicated in Table 5, an elementary expert system can be proposed based only on the
CO/CO, ratio to distinguish between flaming fire and non-flaming fire sources, given the
limited data available. Support for this system is based on the observation that each of the
fire sources appears to have a characteristic CO/CQ, ratio, as is confirmed in the literature for
a wider range of fuels and burning modes [16]. The range of the CO/CO, ratio for all of the
combinations involving heptane and the flaming paper fires is 0.01 to 0.14, while the ratio for
the pyrolyzing cotton is significantly greater at 0.23 to 0.49.

However, the CO/CO, ratio for the variety of combinations involving hamburger ranged
from 0.20 to 0.30. Consequently, an expert system based only on the CO/CO, ratio will yield
unnecessary alarms for the combination sources with hamburger. As a result, discrimination
of the non-flaming and nuisance sources requires the use of additional sensors. The average
and maximum values of the signals received from the metal oxide sensors are not easily
categorized for the variety of multiple sources. After the period of introduction of the
nuisance source, the two metal oxide sensors responded differently to the combined

signature. The response of one sensor approached that of the heptane alone, while the other
appeared to reach an average value of response for heptane alone and the nuisance source
alone. These differences are attributable to the inherent characteristics of each sensor.
However, the difficulty with these different sensors is that a method of discrimination
suggested in the second phase using only threshold values is not appropriate. Consequently, a
method of discrimination is being investigated which considers transient data (rather than just
maximum values) to overcome the tendency of the maximum value algorithm to be easily
tricked by the non-fire sources.

Summary

As a result of the experimental effort, an early fire detector consisting of an array of six
sensors appears feasible, with discrimination provided by a neural network or multivariate
statistical analysis of the sensor responses. The PCA approach for a prototype detector
provides an improvement by responding more quickly and being less prone to false alarms as
compared to currently available commercial detectors. The preliminary analysis of the CO,
rates appears promising to further improving the discrimination ability. Additional research
is necessary to characterize the signatures from scenarios involving additional combination
sources which can mask fire signatures or cause unnecessary alarms. The merits of a more
comprehensive characterization of the signatures of fire and non-fire sources through the use
of additional sensors should be investigated.
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Figure 1 Diagram of Test Room

3 3.6 m 3
1 3
8 9
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1. Load cell and fire source 2. Photocell
3. Thermocouple tree 4. Helium-neon laser

5.4.75 mm copper sampling tube 6. Ionization smoke detector
7. Photoelectric smoke detector 8. Taguchi 822
9. Taguchi 880
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CO, Conc (ppm)

Figure 2 Cloth, 100% Cotton (Smoldering)
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Figure 3 Bread (Smoldering)
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Figure 4 Bread in Toaster (Nuisance)
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Figure 5 Cigarette Smoke (Nuisance)
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CO/CO, Concentration

Figure 6 CO/CO, Ratio for Heptane with Nuisance Sources
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