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THE DISCRETE-SOURCE APPROXIMATION OF RADIATIVE TRANSPORT
IN FIRE PLUMES

Issam Lakkis and Ahmed F. Ghoniem
Massachusetts Institute of Technology

A novel approach for incorporating radiative transport processes in the simulation of fire plumes, or any
other fluid dynamic/combustion process in which gaseous radiation plays an important role in
determining the temperature field, has been developed. The approach is particularly suited for cases in
which the radiating gas is confined within a relatively small subset of the overall flow domain, and when
conditions deviate form those consistent with conventional thin, thick, or differential approximations of
the radiative transport equations. Contrary to the methods of spherical harmonics and discrete ordinates,
which results in a systems of PDEs that should be integrated, the proposed discrete source method is
based on expressing the integrals in the radiative flux and the irradiation as sums of integrals over small
volumes within which the radiating gas (source) temperature and properties can be assumed to be nearly
uniform. The resulting integrals over these “discrete sources,” each representing the radiation field of a
single source, are then evaluated for target points which are close (near field) and distant (far field) from
the source. In the case of almost constant absorption coefficient between the source and target, an
equivalent to a radiative Biot-Savart law is obtained. The formulation can also be extended to the case
of variable absorption coefficient by treating the exponent in the radiation kernels as a polynomial in the
optical distance. The method has been validating by comparing its results for a number of cases to those
obtained using direct solutions.

The formulation of the method starts with the following expression for the divergence of the radiative
flux, which is the source terms in the energy equation, in terms of the black body radiation 7, and the
incident radiation, or irradiation, G:
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where the K is the linear absorption coefficient, I, = ——, o being the Stefan-Boltzmann constant, and

T

the irradiation, is;
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where 7 = f kds is the optical path length, V is the volume of radiating gas and X is the surface
0
surrounding this volume. A similar form can be written for the radiative flux. A similar expression can
be written for the radiative flux.

Writing T(X) = ZY} f5(X — X;) where fis a symmetric function which is non zero only within a distance

0 around x;, the volume integrals in equations (2) for each single source can be evaluated as a generic
source-target interaction (similar to the Biot-Savart law in hydrodynamics). The total irradiation is
hence evaluated as the sum over all the elements’ contributions. In the case of spatially uniform
absorption coefficients, the integrals of the radiation kernel over the area of an individual source are
evaluated via near field and far field expansions of the exponential term, e.g., for the near field:
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PRALIS (I—K«/;)+2Ckrc2kx". It is possible then to obtain analytical solutions for the integrals,
k=0

which can also be tabulated for computational efficiency. For instance, in the case of axisymmetric
RC r
5648
R and r are the source and target radii, and { is the axial separation between them. The function = pre-
tabulated for the expected range of interest of all its arguments.

flow, the irradiation from a single element (ring) is given by: G,(7) = x(7}) I,(r) £ ,K0) where

We have applied this approach to compute the irradiance and radiative flux from a square ring within
which the temperature varies exponentially away from its center. The ring radius is taken to be unity, its
width and height are 0.4. The direct solution was obtained by carrying out the triple integrals in
equation (2) using a very fine mesh within and around the square ring to guarantee convergence. The
discrete source solution was obtained by dividing up the square into 16 — 400 (4x4 — 20x20) elements.
The comparison between the direct solution and the discrete source solution at different levels of
refinement, for the normalized irradiation and flux are shown in figures 1 and 2, respectively. As shown
in the figure, the method provides good accuracy even at relatively crude discretization of the body of
radiating gas (since the near field of the sources is evaluated almost exactly). Extensions to: (1) the case
of variable absorption coefficients, (2) the evaluation of radiative fluxes from a fire plume, and (3) the
simulation of a fire plume with “internal” radiative transfer will be presented at the meeting.
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