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ABSTRACT

Theoretical and experimental numerical analysis have proposed the capable of being
cxecuted computational finite difference method for fire induced natural convective heat
flow using the viscous heat conductive compressible fluid with K-¢ model in the fire com-
partment. Because two-point upwind diflerence scheme give the numerical viscosity, the
computational results are different from the approximate solutions at the large velocity.
The practical stability and the truncation errors for computing finite difference equations
approximating fire governing equations have been introduced by theoretical numerical
analysis. The sensitivitics of numerical solutions have been evaluated by the theoretical
and experimental numerical analysis. As the results of numerical experiments we pro-
posed that the reasonable time interval and space mesh size are chosen considering the
CPU time. Furthermore we have introduced the Re* for the equation of motion or Pe*
for the cquation of energy. We proposed that the values of Re* and Pe* indicate the trust
in the approximate solutions in consequence of the numerical experiments.

1. Introduction

The numerical computations of a natural convective flow have been studied mainly
in fluid dynamics [1]. In applied mathematics the theoretical and numerical analysis of
Navier-Stokes (N-S) type equations have been investigated [2]. Ladyzhenskaya [2] pro-
posed that the unique solution and the existence of analytical solution of N-S equation
for the incompressible fluid flow are not guaranteed in high Reynolds number and only
guaranteed at small Re number (less than about 100) at the initial and boundary condi-
tions. The mathematical analysis for the compressible fluid flow does not be reported yet.
None the less, the computer simulations for the field model applied to the fire phenomena
have been reported by Hasemi [3]. However it is necessary to investigate the methods of
numerical solution of the non-linear parabolic partial difference equations which are the
basic governing fire equations.

Because most workers using numerical methods for the convection terms in the govern-
ing equations have adopted two-point upwind difference scheme, the computational results
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do not give us the approximate solution because numerical viscosity is left out of con-
sideration. Furthermore there is need to know how the truncation errors are dependence
upon the time and space meshes in a fire problem influence the numerical solution.

In this paper, we have conducted calculations with several numerical computational
finite difference methods for firc induced heat flow in the fire compartment using vis-
cous heat-conductive compressible fluid (K-¢ model) and have made a comparison with
the computational results. Since numerical experiments are a difficult computational
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em requiring considerable computer power, the problem was tackled using a super
computer. We have also investigated the sensitivities of the numerical solutions with the
time and space meshes by using numerical experiments, and investigated the stabilities

of computational scheme.

2. Governing Equation

Fire induced heat flow of the growth and spread fire must be represented the com-
pressible viscous fluid flow because of high temperature. However the heat flow of the
smoldering fire is enough to represent the incompressible viscous fluid flow.

Mathematical field modeling for the heat flow represents two methods. Lagrange
method is adopted that heat flow is treated by the moving fluid particles. It can be
expressive of the appearance of the induced fluid flow. On the other hand, Euler method
means that the heat flow is presented each flow pattern in a moment of fire. Euler method
is in general used because of easyer treatment than Lagrange method. par The fire field
model is important to model the turbulence for the fire induced heat flow with flow proper-
ties such as flame, plume and jet stream which are described maximum Raynolds number,
maximum Prandtlnumber and Grashof number etc. of heat flow by experiments.
There are two kinds of equations which are the dimensional equations and nondimensional
equation. Until now the nondimensional equation is used for the fire simulational equa-
tion. This is never the best model because the nondimensional mesh size is depend upon
the size of fire domain and is not represent the real size. However the nondimensional
mesh size and the eddy length for the turbulence should have a close connection with
each other.

The classification of numerical methods for turbulence of Navie-Stokes type equations
follows:

(1) Direct method
(2) Average method

(2-1) Time average method

(2-1-1) Integral method
(1) Entrainment method
(2-1-2) Differential method
(2-1-2-1) Turbulence viscouss model
e 0-equation model
(i) Mixing length model
(ii) Cebeci-Smith model
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e 2-equation model
(i) K — € model
(2-1-2-2) Stress equation model
e Bradshaw’s l-equation model
e 3-equation model

(2-2) Space average method
(i) Large Eddy Simulation (LES) model
(2-3) Ensamble average method

Let us consider a series of the governing equations of the turbulent natural convec-
tion by using turbulent viscouss transport model which is mathematically obtained by
Reynolds decomposition in a fire compartment [3]. The well known field equations gov-
erning the thermophysical and thermochemical dynamics, and heat/mass transfer of a
turbulent fluid are described, in principle, by the following set using Cartesian coordinate
system.

2.1. Equation of continuity

9 , 9pu; _
0t+ ij =0

or

P _o% o [ (oG opm\ | 0
927 3t2+8x-8xj Tt K|t - Uit ¢ — g~

2.2. Equation of Motion

870’17? aﬁﬂ;ﬁj _ Q_P_ 0 _ (9pUj 6pu,- -
Bt + 6.’Ej - 635,- 83:]- Tii K + ] 5.2[)9

2.3. Equation of energy

dph Bl_zﬁﬂj_ 0 06 oh -
at t Bx,- _8xj /\oaxj+pl(a$j +Q
h=c,0
2.4. Equation of state
P =/R8
2.5. Transport équation of turbulent energy
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2.6 Eddy viscosity and energy decay rate
2 -
K =cq"[e
- _ =3/2
E=cq?/l
a o ids 1 and 2 ara anatinl canrdinats Artrmrtal and oAkl 1
Where pis dens,!y of 1uud, z and Y are apa‘ual LUUldlll'd.tC, horizontal and vertical direc-

tion; @ and ¥ are velocity, z- and y- direction; ¢ is time; K is eddy viscosity coefficient: §
is Kronecker delta; g is acceleration of gravity; u is dynamic viscosity; c, is heat capacity;
0 is temperature; G is turbulent energy; € is energy decay rate; Ay is thermal conductivity;
h is enthalpy; P is pressure; Q is generation of energy; | is Prandtl’s length; R is gas
constant; 7 is viscosity stress.

3. Numerical Computaional Method

We have only discussed the equation of energy, which is the non-linear parabolic 2nd
order partial differential equation, in the governing equation because the other equations
will be able to deal with the same manner. The energy equation is represented by using
rectangular coordinate system; «, y and { for reason of simplifing. The velocities, x- and
y-direction, are denoted # and ¥ respectively. The energy equation is transformed by
Reynolds stress [3] as follows;

3.1 Partial diffrential equation

69 a0 80 ( Ag ) {820 625}
— +tu—+ = {\—+K|{—=++—

ot Oz 3y Py dz? = Oy?
Kop OK)Y o0 Kdp OK) a0
¥ {235?8 }ax {275; a—y}a—y

where no generation of internal heat in the equation of energy is adapted Q = 0.

3.2. Finite difference approximation

As the analitical solutions of fire governing equations are not given yet, the above
partial diffcrential equation is transformed to discreat equations by Taylor expansion
method etc. Ior the purpose of obtaining the approximate solution of the energy equation,
let Az,Ay and At be small increments of variables z, y and ¢; where Az = L/I and
Ay = H/J, I and J being integers, and L and I being length and height of the domain
respectively. The sct of point in x,y,t-plane given by ¢ = iAz, y = jAy and t = nAt;
where 1 =0,1,2,...,1I, j=0,1,2,...,J and n = 0,1,2,...; is called a grid whose mesh
size is determined by Az, Ay and At. The approximation to 8(iAz, j Ay, nAt) is denoted
by 67;. In the same way, u(iAz, jAy,nAt), 5(iAz, jAy,nAt), and p(iAz, jAy,nAt), are
denoted by uly, vf; and pf, respectively. The finite difference equation [4] approximating
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the energy equation is obtained

o0y [00]
—— 4+ u | = :
At oz i

0%.,; — 205 + 0% 1]+0{3+1 205 + 0,

m m tj—1
= [a,-j + I\ij] { Am2 Y i—
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Pl Ay 2Ay 2Ay
( O_m _ /\9
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" J o explicit scheme
where | n+1 implicit scheme
o decoupled method
"~ | n+1 coupled method

\

The coupled method is exactly presented the original continuous fundamental equa-

tions. Ifowever as this method is more complicate for computaions and is difficult to have

the computaional stability, it is not general used. Furthermore the computational results

of coupled method are almost same values of those decoupled method. The decoupled

method is used in our system for above reason. The time derivative term is approximated

with two-point backward implicit (k = n+1) time difference scheme. The diffusion terms

and first order derivative terms are approximated with five-point or three-point central

k
space difference scheme, respectively. The convection terms w [ 3 ] and v} [—
z
of . :
which are represented by a ETS approximated with following scheme:

3.2.1. Central difference scheme

N _ S = fia f11
oh), "~ 2AR

3.2.2 Two-point upwind difference scheme

[afl afl A}J:I ! if a>0
oh f'*‘Ah /i if a<0
3.2.3 Three-point upwind difference scheme
o S 4}:;-’; + fi—2 £ a0
[‘%] Pt +Z’;‘+‘ — 3 if a<0
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The truncation errors are worthy of some discussions to estimate the accuracy of nu-
merical solutions. The estimates are obtained by Taylor series analysis. The solutions
of each scheme of the difference equation of energy are equivalent to the solutions of the
following differential equations.

3.3.1 Tow-point upwind difference scheme

L 69-@:{(’\"+I)+Axlul} 0

ot Jx Jy pcy dz?
Ao [v]| 0%0 Kdp 08K 60
+{(pp+1)+A }62+ 2p3x+_a—:l—:—a_x
Kop OK) 06 9
+ {25%+5;}O—+O(At)+0(Ar)+O(Ay)

as At, Az, Ay — 0

3.3.2 Central and Three-point upwind difference scheme

90 90 9 A 0 () %0
— i+ D (——i+1) +("+1)‘9

ot oz dy pCp dz? pey dy?
Kop 0K\ 90 Kop OK) o0
9> kel G
+ { p@x+6 }8:1: {2p8y By}ay

+ O(At) + O(Az?) + O(Ay?)
as At, Az, Ay = 0

The coeflicient of the terms O(At), O(Az?) and O(Ay?) involves the derivations of
high order than it appears in these equations. The truncation errors are evaluated by
O(At) + O(Ax?) + O(Ay?). As the differencing of the convection terms are applied to
two-point upwind difference scheme, the diffusion terms are made additions to Aml—;il— and

Ay—;— which are called numerical viscosity. Using the other difference scheme, however,

the numerical viscosity does not come out. Therefore the accuracy of the numerical solu-
tions depends only upon the time and space mesh sizes under no existence of rounding-off
errors by numerical computations.

3.4. Practical stability and spurious oscillation

The integration of the parabolic partial differential energy equation in time and space
requires the practical stability for the finite difference method. Practical stability imposed
restrictions on the size of time mesh and space meshes for the finite difference scheme,
but the sizes of At, Az and Ay are arbitrarily given. We obtained the practical stability
conditions [5] impose restrictions for each scheme on the mesh sizes of At, Az and Ay as
shown in Table 1.
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Table 1. The practical stability condition

Numerical scheme Explicit method Implicit method
1 1 -
At < 200 | ——= + —
. [“f‘ﬁx{ K (sz ¥ Ay?) }]
Central . stable
ol ol
Az <max—2 and Ay < max—2
un U un U7
a oy 20 20n]7
o | < Imax{ —i 4 Y iy 2%
2-point upward At < max {A:[: + Ay + Ag? + Ay H stable
3-point upward unstable stable

We consider the accuracy of computational results for high Reynolds number because
of turbulent fluid flow. The computational results have the spurious error [6] under the
condition of the effective maximum cell Reynolds number (Re*) greater than 2 for the
equation of motion and the effective maximum cell Peclet number (Pe*) greater than 2 for
the equation of energy because of discretizing the central diflerence scheme in FDM (Finite
Difference Method). However as the diffusion coeflicient for the two-point upwind scheme
is added to the numerical viscosity, the spurious oscillation is repressed or decreased by
numerical viscosity for large value of velocity. Pe* is defined as follows;
|uf;| Az |uf;| Ay }

Pe* = max { max —>——, max —2
ik of + KB ik o + K

4. Numerical Experiments

We consider the transient natural convection in a fire compartment of two-dimensional
rectangular room (2.4 m height and 2.4 m length). Steady flat plate heat source (800°C)
is placed [A] at the center of the floor (10 cm width) in Fig. 1 and [B] at the left hand side
wall (2.4 m length) in Fig. 2. The fluid in the fire compartment is initially motionless and
at a uniform temperature of 30°C. Initial pressure and density distribution are obtained
by computation of the equation of state. The ceiling, floor and left side wall are the solid
boundary and the right side is the free space boundary. The solid boundaries are assumed
to be thermally adiabatic, Neumann type, except to the heating plate and the velocity
on the solid boundary is assumed to be Dirichlet type non-slip condition. The boundary
conditions on the free space boundary are assumed to be Neumann type condition for
out-flow and Dirichlet type condition for in-flow. The simultaneous equations introduced
by the implicit difference scheme are solved numerically by the sparce line successive
over-relaxation method (SLSOR) for Poisson type equation and two-point upwind differ-
ence scheme, and by the sparce conjugate residual II method (SCR2) for other diffcrence
scheme to reduce the computer memories of data area. Several numerical experiments
were carried out on super computer with FORTRAN 77 used to double precision as follows:
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Figure 1. Outline of conputational domain Figure 2. Outline of conputational domain

4.1. Estimate of the computational results with space mesh

The constant line heat source (800°C and 2.4 m width) is located on the left side solid
wall in Fig. 1. The computational domain is subdivided with the total 11x11, 16x16,
21x21, 31x31, 41 x41 and 61 x61 meshes corresponding to 24, 16, 12, 8, 6, and 4 cm mesh
sizes respectively. The temperature, the velocity @ and o of computational results at the
location B (48 cm below ceiling and 48 c¢m far from heat source) and the cross section
A (48 cm far from open area on free boundary) in Fig. 1 were compared each space mesh.

4.2. Estimate of the computational results with different finite difference
scheme for convection terms

For save charge computing time, the numerical computations were carried out with
space mesh size 12 cm and time interval 10 msec in which the heat source is located on
the left side solid wall and on the floor in cases of Fig. 1. The scheme for convection term
is proposed numerically.

4.3. Estimate of the computational results with time interval

As the results of the estimate of the space mesh, the computational domain is subdi-
vided into 41 x41 grids corresponding to 6 cm mesh size in Fig. 2. The computations were
carried out with time intervals which are chosen 2.5, 5, 7.5, 10, 15, 20, 30 and 40 msec
considering truncation errors. The temperature, the velocity # and % of computational
results at the location A (center of ceiling and 48 cm below ceiling) and the cross section
on the free boundary in Fig. 2 were compared.
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5. Results and Discussions
5.1. Estimate of the computational results with space mesh

In order to estimate the accuracy of computational results applied to two-point upwind
difference, the space meshes are chosen 24, 16, 12, 8, 6 and 4 c¢m, and the time interval is
fixed constant 10 msec. Fig. 3 shows the computational results of the temperature and
the velocity @ at the location B. The temperature differences and the velocity component
@ differences among the space meshes 4, 6 and 8 cm in Fig. 3-a and 3-b respectively are
the much same values (less than 5% errors). In Fig. 3-a, the computational results show

the oscillation called "spurious oscillation”.

200t
10+
ff,.(”"h
L
S/
~~ ¥
° ] //: -
[a— 1t
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; g ,I.- —_———— 0.04
3 P H "\ ——
H E ; / / \ — 012
L H [ ——— 0.16
> / Lo ——-0.24
> ol . .
3° w&/ 7 ‘ 10 70
k] L
> 'Q(' / Time [sec]
|
/ |
-0.5+ |
A 1
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Figure 3. Computational results at the location B in Fig. 1
(a) Temperature and (b) Velocity u

Fig. 4 shows the relationship between Re* from the computational results and time.
This Re* of 4 cm mesh in Fig. 4 gives the smallest values less than 10 after 10 sec, so
the period of spurious oscillation would give the large and the amplitude would give the
small. Before 10 sec the flow motion is numerically unstable because of initially putting
the constant line heat source temperature 800°C, so the numerical computation with 24
cm mesh and 10 msec time interval was diverged and in the case of 2 ¢cm and 10 msec
time interval was also diverged because the simultaneous equations for implicit method
were unstable to be solve numerically by the truncation errors and rounding-off errors.
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Figure 5.

Computational results of

temperature at the cross

section in Fig. 1.

Fig. 5 shows the computational results of
the temperature at the cross section A. The
results with space mesh sizes 6 and 4 cm
are the much same and the other mesh sizes
are quite different from them. On the other
hand Fig. 6 shows the temperature distri-
bution at the cross section A with time in-
tervals 10 and 5 msec in the case of space
mesh 6 cm, and with time intervals 10 msec,
5 msec and 2.5 msec in the case of 4 cm.
These time intervals are given by consid-
ering truncation errors. As the results the
temperature difference is about 10% errors

each other.
. Temperature ['C)
0 . 102 200 300
ceiling %,';J
m sec
—-— 006 0.01
—————— - 0.005
—_——-— 0.04 0.01
---------- - 0.005
———— 0.0025
floor
Figure 6. Computational results of

temperature at the cross
section in Fig. 1.



Table 2 shows the computational run time (CPU time) of 20 simulation seconds.

Table 2. CPU time ratio

Time interval (msec)
Mesh size (cm) | 10.0 5.0 2.5
16 0.073 — —
12 0.147 — —
8 0418 | — —
6 1.000 | 1.346 —
4 5412 | 7.360 | 11.419

5.2. Estimate of the computational results with different finite difference
scheme for convection terms

Fig. 7 shows the distributions of temper-
. . Temperature [C)
ature with the different scheme for convec- o 100 200 300
ceiling ! T T

tion term in the case of 10 msec time in-
terval and 12 cm mesh at the cross section
of free boundary in Fig. 1. As the results
the two-point upwind scheme is only quite

. .. IS int ind
differences among other scheme, that is, it TToo gpoint iewin

gives under estimate because of adding the
numerical viscosity. Table 3 shows the CPU

time until 20 simulation seconds. In above floor

mentions the three-point upwind difference :
scheme for convection term applied implicit  I'gure 7. Computational results of

method would be better way. temperature at the cross
section of free boundary in Fig 1.

5.3. Estimate of the computational results with time interval

The computations were carried out for the accuracy of time interval with 6 cm mesh
applied to three-point upwind scheme in the case of Fig. 2. The time intervals are chosen
2.5, 5, 7.5, 10, 15, 20, 30, and 40 msec. In the case of 40 msec time interval the com-
putation miscarried due to numerical errors. It should be noted that the computations
were only success the time intervals 7.5, 10, and 15 msec by three-point upwind difference
scheme. Fig. 8 shows the temperature and the velocity u at the location A.
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Computational results at the location A in Fig. 2

(a) Temperature and (b) Velocity u

Iig. 9 shows the temperature distribu-
tions at the cross section of free boundary.
In these figures the results of temperature
with 10 msec to 2.5 msec time intervals give
about 5% errors each other. The results of
the time interval 10 msec come to a full ap-
plication of its values from above mentions.

6. Conclusion

Temperature ['C]

.40 100
v

'ceilingl
.-//-

o sec
- D.0025

——-—-0.005
————— 0.0075

o0.01

----------- 0.015

—--—002

——-003

floor
Figure 9. Computational results of

temperature at the cross
section of free boundary in Fig 2.

When the implicit method is used in field model simulations of a compartment fire,
our personal point of view from computational experiments is that the time interval and
space mesh should be chosen less than 10 msec and 5 c¢cm for high Re and the difference
scheme for the convection term should be the three-point upwind difference scheme. The
better way is to take O(At) ~ O(Az?) ~ O(Ay?) and small increment. The mesh sizes,
time and space, influence the accuracy from truncation errors under the condition of no

rounding-off errors, and the scheme avoids errors due to numerical viscosity. They can be
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observed the trust in numerical results by Re* for the equation of motion and Pe* for the

equation of energy. Re* < 20 ~ 30 or Pe* < 20 ~ 30 could be accepted from numerical
experiments.
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