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ABSTRACT
The nonadiabatic nature of low-speed combustion and fire, in which strongly exothermic
reactions produce large temperature variations but only mild pressure variations, can cause
difficulty when integrating zone models 6f enclosure fires. Examples of simple zone fire models
are examined to illustrate the analytical nature of the problems encountered. These difficulties
arise in the solution of the equations for the pressure in general enclosures because the pressure
equilibrates much more rapidly than other dynamical variables. Singular perturbation methods
and phase plane analyses, together with numerical integration of the nondimensionalized equ-
ations, are employed to study the siiff nature of the equations. We conclude that many of the
difficulties associated with numerical integration of zone fire models may be circumvented by

appropriate analysis of the zone fire model eguations.

1. INTRODUCTION

Mathematical models of low—speed combus-
tion and fire are confronted with a common
the the
equilibrates is very much more rapid than the
rates at which the other phenomena evolve, The
nonadiabatic nature of these phenomena,

dilemma: rate at which pressure

in
which strongly exothermic reactions produce
large temperature variations but only mild pres-
sure variations, is the cause of the dilemma. It
arises in both analytical studies, where the ap-
proximation of constant-pressure combustion is
often introduced [1], [2], and in numerical calcu-
lations, where slight compressibility can cause
inaccuracy and inefficiency [3]. In fire research,
the dilemma is perhaps more acute because most
mathematical modeling has been of fires in en-
closures where the exothermicity produces a
pressure that is nearly uniform throughout the
enclosure, but increases slowly with time due to
the heat introduced by the fire. In the field-
modeling approach, where the model consists of
governing partial differential equations, this
dilemma was resolved some time ago by Rehm
and Baum [4], who introduced an approximate

a1

set of equations for a thermally expandable gas
in which the sound waves were analytically re-
moved; other researchers have introduced differ-
ent approaches to resolve the dilemma with
varying degrees of success. In the zone-model
approach in fire research, this dilemma has not
heen entirely resolved to date [5], [6].

There is a long history of analysis of the dy-
namical behavior of fires in buildings using
mathematical models. The reason for develop-
ment of the mathematical models and their use in
practice has been reviewed in [7], [8]. The origi-
nal mathematical model of a plume used in zone
fire models was developed by Morton, Taylor
and Turner [9]. Other early work contributing to
the basic development of these models includes
experimental [10] and theoretical [11] studies of
the effects of flow through openings induced by
fires in enclosures; analytical examples of the
development of a stratified ceiling layer and the
filling of an enclosure by the heated gases [5];
analytical examples of two layer modeling of the
smoke movement in two-room structures [12];
and theoretical study of the flow of smoke and
hot gases through vents [13].
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In an early paper on zone-fire modeling,
Zukoski [5] demonstrated that, for a fire in an
enclosure, a substantial pressure over ambient
could not in general be sustained. His work
formed the basis for the quasi-steady approxi-
mation often invoked in zone-fire modeling; in
this approximation, pressure is assumed to be
spatially uniform at each time during the slow
evolution of the other dependent variables. In
Section 2, we derive the equations for a simple
two-layer zone~fire mode! and show that these
equations exhibit stiffness. Stiffness is a term
used to describe the equations arising from a
physical system that is governed by multiple
time scales. The equations reduce to those ob-
tained earlier by Zukoski when the pressure is
assumed to equilibrate instantaneously. When,
however, the pressure equilibrates more slowly,
the nature of the stiffness can be seen.

In Section 3, an example is presented which
illustrates the structure of the mathematical
problem that arises when solving pressure equa-
tions in a two-room enclosure. In the first room,
there is a fire and two vents, one to the outside,
and the second vent to the other room. The
difficulty encountered in attempting to integrate
numerically the equations arising from this more
general model is again the stiffness due to the
pressure equations. Under very reasonable con-
ditions, the pressure differential across the vent
between the rooms remains very small relative to
the average pressure in the twe rooms during
evolution of the fire, and this small differential
causes stiffness.

Since these models are very simple, analyti-
cal techniques can be applied and insight gained
regarding the nature of the stiffness. As with
more general zone models, these models consist
of ordinary differential equations coupled with
algebraic  equations. Singular  perturhation
methods and phase plane analyses, together with
numerical integration of the appropriately non-
dimensionalized equations, are employed to exa-
mine the stiff nature of the equations. In Section
4 we conclude that many of the difficulties as-

sociated with numerical integration of zone fire
models in general may be circumvented by ap-
propriate analysis of the model equations.

2. SINGLE-RCOM ZONE-FIRE MCDEL

Over a decade ago, Zukoski [5] demonstrat-
ed that, for a fire in an enclosure, a substantial
pressure over ambient could not in general be
sustained. Any leak in the enclosure would
rapidly reduce the overpressure to near zero, or,
alternately, the overpressure would cause struc-
tural failure, such as the breaking of a window,
and the overpressure would again become small.
Zukoski’s observation is again simply the state-
ment that the time required for the pressure to
equilibrate spatially is much smaller than the
time required for other variables, such as tem-
perature or density, to evolve during an en-
closure fire. Practically, this demonstration has
been used in zone-fire modeling to invoke a
quasi-steady approximation in which pressure is
assumed to be spatially uniform at each time in
the slow evolution of the other dependent varia-
bles in the enclosure fire.

Problems involving multiple time scales such
as that described above, where one time scale is
much shorter than the others, are said to be stiff
mathematically and can be very difficult to cal-
culate. Paradoxically, solutions to stiff problems
often appear to evolve slowly, yet have enormous
computational requirements when solved using
standard or non-stiff solvers. In stiff systems,
the short time-scale phenomena approach a
quasi—steady state rapidly while the other
phenomena evolve on a much longer time scale.
Zone models have been known for some time to
exhibit this stiff nature due to the rapid pressure
equilibration. The numerical problems produced
during the numerical integration of zone-fire
models have been highlighted by Forney and
Moss [6].

In this section, we present a derivation of a
set of differential equations which govern all of
the dependent variables (room pressure, layer
height, layer temperatures and densities, etc.) for



a simple two-layer zone-fire model. This model
is obtained by examining the equations for con-
servation of mass and energy, integrated over
the upper and the lower layers, the two control
voiumes for the zone model. These equations are
suppiemented by the equation of state for an
ideal gas, and definitions of density, volume,
mass, etc. in each layer. In Figure 1, a schematic

lower layer

qvenl
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Figure 1. One Room Two Layer Schematic Diagram

diagram of the zone model is shown; the com-
partment is divided into two control volumes, an
upper layer of hot gases and smoke, and a lower
iayer of air. The fire produces a plume which
acts as a pump to transfer mass from the lower
to the upper layer, adding energy to the trans-
ferred fluid. The basic assumption of a zone fire
model is that properties such as temperatures
can be approximated as uniform throughout the
zone. The two layer model is quite adequate for
many applications because upper and lower lay-
ers as described are often ohserved experimen-
tally in room fires. A careful derivation of the
equations used in zone fire models has been
given in [8], while the advantages and disadvan-
tages of zone models have been discussed in [7].
It is remarkable that this assumption seents fo
hold for as few as two gas layers, which is the
model considered in this paper.

The model demonstrates that the equations
exhibit stiffness even in this simple case. The
time scale for pressure equilibration is deter-
mined by the size of the enclosure divided by the
speed of sound, whereas the time for evolution of
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other variables, temperature, density, layer
height, etc., is determined by the size of the en-
closure and the buoyant velocity induced in the
enclosure. The stiffness arises because of the
small Mach number of the flow induced during
buoyant convection, or because of the thermal
expandability of the gas in a fire. The equations
are shown to reduce to those obtained earlier by
Zukoski when the pressure is assumed to
equilibrate instantaneously.

The gas in each layer has attributes of mass,
internal energy, density, temperature, and
volume denoted respectively by my;, E;, 4, T;, and
V; where i = L for the lower layer and i = U for
the upper layer. The compartment as a whole
has the attribute of pressure p. Here, tildes have
been used to denote dimensional quantities.
Many differential equation formulations based
upon these assumptions can be derived. One for-
mulation can be converted into another using
definitions of density, internal energy and the
ideal gas law. Discussions of different formula-
tions of a zone fire model are given in [6] and
[14]. These eleven variables are related by means
of the following seven constraints

P —%L (density),i = L, U (1)
E= cvrl'r'liTi(internal energy),i =L, U (2)
p = RpTi(ideal gas law),i =1, U (3)
V =V, + Vy(total volume). (4)

The specific heats at constant volume and at
constant pressure, ¢, and c,, the universal gas
constant, R, and the ratio of specific heats, 7, are
related by y = ¢, / ¢y, R = ¢ — ¢,

The first law of thermodynamics states that
the rate of increase of layer internal energy plus
the rate at which the layer does work by expan-
sion is equal to the rate at which enthalpy is ad-
ded to the gas (where we consider the enthalpy
added as that from any sources minus losses to
the wallg). In differential equation form, the
energy equations for the two layers are
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By Pd;? = Qe + Gpume — Gume (5)
% Pi;%— =~ Gy~ e (6)
Similarly, the mass equations are

dgz‘f = Mg + Mplume @)
vdéﬁf-hf T = Myent ™ Mplyme (8)

The mass and enthalpy flow rates are denot-
ed m, and q with appropriate subscripts. These
flow rates represent the net exchange of mass or
energy between zones due to physical phenome-
na or sub-models such as fire plumes, natural
and forced vents, convective, radiative heat
transfer, etc. For example, a vent exchanges
mass and energy between zones in connected
rooms, a fire plume typically adds heat to the
upper layer and transfers entrained mass and
energy from the lower to the upper layer, and
convection and conduction transfer energy from
the gas layers to the surrounding walls. Here, we
use the following definitions and submodels:

Vo=VL + Vy = constant (9)
Guent = Cy T (E) thyens (10)
Myent = CrentAventy| 261.(p — Po) (11
Aprume = Co T (E) Mpiume (12)
Mppme = 0o gH H2(Q*) 1734 (2/H) (13)

Qwans = 1S + 2(L + W) (H — z) ]
K(Ty — To) (14)

For simplicity, qg. 18 assumed to he a con-
stant fire (heat) source, Qv 18 the enthalpy loss
through the vent, duume 15 the enthalpy pumped
from the lower layer into the upper layer by the
plume, and (ways 18 the heat transfer rate to the
walls. my,, IS the mass added by the fire, M. 18
the mass loss through the vent and mipmm. is the
mass pumped by the fire plume from the lower
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layer into the upper layer. Q* is the dimension-
less fire input parameter defined by Zukoski [5]

* c‘lfsre
20Cy Ty gH H?

(15)

and py, Ty are a reference density and tempera-
ture, g is the acceleration of gravity and H is the
height of the enclosure. S = LW is the floor area
of the enclosure, where L is the length of the
enclosure and W is its width. K is a heat transfer
coefficient for heat transfer from the gas to the
enclosure walls. Then the volume of the en-
closure is Vo = LWH.

Three differential equations plus the rela-
tions between the dependent variables can be
used to define the zone model; these equations
are chosen to be an equation for the pressure,
one for the upper-layer temperature and the
lower-layer mass equation. The equation for the
pressure is found by adding the energy equations
for the two layers, taking account of the equation
of state for the ideal gas.

dp _ -1

dt - V() (Clﬁl't‘. - qvent - QWalls>

Here p is the pressure in the room relative to
the ambient pressure outside the room P = Denc
~ Paim, and t is the time. The upper-layer energy
equation and the upper-layer mass equation
combine to give an equation for the upper-iayer
temperature.

d = - dp . .
CoouVu E(TIJ) =Vy ‘a% t dfire — Guwalis
- cp <TU - TL)lhpiumP . C1>T[2mfire

The equation for the mass in the lower layer is
simply:

drv dp V , _
S;L - (;lf b= - mplnme = Myent

We use the same scales as used by Zukoski
[5] to define most dimensionless quantities.
Heights are made dimensionless with respect to
the enclosure height, H, volumes with respect to
the enclosure volume V, and densities and tem-



peratures relative to the reference quantities de-
fined above. The time is made dimensionless
with respect to the time scale defined by
Zukoski:

t; = 4 H/g (S/H?)

There is, however, another time scale charac-
teristic in the problem, and it is the time as-
sociated with a pressure rise in the room due to
heating, and this time gives rise to the stiffness
m the problem:

’ v o} Qtire e (16)
y — ]) (Cp TL Cvent A~vem. Y 2‘ L ,}2

Similarly, there are two characteristic pressures
which can be defined. One obviously is defined in
terms of the reference temperature and density,
po = RpoTy, and this pressure is chosen as the
reference pressure. The second characteristic
pressure 18 the overpressure which arises due to
heat addition in the enclosure:

(17)

— { Qﬁ're
Pe = |
VR

pTLCvent Avent\ 2,0]‘

1f we define the total pressure in the enclosure as
the reference pressure plus the overpressure p =
Po + Ap, then the dimensionless pressure is

P =D/Po =1+ AP/Po
— 1+ (Pw/Da)Ap = 1 + ¢Ap
where ¢ = (D../Dg) -
The mass and heat sources and sinks can be

made dimensionless and written in terms of a
few dimensionless parameters. These are

M = — Mijre

— (18)
pov gH H?

—_ Qﬁx'e
0aC,Toy gH H2
CventAvent Vi 2P oPo
Ao \/"FgH H?
SK
QW: I
Cl)pﬂ ¥ gH Hz

Q* (19)

Qv = (20)

(1)
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Here M is the dimensionless rate of mass addi-
tion by the fire, Q* is the dimensionless rate of
heat addition by the fire (Zukoski’s parameter
defined earlier), Qy is the dimensionless enthalpy
lost through the vent, and Qw is the dimension-
less enthalpy lost into the walls.

The equations for the pressure, the tempera-
ture in the uppef layer and the mass in the lower
layer in dimensionless form then become:

dA; 7 .
g-—a-tp- = 71Q* — Qv e Tud prap
- aull + 2 8E I g gy, )
dTy — 1., dA |
ouVy dtU =L ; Vu dtp + Q" — Qw
1+ 2,_(LJ_EMJE(1 - 2Ty — 1)
— (Q*)1BGZH3(Ty — TL) — MTy
.?L%tlﬁ:. = (QNV3Z53 — Quy ¢ | prbp

where all quantities are now regarded as dimen-
sionless. For more details concerning the non-
dimensionization and the derivation of the equa-
tions, see {14} and [5].

Zukoski [5] has presented numerical esti-
mates of the magnitudes of the
parameters which appear in these ecquations. He
has demonstrated that leaks generally are large
enough in most enclosure fire scenarios that the
overpressure which can develop is rather small.
(In fact, Zukoski uses this fact to ignore any

various

overpressure and make a quasi-steady approxi-
assuming that it
equilibrates instantaneously to the pressure out-

mation for the pressure,

side the enclosure, during the enclosure-filling
process. When the leak is large enough to sustain
only small values of overpressure, then ¢ = P../
Po € 1 is a small parameter. Using equation (17)
with dgr. = 100, 000W, Aoy = 1m2, Cyeny = .68
and ambient density and temperature, ¢x~10-6 |
Since this small parameter multiplies the time
derivative of the overpressure, the system of
equations is stiff, and the culprit is the overpres-
sure equation.
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Other observations can be made from this
dimensioniess system of equations. However, we
will note only one. The state equationisp = 1 +
PAP/Po = pTL = pyTy. When ¢ = p../pp < 1,
then p = 1 and p; T}, = 1,00Ty = 1(with p, = 1
and TL =~ 1)

2.1 Pressure Equation

A major approximation made in the model
described above is that the heated gases never
exit through the vent (i.e. the vent is near the
flioor, while the heated gas layer stays above the
ieak). In addition, we assume that there is no
heat transfer to the walls, i.e. the enclosure has
adiabatic boundaries. The mass loss through the
vent equals a constant times the squarercot of
the pressure difference across the vent, and the
enthalpy loss through the vent is a constant
times the mass loss. The pressure equation in
dimensional form is'

ﬂd_lt)_ L*V“L(Qﬁm = Gvent)
The initial conditions are that p = 0 at £ = 0.
The solution to this equation forms the basis for
analysis of more complicated cases.

If, rather than using the reference time scale
tz and pressure py defined in the formulation
above and used by Zukoski, we use the alterna-
tive ones 7 and p.. associated with the pressure
rise in the enclosure, the equation for the pres-

sure becomes

dp.

dt (22)

1 —sgn(py Ipl
The solution to this equation with the initial con-
ditions that p = 0 at t = 0 was given earlier in
[6], [b] and [4].

Figure 2 shows solution plots to Eq. (22) for
three values of the initial conditions, p{3) = 2.0,
0 and — 2.0. These plots were generated using
the software package Mathematica[l3], particu-
larly the command NDSolve. The initial condi-
tion that p = 0 for t = 0 is the base calculation
performed in [4], [B] and in [6]. For all initial

b6

P
2
-2 \
. ) .
0.5 //
2 3 6 8 1o ¢
-0.5
-1
-1.5
-2

Figure 2. Solution of a Non — Dimensionalized Pressure

Differential Equation for Initial Conditinons: p(0)
~ 2, pl0} = 0 and p{0) = 2

conditions shown, the solutions converge at long
time to p(t - o0) = 1, the stable equitibrium so-
lution to the problem.

The phase plane for the one-room model is
just the line, but it is instructive to consider it.
As defined, the dimensionless pressure can be
either positive or negative. Let the initial condi-
tions be Penc(fo) = Denco at time t = f, =0,
where we retain the symbol f; for use later. Then
E)O = f)o.nc - patm and Po = f)(i/f)oo = (-f)enc o f’atm)
/D.. Now, since we can have py < 0 as well as
po > 0, and since p.. can be arbitrarily small, —
oo < py < oo. Hence the phase space for the
one-room model is the whole line. Whether p, is
positive or negative, the solutions pass, after
long time, to the stable equilibrium value of p =
i, which is called the fixed point of the equation.

For 0 < py < oo, the solution is

-
t—tg = Zln—H? — |
' 1= yp|
and the phase diagram for either p, > 1 or for
po < 1 is the directed line segment from py to
unity. ~
When pg is negative initially, the solution for
the pressure is

+2(ypy — VD)

1+ 4 [pl

L+ Ipol

2In

2 Ipel — 4 Ipl)



For t > t.,, p > 0, the solution is

oot = Zlnf‘l — ’F—:| —24 p

= VD

in this case, the phase diagram is a directed line
segment from p, < 0 to unity.

3. PRESSURE EQUATION TWO —~ROOM
MODEL

The second example, which also illustrates
the structure of the mathematical problem in
solving pressure equations, is shown schemati-
cally in Figure 3. In this example, there are two
rooms. in the first room, denoted by subscript 1,
there is a fire and two vents, one to the outside,
which is denoted vent 1, and the second vent,
denoted vent 2, to the second room. Again, the
walls are assumed to be adiabatic. The dimen-
sional equations for this example are:

c‘l~ L 1 . . .
—Epil = vV, (\q{ire " Qvent1 — Q\'entz)
GTpZ o "rle:gl“(QVentZF) (23)
at Vo
where

QVcntZ = Cprrventzcvemzllxventz e
sgn(p; — Pa) v 2p1P1 — Pl

We define the following scaling parameters:

i - 2
! qﬁre
Doy = {7
; (/nTventlcventlf&ventl 2.{)
i - 2
S Qsire
me - \ o
;i/niventZCventQI‘Xvent? 2(’ ’
V1P
Ty == 7% 3
I\/‘ - I)Qﬁre
_ Y Gire
w 1) (cpTventlcventPAvem,l v 2.{) )2

&7
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S f =
° (T - ]-)Qﬁre
— Ve dfie .
(7 -1 (CpTventZCventZAvemE v[—ép )2

(24)

We use the pressure scale and the time scale as-
sociated with vent one as the basic scaling
parameters with which to make the equations
dimensionless. Then, the ratio z;/z, appears in
the dimensionless eguations, which we can write
as follows

d e I
'(';-E* 1 —sgn(x)y |x! —asgn(y)y |y!
W 1 sm eI —absenG Ty

{25}
where x = p,y = Ap = p; — D2,

a = V/ﬁvz/fzvl b= (Vi + V) /V,.

These equations are autonomous, see [16]
and [17] for example, and therefore can he
reduced to a single first-order nonlinear ODE by
eliminating time. A phase plane analysis formally
starts from this single first-order equation:
however, when we numerically integrated in the
phase plane, we used the parametric form of the
equations, Eqs. (25), and then plotted the results
in the phase plane.

In general, the fixed point of the system for
(x(t), y(t)) is determined by setting the right hand
sides of Eqs. (2b) to zero; it is given by xg = 1,
yvo = 0. We note an important difference, be-
tween these equations and the usual ones en-
countered in phase-plane analysis [16] and [17];
these equations are not analytic around the fixed
point. The fixed point is a stable one as deter-
mined by the numerical integrations described
below.

If the two room volumes are identical and
the conditions in the lower layer are the same for
the example illustrated in Figure 3 then the
parameters a and b are given by a = Aene/
Avern and b = 2. We consider this special case
for simplicity. Large a then implies that the vent
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Room 1

Y Room 2

Figure 3. Two Room Schematic Diagram

connecting the two rooms is large compared to
the vent connecting the first room to the outside.

Eaquations (25) have been integrated :using
the software package Mathematica. Once again,
as in the one-room example, we have used the
command NDSolve for this first-order nonlinear
ODE system. Figure 4 shows the pressure p; and
the pressure difference p; — pp fora == 1, b = 2
with initial conditions (1.C.) x(0) = y(0) = 0. The

dimensionless pressure in room 1, x(t), starts at
zero and increases monotonically to unity over of
order ten dimensionless time units. The pressure
difference between room 1 and room 2, y(t),
starts at zero, increases to a maximum of about
0.1 at about one dimensionless time unit and
then decreases to zerc again. The solutions dis-
played are well behaved, and the numerical cal-
culation of them encounters
difficulty.

Figure 5 shows x(t) and y(t) for a = 4,b = 2
with initial conditions (I.C.) x(0) = y(0) = 0. The
primary difference between these plots and those
of Fig. 4 is that the solution for y rises more
rapidly as a function of t from its initial condition
to a smaller maximum of about (.01 and then
decays to zero. Large a is a condition on the ratio
of time scales and volumes of the two rooms. As
we see helow, large a implies that the equations
are stiff and a singular perturbation analysis of
the problem is applicable. We emphasize that
this problem, with a relatively large value of a,
would most probably cause difficulty using a nu-

no particular

Pressure p;

1p
c.8F
0.6
C.4
0.2 |
Pressure Difference, p; — p2
P 7 6

a 10 12 14

Time, t

Figure 4. Solution plot of Equations 25 for a = 1, b = 2. Here, the parameters a

and b are defined following that equation. The pressures in each room

are ambient initially.
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Pressure p,

8 -
6 L
Pressure Difference, p; — py
2 1 6 5 16 15 Ti
Time, ¢
Figure 5. Sotution plot of Equations 25 for a = 4, b = 2. Here, x is the normal-
ized pressure in room 1, v is the normalized pressure difference be-
tween room 1 and room 2, and the parameters a and b are defined fol-
lowing that equation. The pressures in each room are ambient initially.
b
Pressure p;
r——— S
8 -
6 L
Pressure Difference, py — po
2 F
2 4 ; 8 10 is vy

Figure 6.

Time, t

Solution plot of Equations 25 for & = 0.1, by = 2 Here, x is the normal-
ized pressure in room 1, y is the normalized pressure difference be-
tween room 1 and room Z, and the parameters a and b are defined fol-
lowing that equation. The pressures in each room are ambient initially.



R.G. Renm, G.P. FORNEY

merical solver that did not account for stiffness
of the equations.

Figure 6 shows x(t) and y(t) fora = 0.1, b =
2 with initial conditions (I.C.) x(0) = w(0) = 0.
The curves show a much more gentle time de-
pendence than that displayed in Fig. 5.

Figure 7 shows a phase plane plot of the so-
lution to Egs. (2b) with a = I, b = 2, where
these parameters are defined following the equa-
tion. This phase plane plot demonstrates that x

: 1, y = 0 is a stable fixed point of the sohition
since all solutions progress toward this point as
time increases. For each initial condition, i.e.
dimensionless pressure in room 1 (x) and dimen-
sionless pressure difference between room 1 and
room 2 (y), the solution of the equations starts at
a position in the phase plane and progresses
along the curve through that point down to the
x—axis and then toward the fixed point. This is
known as the trajectory of the solution in phase
space. Since time is not shown in these plots, the
time history cannot be inferred from these plots

Pressure Difference, p; — po

alone. However, by comparison with the plot
shown in Figure 4, we can see that the solution
moves rather quickly to the x-axis, and then
more slowly along the axis toward z = 1. The
plot was prepared by integrating Eqs. (25) for
thirteen different initial conditions and then plot-
ting each curve parametrically. All solutions
reach the stable fixed point.

Figure 8 shows a phase plane plot of the so-
lution to Eqgs. (25) with a = 4, b = 2. This figure
shows that the trajectories of the solution have
become much more angular with nearly 45-

very abrupt bhehavior is an indication that the
Eqs. (25) are becoming stiff for the parameters
chosen. Comparison of this figure with the time
plot for the same parameters a, b shown in
Figure 5 demonstrates that the solution pro-
gresses rapidly along its trajectory down to the
x-axis and then very much more slowly along the
axis to the fixed point at x = 1. This behavior
makes numerical integration much more difficult

Pressure py

g

Figure 7. Phase plane plot of Equations 25 for a =

/S

1, b = 2. Here, x is the nor-

malized pressure in room 1, v is the normaized pressure difference be-

tween room 1 and room 2, and the parameters a and b are defined fol-

lowing that equation.
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Pressure Difference, p; — p2

z

1.5 F

i4

6.5}
Pressure p;

Figure 8. Phase plane plot of Equations 25 fora =4, b = 2. Here, x is the nor-

el

malized pressure in room 1, y is the riormalized pressure difference he-
tween room 1 and room 2, and the parameters a and b are defined fol-
lowing that eguation.
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Figure 9. Phase plane plot of Equations 25 for a = 0.1, b = 2. Here, x is the
normalized pressure in room 1, v is the normalized pressure difference
herween room 1 and room 2, and the parameters a and b are defined
following that equation.
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{unless a stiff solver is used) since the computa-
tion is limited by the smallest time scale, in thig
case the time required for the solution to reach
the x—axis.

Figure 9 shows a phase plane plot of the so-
iution to Egs. (25) with a = 0.1, b = 2. This
figure shows that the trajectories of the solution
have become much smoother than those shown
in either Figs. 7 or 8, and the solution is not stiff
for the parameters chosen.

When the ratio of time scales 71/7y becomes
either large or small in Eqgs. (25), situations of
actual practical interest, they are stiff. Then, a
singular perturbation analysis can be performed
to obtain the analytical behavior; here, however,
we will not perform a formal analysis, but only
show how the zero—order behavior of the system
can be determined under these conditions.

First, consider the case when /72 > 1.
This will occur, for example, when the area of
vent two, that connecting the two rooms, is
moderately large, while vent one, the vent to the
outside, is a small leak. When this is the case,
then, since ry/7, multiplies the difference in room
pressures, p; — pz > 0. If we eliminate (71/72)
{p1 — p2) between the dimensionless form of the
two Egs. (23), we get

dpr ., _ 5 — Y2 dps
dt ] Sgn (pl) '\/— pl | V'[ dt

If we now say ps = py,then

1

dp; Vi (1 - sgn(p [B; ]

dt Vi4 V, ©

If we choose the proper pressure and time scales,
this becomes the same as l£q. (22) for the single
room with a fire and a leak, but now with a
volume V,; + V,, the volume of the two rooms.
Similarly, when 71/, € 1, we have the case
where the vent area between the two rooms is
small relative to the vent area to the outside for
exampie. in this case, we concentrate on the first
of Egs. (23) and note that the term proportional
to 7y/72, the term representing the effect of the
second vent, is negligible. Then, this equation

becomes

dp,

a = 1~ sen(py) v Ipil
L8

the equation for the single-room case again.

4. CONCLUSIONS

The simple problems examined in this paper
illustrate the nature of the difficulties long en-
countered when numerically integrating zone fire
models. The pressure equations equilibrate very
rapidly compared to the equations governing the
other dependent variables in the zone fire
models. When equations of this nature are en-
countered, they are referred to as stiff. The sim-
ple problems analyzed here illustrate the nature
of the stiffness and demonstrate that proper non-
dimensionalization together with singular pertur-
bation analysis can provide insight into the be-
havior of the system for parameters of interest.

The methods can be used to examine much
more general problems. For example, two rooms
connected with each other and with the outside
in different fashion can be analyzed similarly to
the two-room example presented here. In addi-
tion, some multiroom enclosures have also been
analyzed using the nondimensionalization and
singular perturbation methods described herein.
In the limit of various leak sizes hetween rooms
(or time scales determined by the heat source,
room volume and leak rate), the equations can be
shown to reduce to the one-room equation with
redefined leak rates and room volumes, as was
done in the two—-room case illustrated above. The
methods should provide an opportunity to ana-
lvze difficulties with stiffness which are encoun-
tered in more general zone fire models.
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