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Abstract 
This study chronicles the development and integration of a smoke detector activation algorithm 
that describes the response time of a smoke detector into a Large Eddy Simulation (LES) fire 
model. Although the activation algorithm could be used with any CFD smoke movement model, 
the results here address specifically its application to the Fire Dynamics Simulator (FDS).  The 
fire model predicts the smoke concentration and velocity adjacent to the detector while an 
algorithm based on characteristic velocity-based lag times describes the transport of smoke into 
the sensing chamber of the smoke detector.  An Underwriters Laboratories Standard 217 fire test, 
as well as experimental data from two experimental multi-room compartment fires, were used for 
comparison and validation of the accuracy of the algorithm.  A series of benchmark studies in a 
numerical wind tunnel provided a mechanism to establish the sensitivity of the model to the 
different input parameters.  The algorithm was found to be very accurate in determining detector 
activation times for both high and low-velocity smoke flows.  Additionally, it was found that the 
algorithm provides more accurate smoke detector activation times than other correlations based 
on optical density or temperature.  The activation algorithm will be included in the next release 
of FDS (version 5.x). 
 
 
 
 
 
 
Keywords:  Smoke detection, Detector delay time, FDS, Smoke detector response, Smoke 
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Disclaimer 
Combustion Science & Engineering, Inc. (CSE) makes no warranty, expressed or implied, to 
users of the smoke detector activation algorithm and accepts no responsibility for its use. Users 
of the algorithm assume sole responsibility for determining the appropriateness of its use in any 
particular application; for any conclusions drawn from the results of its use; and for any actions 
taken or not taken as a result of analysis performed using these tools. Users are warned that the 
algorithm is intended for use only by those competent in the fields of fluid dynamics, 
thermodynamics, heat transfer, combustion, fire science, and smoke detection, and is intended 
only to supplement the informed judgment of the qualified user. The software package is a 
computer model that may or may not have predictive capability when applied to a specific set of 
factual circumstances. Lack of accurate predictions by the model could lead to erroneous 
conclusions with regard to fire safety. All results should be evaluated by an informed user. 
Throughout this document, the mention of computer hardware or commercial software does not 
constitute endorsement by CSE, nor does it indicate that the products are necessarily those best 
suited for the intended purpose. 
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Chapter 1 

1 Introduction 
Early detection of fire plays an important role in the life safety of building occupants.  The 

ability to accurately predict the performance of fire detection systems is an integral part of the 
analysis associated with fire safety design and fire reconstruction.  Traditionally, smoke detection 
systems are designed and installed based on prescriptive requirements. While studies have shown 
that the presence of functional smoke detectors in residential settings can significantly reduce the 
number of injuries and fatalities associated with fire (e.g. Mallonee et al., 1996; Ahrens, 2004), 
there are potential detector locations in a given residence that can cause significant delays in the 
activation of a smoke alarm.  This delay can result in serious injury or death. Therefore, a 
performance-based smoke detection system design will require an accurate method for determining 
the time to activation and optimum detector placement in unique building geometries.  

The two most prominent types of fire detectors are thermal (e.g. sprinklers and heat 
detectors) and smoke detectors. Plume and ceiling jet correlations (maximum temperature and 
velocity) coupled with a thermal lumped-mass model of the convective heat transfer have been 
used to predict the response of sprinklers and heat detectors (Stroup and Evans, 1988).  This model 
has been incorporated into fire analysis tool suites (e.g. FPETool) as well as zonal-type fire models 
(e.g. FAST).  In addition, since 1990, NFPA 72E has incorporated a method for the spacing of heat 
detectors (in the form of look-up tables developed from modeling estimates) based on the fire 
growth rate and size, the detector’s thermal response characteristics (i.e. Response Time Index or 
RTI), and the ceiling height.  

Smoke detector activation schemes have also previously been incorporated into zone 
models (e.g. FPETool and FAST) (Upadhyay and Ezekoye, 2005). The most simplistic and 
practical method for the modeling of smoke detector activation treats the detector as a very 
sensitive thermal element (i.e. with no thermal lag) and uses a weak correlation between the 
temperature rise and smoke obscuration at the location of the detector. The critical increase in 
temperature above ambient assumed for smoke detector activation is 11.1°C (20°F) (Heskestad 
and Delichatsios, 1977). This method ignores many of the factors that affect smoke detector 
activation such as the response characteristics of the detectors as well as the characteristics of the 
smoke. There has been significant criticism levied on the technical basis and accuracy of such an 
approach, which has left substantial doubt as to its validity (Beyler and DiNenno, 1991; Schifiliti 
and Pucci, 1996; Luck and Sievert, 1999; Schifiliti, 2001; Cholin and Marrion, 2001; Mowrer 
and Friedman, 1998; Gottuk et al., 1999; Wakelin, 1997).  

A more accurate methodology to predict the activation of smoke detectors is needed. The 
technique should be able to model the transport of smoke as well as estimate the local conditions 
(i.e. velocity, temperature, smoke obscuration) at the smoke detector. Fire Dynamics Simulator 
(FDS) is one predictive tool that has been shown to effectively model fire and smoke transport in 
well-ventilated conditions, especially when the size of the fire is small compared to the 
compartment (i.e. when a fire detection system’s response is most relevant). Previous versions of 
FDS did not include a smoke detector activation model.   

A preliminary study was conducted to assess the ability of FDS to predict smoke detector 
activation (D’Souza et al., 2002). The methodology for determining the conditions and time for 
smoke detector activation uses FDS to compute the flow field and smoke movement and a 
detector lag time is obtained from physics-based algorithms.  The geometry of the space of 
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interest is created in FDS.  The smoke yield, which is a fraction of soot mass to total mass 
burned, is obtained from the fire protection scientific literature (e.g. Tewarson, 2002) and is an 
input into the model.  The heat release rate of the fire is input into the model, as well as a value 
for the heat of combustion (needed to determine the mass burning rate) from the literature, and 
the resulting fire flows and smoke movement are modeled.  The model calculates, as a function 
of time, the smoke density (g/m3) and the smoke velocity (among other variables) at all cells 
inside the computational domain.   

D’Souza et al. preliminary work demonstrates that the FDS model can predict smoke 
detector activation with reasonable accuracy when used in conjunction with smoke detector lag 
correlations that correct for the time delay associated with low velocity smoke penetrating the 
detector housing (D’Souza et al., 2002). While the work of D’Souza et al. (2002) found 
reasonable agreement between experimental and model results, this preliminary approach is still 
only a first order technique which takes the time for conditions outside of the detector to reach 
threshold limits as defined by UL 217, and then calculates the lag time at that discreet point in 
time.  Since the FDS model calculates the flow field and smoke density transiently at the 
detector, the goal of this effort was to improve upon the D’Souza et al. methodology by not only 
incorporating the correlation into the model, but also utilizing the transient numerical solution of 
FDS.  The use of this transient numerical solution instead of a point in time correlation will 
ensure that the model is calculating the smoke obscuration inside of the detector chamber (after 
the dwell and characteristic mixing lag times as described by Cleary et. al., 2000), and will 
therefore provide a more accurate and singular solution of the activation time, instead of a 
broader range of times. 
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Chapter 2 

2 Model and Scenario Definition 

2.1 Model Documentation 
This section provides a short description of the smoke detector activation algorithm following 
the framework suggested by ASTM E 1355 (2004). It is intended to outline the major features of 
the model, its history, the underlying physical assumptions, and other relevant information. More 
detailed information about the algorithm itself can be found in the next chapter. 

2.1.1 Name and Version of the Model 
The name of the model is the smoke detector activation algorithm.  It was designed to function in 
conjunction with Fire Dynamics Simulator (FDS), a model that solves the equations of fire-
driven flows (McGrattan ed., 2005).  The algorithm is written in Fortran.   

2.1.2 Type of Model 
The smoke detector activation algorithm is a model to predict the time to activate a smoke 
detector in the presence of a fire-driven flow. The algorithm is designed to use the output of a 
Computational Fluid Dynamics (CFD) model that provides the local velocity and smoke 
concentrations at the detector location.  The algorithm solves the equations that account for 
smoke detector lag and activation.  The algorithm is currently designed to be integrated with 
FDS (McGrattan and Forney, 2005). 

2.1.3 Model Developers 
The algorithm was created and developed by Combustion Science & Engineering, Inc. (CSE) 
with the support of the National Institute of Standards and Technology (NIST).  The algorithm is 
theoretically based on the work of Cleary et al. (2000) and other foundational studies (e.g. 
Brozovsky, 1991; Newman, 1987; D’Souza et al., 2002). 

2.1.4 Model Uses 
The algorithm was created to provide the fire protection engineering and fire investigation 
communities with an accurate tool to predict the activation of smoke detection devices in the 
presence of a fire-driven flow.  This tool has uses that include: 
 

• Fire Protection System Design – Determination of proper smoke detector location for 
consistent and timely fire detection and notification of building occupants 

• Fire Investigation and Reconstruction – Reconstruction of time and/or conditions 
necessary for smoke detector activation for a given hypothesized fire scenario 

2.1.5 Model Output 
The algorithm utilizes the smoke concentration and velocity predictions at a prescribed location 
from FDS for a prescribed fire source to predict the smoke concentration inside the sensing 
chambers of typical smoke alarms.  The smoke concentration and velocity from FDS provide the 
conditions outside the smoke alarm.  The algorithm uses these conditions to predict the flow of 
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smoke into the alarm and the conditions inside the sensing chamber of the alarm.  The algorithm 
determines the smoke concentration within the alarm sensing chamber at each time step of the 
FDS calculation. During a simulation, FDS will save the history of the smoke concentration 
within the smoke detector in a separate data file (i.e. casename_smkdt.csv). When the smoke 
concentration inside the chamber meets the user-defined threshold for smoke alarm activation, 
the algorithm will no longer continue to calculate concentration within the smoke detector. In the 
companion visualization software, Smokeview (Forney and McGrattan, 2004), the visual locator 
for the prescribed smoke detector will change color and the user can view the contents of the 
output file to locate the time of detector activation.   

2.1.6 Relevant Publications 
It has been well established in the fire protection engineering community that smoke detectors 
present an entry resistance to smoke-laden flows.  Entry resistance means that the smoke 
concentration outside the detector may not correspond to that at the sensor located inside the 
housing.  Heskestad (1975) first proposed that this time lag (τ) could be a function of the free 
stream velocity (U) flowing past the detector, and a characteristic length L, which is the effective 
distance that the smoke has to travel through the detector. This approach is adequate at 
sufficiently high velocities, but it is lacking when the velocity is low (Cleary et al., 1999). 
Different fire scenarios can lead to low velocity flows at the smoke detector locations where the 
simple approach of Heskestad will not apply. For example, in the case of ceiling jets, Brozovsky 
(1991) found that this approach did not hold for low ceiling jet velocities. Qualey et al. (2001) 
observed long detector activation times under smoldering fires that generated low velocities.  In 
order to deal with the full range of velocity conditions, Newman (1986) mentioned that the 
dynamic response of a smoke detector model could be described as a first order conventional 
diffusion equation based on two apparent detector characteristic times.   

The above studies highlight the point that it is important not only to establish the 
transport lag between the fire and the smoke detector but also to properly establish the transfer of 
smoke particles from the outside of the detector into the sensing chamber. None of the above 
studies has attempted to transiently resolve both processes in a simultaneous manner. This can 
only be done using a CFD approach, as it requires detailed local and temporal resolutions of the 
velocity fields close to the detector as well as a precise estimation of the local concentration of 
smoke.  Some initial studies (D’Souza et. al., 2002; Cleary et al., 2001; Cleary et al., 1999) have 
used CFD fire modeling to study smoke detector activation, but none of these studies transiently 
incorporated the time lag factor that accounts for the smoke entry resistance.   

The smoke detector activation algorithm is integrated with FDS and the results are 
dependent on proper use of FDS.  Each version of FDS and Smokeview is documented by three 
separate publications – the FDS Technical Reference Guide (McGrattan ed., 2005), the FDS 
User’s Guide (McGrattan and Forney, 2005), and the Smokeview User’s Guide (Forney and 
McGrattan, 2004). The User’s Guides only describe the mechanics of using the computer 
programs. The Technical Reference Guide provides the underlying theory and algorithm details, 
plus a description of any relevant verification and validation studies.   

2.1.7 Governing Equations, Assumptions and Numerics 
Following is a brief description of the components and major assumptions of the smoke detector 
activation algorithm. Detailed information regarding the assumptions and governing equations 
associated with the model is provided in Section 3.1. 
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The activation algorithm module is currently designed to be incorporated into FDS and 
makes use of the flow field and species concentration predictions of that model.  The 
methodology of determining the conditions and time for smoke detector activation uses FDS to 
compute the flow field and smoke movement and a detector lag time is obtained from 
scientifically determined algorithms.  The geometry of the volume of interest is created in FDS.  
A smoke yield, which is a fraction of soot mass to total mass burned, is obtained from the fire 
protection scientific literature (Tewarson, 2002) and is input into the model.  The heat release 
rate of the fire is input into the model, as well as a heat of combustion (to determine the mass 
burning) from the literature, and the resulting fire flows and smoke movement are modeled.  The 
model calculates a smoke density (g/m3) and a smoke velocity among other outputs at all cells 
inside the computational domain as a function of time.   
 In order to convert the smoke density from the FDS output into a smoke obscuration, 
information about the smoke particles must be known.  Mulholland (2002) has reported Km-factors 
(light extinction coefficients per unit mass) for several common materials, which facilitates 
conversion of the smoke density measurements into smoke light obscuration (percent obscuration 
per meter).  Mulholland reports a Km of 7.6 m2/g is adequate for smoke produced during flaming 
of wood and plastics, and a Km of 4.4 m2/g is appropriate for smoke produced during pyrolysis of 
wood and plastics.  The algorithm methodology takes the smoke density from FDS, and uses the 
applicable Km value to determine a smoke obscuration level. 
 To activate the smoke alarm, smoke obscuration levels must reach minimum levels and the 
smoke must enter the detector, overcoming the flow resistance introduced by the housing.  The 
flow resistance of the housing can cause a delay (or lag) in the activation of the alarm.  Brozovsky 
et al. (1995) and Cleary et al. (2000), among others, developed correlations for determination of 
lag times of smoke detectors.  The smoke detector lag time is based on the characteristics of the 
specific detector, and the velocity of the smoke at the detector location.  As an example, Cleary et 
al. (2000) produced a lag time correlation for a particular ionization smoke detector with the form: 

 
δt = dwell time = 2.5U-0.71 

τ =characteristic mixing time = 0.76U-0.87 
 

where: 
 

Δt = Detector delay time = δt + τ 
U = Smoke velocity at detector location 

 
The dwell time is the time for the smoke to penetrate the housing of the detector and enter the 
sensing chamber.  The mixing time is the time for the smoke to mix within the volume of the 
sensing chamber and be detected by the sensing mechanism.  The dwell time and characteristic 
mixing time in series is the lag time between the arrival of sufficient smoke at the detector and 
the actual sounding of the alarm.  The time for attainment of the necessary smoke obscuration is 
summed with the detector lag time from the correlations of Brozovsky et al. (1995) or Cleary et 
al. (2000) to determine a total detector activation time.  Often, when the velocity of the gases 
reaches a velocity of approximately 15 cm/s, there is sufficient momentum of the smoke so that 
there is little or no lag time associated with the activation of the detector (Brozovsky et al., 
1995).   
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 The governing standard for all single- and multiple-station smoke detectors is the 
Underwriters Laboratories Standard 217 (2005).  To meet the requirements of the standard, 
detectors must alarm when local smoke levels of between approximately 23% and 56% 
obscuration per meter (7% - 17% obscuration per foot) are reached during full-scale fire tests.  
Hence, the relationship between smoke density and obscuration must be determined to use the 
effectively use the output of FDS for smoke alarm activation.  D’Souza et al. (2002) used a 
methodology that takes the calculated smoke density from FDS, and uses both Km values to 
determine a comprehensive range of smoke obscuration levels, which therefore leads to 
determination of a range of times to attainment of smoke detector activation conditions 
considering the range requirements of UL 217 (23% – 56% smoke obscuration per meter).  
Therefore, this methodology determines the broadest reasonable range of times for attainment of 
the conditions necessary for smoke detector activation.  

A key assumption of the activation algorithm is that the smoke obscuration listed on the 
back of the detector is the necessary smoke obscuration inside the housing to attain an alarm.  
The smoke obscuration sensitivity listed on the back of the smoke detector is that which was 
obtained in the UL 217 smoke box test (UL 217, 2005).  It is assumed that the smoke box test is 
run at such a high velocity that while the smoke obscuration that is listed on the back of the 
detector is the smoke obscuration measured outside the detector at alarm, it is equivalent to the 
obscuration inside the smoke sensing chamber at alarm.  This assumption is reasonable because 
the high velocity makes the lag time negligible.  The default activation smoke obscuration inside 
the detector is set to 3.28 %/m (1%/ft), which is a common sensitivity of residential detectors 
from the smoke box.  However, the algorithm continues to calculate the smoke obscuration 
inside of the smoke chamber even after the activation threshold is reached.  Therefore, if for 
some reason, the user feels that this assumption is not valid or needs modification, the necessary 
obscuration for activation of the smoke detector can be modified via the input file, or the smoke 
obscuration inside the chamber can be post-processed to determine an activation time based on a 
different activation threshold. 

2.1.8 Limitations of the Model 
An accurate prediction of the activation time of a smoke detector requires a proper description of 
the velocity flow field and smoke concentration in the area of the smoke detector.  Hence, the 
predictions from the algorithm are inherently dependent on the quantities and properties that 
affect the CFD predictions, including the input variables and calculation techniques.  Important 
variables include but are not limited to grid resolution, material properties such as smoke 
generation rate and heat release rate and sufficient detail in the geometry. 

The algorithm uses experimentally determined constants to characterize the smoke entry 
lag-time for typical smoke alarms.  Hence, the user is responsible for either supplying these 
constants for the smoke detection device under consideration or properly selecting values for 
these constants from other sources. Default values, obtained from measurements presented in the 
literature, are included in the code but must be reviewed for appropriateness by the user. 

Typically, the response of smoke alarms, per most standard codes, is characterized by 
measurements of local smoke obscuration (UL 217, 2005).  A similar approach is used by the 
activation algorithm.  The algorithm utilizes the smoke obscuration level indicated on an alarm 
(typically approximately 1%/ft) as the value inside the sensing chamber needed for alarm.  
Hence, the algorithm does not predict or monitor particle concentration, which is the actual 
mechanism that causes alarm activation.  Particle concentration is difficult to predict due to 

 6



limited information and models of particle generation, agglomeration and coagulation.  Most 
standard tests do not distinguish the sensitivity of different types of smoke alarms (e.g. 
photoelectric or ionization) to different fire conditions.  Similarly, the algorithm will not 
differentiate between smoke alarms of differing sensing technology, since the alarm threshold is 
based on the internal smoke obscuration (independent of the type of detector). 

As mentioned above, an important limitation of the model is its dependence on accurate 
resolution of the smoke density and velocity at the detector location.  If inaccurate computations 
of the smoke density and velocity are input into the algorithm, inaccurate estimations of the 
smoke detector response could result.  Since the transport of the smoke is highly dependent on 
the velocity, the velocity is the ultimate dependent variable that FDS must accurately resolve for 
the algorithm to be successful.  Of critical importance for accurate determinations of velocity in 
FDS is the user selection of the grid size.  Since when a fire grows, it creates a ceiling jet, the 
smoke detector is located on the ceiling or sidewall in order to be located in the ceiling jet flow 
of the smoke.  In order for FDS to properly determine the velocity at the smoke detector, the 
determination of the velocity that is input into the algorithm must, likewise, be determined for 
the ceiling jet flow.   
 The way the velocity is treated corresponds to an average value. If the detector is at node 
n, then, 
 

⎥
⎦

⎤
⎢
⎣

⎡
+−= ∑

=

3

1

22 ))()1((
4
1

i
ii nunuU                       (1) 

 
This will introduce a cell size dependency on the velocity and if the area of interest is within a 
boundary layer, then it will neglect the viscous effects at the wall. 
 The problem has to be evaluated to establish if the manner in which it is postulated 
corresponds to the assumptions. The assumption associated with Equation (1) is valid if By δ>>  
and Fy δ<< , where y is the cell size depth, Bδ  is the boundary layer thickness and Fδ  is the 
characteristic thickness of the ceiling layer.  Fδ  could be established in a preliminary fashion 
using correlations, but for more complex geometries, will have to be extracted from the CFD 
simulation (see Figure 1). 
 The smoke detector height, Dδ , is of the order of 25 mm and its length, d, is of the order 
of 100 mm. The cell size to be used also has to be comparable at least to the height of the 
detector. 
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Figure 1 - A schematic of the ceiling jet boundary layer impinging on a smoke detector, and the necessary cell 
size estimates. 
 
 An estimate of the boundary layer thickness is presented below as Figure 2. This plot 
shows that for the relevant dimensions; the boundary layer thickness ( Bδ ) is less than half the 
typical height of a smoke detector for a wide range of velocities. Thus, the average value within 
a cell (per Equation (1)) containing a smoke detector will provide a reasonable estimate of the 
velocity. As a reference, exaggerated characteristic length scales (d) of 0.01 m and 1 m have also 
been presented. This plot shows that even for those length scales, the boundary layer thickness 
will only cover the entire height of the detector for very low velocities. Under these conditions 
the precision of the algorithm will decrease and the model will use a higher than real velocity 
and could lead to under-prediction of the activation time. 
 The boundary layer thickness equations used are as follows (Munson et al.,1994): 
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Figure 2 - An estimate of boundary layer thickness as a function of velocity. 

 
Therefore, the user must take care to ensure that the cell size in the area of the smoke 

detector is adequate to properly estimate the ceiling jet flow velocity without being adversely 
affected by averaging in the lower boundary layer velocity or the velocity at depths below the 
ceiling outside of the ceiling jet. 

2.1.9 Input Data Required to Run the Model 
In addition to the general requirements needed for running a model in FDS, the algorithm 
requires additional input data.  As with FDS, all of the input parameters required by the 
algorithm to describe a particular scenario are conveyed via a text file created by the user. This 
file includes the definition of the physical location(s) of the smoke alarm(s), the constants 
defining the lag-time of the alarm(s) and the sensitivity of the smoke sensor (input as a percent 
obscuration value per meter).  The user must determine which entry-lag model to be used, the 
Cleary model (2000) (with four constants) or the simpler Heskestad model (1975) (which is 
dependent on a characteristic length).  If the Cleary model is used, the four constants (defining 
the dwell and mixing times) are input.  If the Heskestad model is used, the characteristic length 
of the smoke alarm is input.  Default input values are provided, but must be reviewed by the user 
for appropriateness. 

2.1.10 Property Data 
As with any CFD simulation involving fire-induced flows, proper description of the properties of 
the materials involved, both those involved in the combustion process and those defining the 
geometric space, is critical for accurate predictions.  Specific properties that influence the flow 
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field and smoke generation are of particular importance to these simulations.  Property data is 
available from numerous sources in various handbooks, in literature provided by the 
manufacturer, or from bench-scale measurements.  
  

2.2 Scenarios for which the Smoke Detector Activation Algorithm has been 
Evaluated 

This section provides a description of the scenarios or phenomena of interest that have been 
included to evaluate the smoke detector activation algorithm. It is the responsibility of the user to 
demonstrate the applicability of the model for scenarios that have not yet been validated. 

2.2.1 Description of Scenarios or Phenomenon of Interest 
The smoke detector activation algorithm is suited for determination of smoke alarm activation 
for a wide range of thermally-driven fluid flow scenarios, including flaming and smoldering 
fires. The algorithm is applicable for fire protection design studies and for forensic 
reconstruction analysis.  

Fire protection design studies that utilize the algorithm will typically involve determining 
the smoke movement and alarm placement in an existing building or a building under design.  A 
“design fire” is prescribed either by a regulatory authority or by the engineers performing the 
analysis and the properties of the smoke movement in the building are determined, allowing for 
the algorithm to determine alarm activation times. FDS is used to predict the transport of heat 
and combustion products throughout the room or rooms of interest. Factors that affect smoke 
movement, including ventilation equipment, often are necessary to be included in the simulation.   

Fire forensic reconstructions require the model to simulate a fire based on information 
that is collected after the event.  In many cases, there is interest in determining when a smoke 
alarm activated (or would have activated if in place and operational).  The algorithm, in 
conjunction with FDS, provides a tool to calculate the conditions that a smoke alarm would 
encounter and the effect of different fire scenarios on activation times. 

2.2.2 List of Quantities Predicted by the Algorithm upon which Evaluation is 
Based 

The algorithm will provide predictions of the obscuration within the smoke alarm based on the 
detector’s characteristics, providing a prediction of the time of alarm activation.  

2.2.3 Degree of Accuracy Required for Each Output Quantity 
The degree of accuracy for each output variable required by the user is highly dependent on the 
technical issues associated with the analysis. The type of analysis that is being undertaken will 
also influence the desired accuracy.  The accuracy of the results from the algorithm is directly 
tied to the fidelity of the numerical solution from FDS, which is mainly dependent on the 
resolution of the computational grid.   
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Chapter 3 

3 Theoretical Basis for the Model 
This chapter presents the theoretical basis for the smoke detector activation algorithm.  There are 
two basic types of smoke detector sensing technologies that are commonly used in residential 
and industrial applications: ionization and photoelectric.  Although, the sensing chambers of 
these detectors use different principles of operation to sense the particles of the smoke, for 
modeling purposes, both can be thought of as a sensing chamber with an entry passage, which 
exhibits some flow resistance. This assumption is valid because smoke detector response is 
calibrated in an identical manner for both ionization and photoelectric detectors. According to 
UL 217 (2005), detector response should fall within a specified range under the specific 
conditions of the test. Since the flow field is at a relatively high velocity for the duration of the 
test, the evolution of the response with this parameter is not accounted for.  Therefore, given a 
smoke concentration (or optical density) outside the detector, the response of the detector can be 
established through this calibration procedure. Extrapolation of the external smoke concentration 
(or optical density) to other scenarios is nevertheless not possible because the velocity fields can 
vary drastically. 

3.1 Smoke Detector Model 
The influence of the local smoke velocity on detector response has been established using a two 
characteristic parameter smoke detector model. This model uses a first-order differential 
equation to predict the concentration of smoke within the detector chamber. This form of the 
model was originally proposed by Heskestad (1975) and updated by Cleary et al. (2000) and 
others.  The current study has implemented this model into the fire modeling code, Fire 
Dynamics Simulator. A brief review of this procedure is described below.  
 The Heskestad (1975) proposed model of entry lag into smoke detectors took into 
account a dwell time, which was described as the time for the smoke outside of the detector to 
penetrate the small entry channels of the smoke detector geometry and reach the sensing 
mechanism, sounding an alarm.  Heskestad characterized this dwell time as the time for smoke at 
a velocity of U to traverse the entry channels of the detector.  He proposed the use of a 
characteristic length, L, to simulate the extra length the smoke has to travel through the detector 
to the sensing mechanism.  Therefore, he defined the lag time, τ, as L/U and used a single 
parameter model, as shown in Equation 3. 
 

{ }
τ

(t)(t)
t

oeo YYY −
=

∂
∂

         (3) 

 
The idea for Heskestad’s formulation was that at activation, the internal smoke mass fraction 
would lag behind the external smoke mass fraction by a time τ, defined as L/U.  This was 
intended to allow an engineer to determine when activation would occur based on the exterior 
smoke mass fraction from a zonal model or simple calculation.  The problem with this 
formulation is that while it is accurate at activation, it is not as accurate transiently.  Upon arrival 
of smoke, the smoke mass fraction instantly begins rising in the chamber, albeit reduced by a 
multiplicative factor of 1/τ.  So while Heskestad intended to describe a dwell time, he actually 
formulated his equation based on a mixing time, as will be explained below. 
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 This model was then refined by Newman (1986) and Cleary et al. (2000), among others, 
to take into account that there was a lag time associated with the smoke penetrating the housing, 
but there was also a characteristic mixing time for the smoke to mix within the sensing chamber 
and actually be detected by the sensing mechanism.  The equation was formulated to be a 
transient description of the smoke mass transport.  The two characteristic parameters that 
describe the smoke detector activation are termed the dwell time (δ ) and the characteristic 
mixing time (

t
τ ).  Both parameters are a function of the mass flow of smoke into the model 

detector, which is assumed to scale with the Reynolds number.  According to Cleary et al. 
(2000), the smoke flow rate ( ) caused by the pressure drop across the entrance though an 
effective area, A, is treated as a control volume moving along a distance, L. The plug flow region 
empties into the sensing chamber volume, V (See Figure 3).  

m&

 

 

V 

L’ L 

A 

m&  

τ = L’/U δt = L/U 

Figure 3 - A simplified smoke detector model, where V is the sensing chamber volume (V=AL’), A is the 
effective area of the detector,  is the smoke flow rate into the detector and L is the characteristic distance 
representing smoke entry resistance. 

m&

 
Thus,  and the Reynolds number is given below:   Auρm =&
 

υ
LuRe =

          (4) 
 
The dwell time ( ) can be defined as the mass of the smoke within the detector divided by the 
mass flow rate of smoke (Equation (5)). Cleary et al. (2000) showed that the dwell time lag 
could be represented following a power law dependence on velocity:  

δt

 
1β

1
1 uαuL

m
ρLδt −− ≈⋅==

&

A
        (5) 
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Cleary has found that the dwell time is not necessarily proportional to the smoke velocity (U) to 
the -1 power.  The characteristic mixing time τ can be defined as the ratio between the mass of 
smoke in the sensing chamber divided by the mass flow rate (Equation (6)). In this case it is a 
function of the characteristic distance, L’. The mixing time can also be described by a power law 
dependence on velocity:  
 

2β
2

1' uαuL
m
ρVτ −− ≈⋅==
&         (6) 

 
where is the density of the smoke.  in Equations (5) and (6) above are 
proportionality constants that account for the detector geometry.  As shown in Figure 3, the 
change in the mass of smoke in the sensing chamber volume should equal the difference in the 
mass fraction as it passes though the distance L. From this, the following equation is obtained: 

ρ 2121 β,β,α,α
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and by combining with Equation (6) above 
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where “e” represents the entrance of the model detector and “o” represents the sensing chamber.  

 is the mass fraction of smoke outside of the model detector, and is the mass fraction of 
smoke inside of the sensing chamber.  If the initial mass fraction of smoke in the sensing 
chamber is zero, the mass fraction of smoke in the sensing chamber at any time t can be obtained 
by solving Equation (8):    

eY oY
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   (9) 

 
where t’=t/τ and dt’=dt/τ . 
 
The determined mass fraction of smoke in the sensing chamber Yo(t) can be converted to 
obscuration per meter (or smoke optical density) or optical density using classical techniques 
(Drysdale, 1998).  The optical density is defined as  
  

 13



PSLYκ)
oI
Iln(OD ρm=−=         (10) 

 
The smoke obscuration percentage per meter is given below:  
 

100))Yκexp((1100)
I
I(1OPM s
0

×−−=×−= ρm      (11) 

 
where the product κmρYs is termed the extinction coefficient and LP is the path length in meters.  
κm is a constant of proportionality termed the specific extinction coefficient (m2/g) and ρYs is the 
smoke mass fraction (g/m3) (Drysdale, 1998).  The specific extinction coefficient κm is a function 
of the wavelength of light (λ); smoke aerosol size distribution; structural properties and optical 
properties.  For most flaming fuels, the value of 7.6 m2/g can be used (Mulholland, 2002; 
Mulholland, 2000). Ys can be calculated by establishing the external mass fraction using LES 
fire modeling and for the internal mass fraction in the sensing chamber of the detector by 
Equation (8) or (9). Thus, the obscuration (%/m) outside the detector (point e) can be obtained by 
Equation (12).  The obscuration (%/m) within the sensing chamber (point o) can be calculated by 
Equation (13).   
 

100(t))exp((1(t)OPM ⋅−−= eme Yρκ        (12) 
100(t))exp((1(t)OPM oo ⋅−−= Ymρκ        (13) 

 
It is important to note that the thresholds for this work are purely based on obscuration 

per meter, and consequently on the relationship between this parameter and the smoke mass 
concentration. The response of smoke detectors has been found to depend also on other chamber 
type (e.g. ionization) dependent variables such as the total number of smoke particles and the 
characteristic particle size and charge of the smoke passing through the sensing chamber 
(Newman, 1989).  Furthermore, dependencies on the fuel originating the smoke have also been 
made evident in the literature (e.g. Wolin et al., 2001).  Despite the shortcomings associated with 
the different variables affecting detector performance, optical techniques still present themselves 
as being the most attractive. The validity of these methods relies on them being directly 
associated with the explicit calibration and testing procedures followed by UL 217 (2005). 
 

3.2 Large Eddy Simulation (LES) Fire Model 
The Fire Dynamics Simulator model (a LES-based CFD model) is used within this study to 
model the transport of smoke from the fire to the detector.  In the FDS code (McGrattan ed., 
2005), a simplified low Mach number equation for fire and smoke transport calculation is used.  
In this approach, the acoustic waves have been filtered, but the flows are allowed to remain 
compressible.  Hence, the time step can be increased to drastically reduce computation times.  
These simplified compressible flow equations are more computationally efficient for modeling 
fires and smoke.  A Large Eddy Simulation (LES) approach has been used to deal with 
turbulence.  LES solves the large eddy motions by a set of filtered equations governing the three 
dimensional, time-dependent motions. The small eddies are modeled independently from the 
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flow geometry.  Currently, the Smagorinsky model is used for the small eddy flow field 
(McGrattan et. al., 1998; McGrattan ed., 2005).  

In the current version of FDS, a simplified mixture fraction-based combustion model has 
been implemented.  The model uses a state relationship for both reactants and products, which 
can be derived by an ideal reaction of a hydrocarbon fuel; and the reaction rate is calculated from 
a steady-state flamelet equation.  Finally, the heat release rate can be calculated using the local 
oxygen consumption rate and the appropriate heat of combustion.  Thermal radiation intensity is 
solved by the radiative transport equation.  A more detailed model description and associated 
sub-model validations can be found in the literature (Zhang et al., 2002; Zhang and Roby, 2003; 
McGrattan et al., 1998; McGrattan ed., 2005; Baum et al., 1997; Baum et al., 1998; Emmerich 
and McGrattan, 1998)..  
 

3.3 The Implementation of the Smoke Detector Model 
At the smoke detector location, it is assumed that the LES grid resolution can reasonably capture 
the size of the smoke detector. Thus, the mass fraction of smoke and velocity at that location can 
be determined from the predictions by FDS. The mass fraction inside of the sensing chamber is 
then determined through the smoke detector activation algorithm by solving Equation (8) 
numerically instead of solving Equation (9), which requires far more computing power, as will 
be explained later in this report.  

In order to obtain a solution for Equation (8), a simple predictor/corrector Runge-Kutta 
scheme is used.  This scheme is currently used in FDS for sprinklers and heat detectors.  The 
calculated Yo is converted to the obscuration (%/m) using Equation (13).  It is assumed that 
when the obscuration (%/m) in the sensing chamber is larger than the operating sensitivity of the 
detector provided by the manufacturer, the smoke detector will activate.  While the model will 
include default settings which will reflect industry standard critical variables of smoke detectors, 
the model input will allow for input of the operating sensitivity of the smoke detector, as well as 
input of the mixing and dwell time lag coefficients of a specific detector as defined in the theory 
presented by Cleary et al. (2000).   

As explained above, the Cleary et al. (2000) lag time theory includes two components, 
the dwell time and the mixing time, while the Heskestad (1975) theory includes only one 
component, a dwell time (mathematically equivalent to the Cleary mixing time τ) based on a 
characteristic length, L.  The ODE that describes the smoke movement, Equation (8), is 
applicable in both cases, and hence has been programmed into the algorithm in FDS to utilize 
either method.  To utilize the Cleary et al. two-parameter model, the user inputs all 4 lag time 
coefficients ( ) to describe the dwell time and the mixing time, and the algorithm 
solves Equation (8) numerically.  If the user does not have enough information about the 
detector, or if the user feels that the expected fire conditions warrant use of the simpler 
Heskestad model, the user instead inputs a characteristic length, L.  The activation algorithm 
automatically sets L=  and sets =-1 when using the Heskestad model.  Referring back to 
Equation (6), this sets the mixing time (Heskestad’s dwell time) equal to the Heskestad total lag 
time of U/L.  In addition,  is automatically set to 0 making the Cleary dwell time, δt, equal to 0 
(see Equation (5)).  By doing this, Cleary’s mass transport equation, Equation (8), is reduced to 
Heskestad’s mass transport equation, Equation (1).  Therefore, utilizing these substitutions in 
Equation (8), the user can seamlessly use the Heskestad (1975) or Cleary et al. (2000) 

2121 β,β,α,α

2α 2β
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methodologies when using the algorithm in FDS.  The user should note that the while the Cleary 
et al. formulation is intended to be a transient lag time correlation, the Heskestad formulation is 
not.  Therefore, if the user is calculating the response of the smoke detector based on the 
Heskestad formulation, while the activation time may be reasonably accurate depending on the 
velocity magnitude, the actual buildup of the smoke in the chamber over time will most likely 
not be reasonably accurate. 

3.4  Review of the Theoretical Development of the Model 
ASTM E 1355 (2004) requires that the theoretical basis of the model be reviewed by one or more 
recognized experts fully conversant with the physics of smoke detection, but not involved with 
the production of the model. The activation algorithm has been reviewed by experts from within 
CSE and also by the fire protection community through published work and presentations 
(Olenick et al., 2005; Olenick et al., 2006). The technical approach, assumptions, and validity of 
the model’s underlying theory have been presented in the peer-reviewed scientific literature and 
at technical conferences cited in the previous section (e.g. Cleary et al., 2000; Keski-Rahkonon, 
2002; Heskestad, 1975; Bjorkman et al, 1992; Newman, 1986; Newman, 1987; Newman 1989). 
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Chapter 4 

4 Mathematical and Numerical Robustness 
 
ASTM E 1355 (2004) describes methods to evaluate the mathematical and numerical robustness 
of deterministic fire models. This process, often referred to as model verification, ensures the 
accuracy of the numerical solution of the governing equations. The methods include comparison 
with analytical solutions, code checking, and numerical tests.   

The mathematical and numerical robustness of the activation algorithm implementation 
in FDS has been tested through comparison of the predictions with alternative methods of 
calculations.  The original form of the algorithm (Equation (3)) was first proposed by Heskestad 
(1975) and has been utilized and refined by others (Newman, 1989; Cleary et al., 2000).  This 
algorithm has been rigorously tested by these researchers and others against experimental data 
and has been refined and subsequently accepted in the scientific literature.  Therefore, the 
correctness and robustness of the algorithm itself has not been investigated as part of this work as 
that has already been accomplished by other researchers. 

While the robustness of the actual algorithm itself has not been independently determined 
as part of this work, the robustness of the implementation and coding of the algorithm in FDS 
must be confirmed.  As coded in FDS, the algorithm numerically integrates Equation (8) utilizing 
a predictor/corrector Runge-Kutta numerical scheme.  Results to date have shown that the 
robustness of this approach is adequate, as will be discussed below.  Direct solving of the 
analytical exact solution to Equation (8), listed above as Equation (9), was considered.  
Trapezoidal Gaussian and Simpson’s Rule integrations (Press et al., 1992) were coded into FDS 
and the model was run for many verification scenarios.  It was found that the presence of the 
characteristic mixing time integral inside of another integral caused excessive run times and the 
final solution was not always in agreement with hand calculations.  This is because the number 
of iterations of the larger integral and smaller integral created excessive run times and if the 
number of iterations was reduced to make the run times reasonable, a fully-converged solution of 
the algorithm was never found.  Therefore, the method used to solve the exact solution (Equation 
9) was not acceptable.  For these reasons, the solving of the exact analytical solution was 
abandoned and instead, the ODE (Equation (8)) is simply numerically integrated.  This 
procedure resulted in small increases in run times and an accurate result.  Early versions (beta 
versions) of the algorithm coded into FDS before the date of this report suffered from the issues 
with the exact solution described above and, consequently, versions of the FDS code with 
compile dates before the date of this report should be not be used for smoke detector activation 
calculations.   

In order to ensure that the coding of the algorithm in FDS is correctly solving Equation 
(8), a test of the robustness of the coding was undertaken.  For this test, FDS with the 
incorporated smoke detector activation algorithm was used to model a simple corridor with 
detector stations situated at three locations down the corridor.  A small fire, to ensure relatively 
low velocities, was input in the model and the response of the smoke detectors was simulated.  
Baffles were also put on the ceiling of the corridor to further slow the smoke velocity.  The 
velocity and smoke density at the smoke detector locations were also recorded to a file.  A 
picture of the simple FDS model is shown as Figure 4 below. 
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Figure 4 - The FDS corridor model utilized for robustness evaluation. 
 

The algorithm was then independently coded into MATLAB (Version 7.0, 2004).  Unlike 
the FORTRAN coding in FDS, where linear interpolation has been included in the code, 
MATLAB has toolboxes that do the interpolation automatically as well as automatic ODE 
solvers.  The smoke density and velocity data from the FDS model was input into the MATLAB 
coding and the response of the smoke detectors was again simulated, this time by the MATLAB 
code.  The response of the smoke detectors between the MATLAB coding and the FDS coding 
was compared to ensure that the FDS coding of the algorithm agrees with the MATLAB coding 
of the algorithm. 
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Figure 5 - The results of MATLAB and FDS coding of a smoke detector located at Station 3.  The results 
overlap each other. 
 

The comparison was undertaken with several different detector configurations, some of 
which included a mixing time but no dwell time and others utilized both time scales.  Figure 5 
above shows the comparison for a detector at Station 3, the station farthest from the fire source, 
where the velocity was relatively low. The detector had a large dwell time and a large mixing 
time so that both lag time aspects of the algorithm could be rigorously tested and verified.  As 
can be seen in Figure 5, the results are almost identical.  These results provide confidence that 
the coding in FDS is correctly solving the algorithm.  While not shown above, hand calculations 
further verified that the results from the models were correct.  Further, despite the differences in 
coding methods between FDS and MATLAB and the fact that MATLAB has some automatic 
solvers and linear interpolators, the answer is unchanged between the models.  Therefore, the 
user can be confident that the algorithm has been robustly coded into FDS. 
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Chapter 5 
 

5 Model Sensitivity 
 
A sensitivity analysis considers the level to which uncertainty in input parameters influence 
model results. In the case of the activation algorithm, the input parameters are limited to the 
transient predictions of velocity and smoke concentration at the smoke detector location 
(provided by FDS) and the coefficients that provide the description of mixing and lag times of 
the detector.   

As described in the Technical Manual (McGrattan, 2005), FDS typically requires the user 
to provide several dozen different types of input parameters that describe the geometry, 
materials, combustion phenomena, etc.   Among these many parameters, those that will directly 
impact the predictions from the activation algorithm include grid resolution, heat release rate, 
and smoke generation properties as they will directly influence velocity and smoke concentration 
predictions.  Hence, care must be exercised by the user to properly prescribe these features of the 
model to ensure accurate prediction of smoke detection.   

The coefficients that describe the lag time of a given smoke detector will also influence 
the predicted activation characteristics.  The coefficients are typically determined 
experimentally; however, the influence of the uncertainty of these coefficients due to any 
experimental error on the predicted detector activation time has not been explored at this time. 

The predicted activation time is also sensitive to the lag time model used.  Currently, both 
the Heskestad (1975) and Cleary et al. (2000) models have been implemented in the code.  As 
expected, the choice of models can have a major impact on the activation times, especially when 
the flow velocities are low.  Figure 6 shows the prediction of smoke detector activation time as a 
function of flow velocity for the two different lag time models.  The smoke concentration outside 
the detector was maintained at 4%/m, and the internal smoke concentration required for 
activation was set to 3.28%/m (or 1%/ft).  For flow velocities above 0.15 m/s, both models 
indicate similar lag times.  However, for low velocities (less than approximately 0.15 m/s), the 
choice of lag model can have a significant effect on activation time predictions.  This velocity 
range can be indicative of a smoldering fire or of a relatively small fire in a large volume.  It has 
been generally recognized that the Heskestad model will under predict smoke alarm activation 
times for these circumstances (e.g. Newman, 1987). 
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Figure 6 - Predictions of smoke detector activation time as a function of flow velocity using the lag time 
models of Heskestad (1975) and Cleary et al. (1999).  The exterior smoke concentration was assumed to be 
4%/m and a smoke concentration of 3.28%/m inside the detector was required for alarm activation. 

 
As a further test of the sensitivity of both the Heskestad and Cleary et al. lag time 

models, the same conditions were maintained (4% smoke obscuration, 3.28% activation 
obscuration), but this time, the relevant lag coefficients were varied by 10%-20% in both 
directions.  For example, for a Cleary I2 detector, the value of β1 is -1.1.  For the β1 +20% 
detector, all of the other coefficients are unchanged from a Cleary I2 detector, except that β1 is -
1.1+((0.2)*-1.1)=-1.32.  The characteristic length (L) of Heskestad and all four Cleary et al. 
coefficients ( ) were varied by 10%-20% to determine the sensitivity of the activation 
time to these parameters under this controlled scenario.  As can be seen in Figures 7 through 11, 
the activation time is most sensitive to the β1 coefficient (Cleary dwell time exponent) and least 
sensitive to α2 (Cleary mixing time coefficient and Heskestad characteristic length).  It should 
also be noted that at relatively high velocities, as would be expected, the selection of the values 
of the coefficients has little effect on the activation time calculations since there is little, if any, 
velocity driven lag time.  
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Figure 7 - Predictions of smoke detector activation time as a function of flow velocity when the Heskestad 
(1975) characteristic length, L, is varied.  The full range of expected velocities is depicted on the left and an 
isolated view of the low velocity regime is shown on the right. 
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Figure 8 - Predictions of smoke detector activation time as a function of flow velocity when the Cleary et al. 
(2000) dwell time parameter, α1, is varied.  The full range of expected velocities is depicted on the left and an 
isolated view of the low velocity regime is shown on the right. 
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Figure 9 - Predictions of smoke detector activation time as a function of flow velocity when the Cleary et al. 
(2000) dwell time parameter, β1, is varied.  The full range of expected velocities is depicted on the left and an 
isolated view of the low velocity regime is shown on the right. 
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Figure 10 - Predictions of smoke detector activation time as a function of flow velocity when the Cleary et al. 
(2000) mixing time parameter, α2, is varied.  The full range of expected velocities is depicted on the left and an 
isolated view of the low velocity regime is shown on the right. 
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Figure 11 - Predictions of smoke detector activation time as a function of flow velocity when the Cleary et al. 
(2000) mixing time parameter, β2, is varied.  The full range of expected velocities is depicted on the left and an 
isolated view of the low velocity regime is shown on the right. 
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Chapter 6 
 

6 Model Validation 
Model validation is a process where the user simulates a controlled experiment and assesses the 
degree of difference between measured and predicted quantities. The assessment involves the 
model’s input parameters, its mathematical formulation of the physical phenomena, and its 
interpretation of the measurements. In this chapter, validation work performed with the smoke 
detector activation algorithm in conjunction with FDS will be presented.   
 

6.1 Underwriters Laboratories Standard 217 Fire Test 
The accuracy of the activation algorithm is inherently dependent on the input variables to the 
algorithm, some of which come directly from the user and some of which are calculated by the 
fluid and smoke transport models within FDS.  In this particular validation effort, the 
Underwriters Laboratories Standard 217 fire test (1985), utilizing polystyrene foam as the fuel, 
was used to determine the influence of the fluid and smoke transport models in FDS on the 
output of the algorithm. 

The UL 217 fire tests provide a very strict and repeatable setup with multiple locations 
for photocell assemblies and smoke detectors.  UL 217 test D (Polystyrene foam fire) was used 
for the validation assessment. Further details on this fire test are available in UL 217, 1985 
edition, as the test has been removed from the standard in subsequent editions.  To determine the 
heat release rate as an input for the fire model, oxygen consumption calorimetry was used to 
determine the exact heat release rate (HRR) profile of the polystyrene foam test sample used in 
UL 217 test D.   The profile of the HRR was determined by burning a prescribed sample of the 
foam polystyrene type packing material under a collection hood with oxygen sampling.  The 
polystyrene foam has a prescribed density between 24-32 kg/m3, and contained no flame 
inhibitor. By monitoring the reduction of oxygen present in the hood exhaust, a measure of the 
heat release profile for the foam was determined as a function of time for the duration of the test:  
 

oxyoxyfoam HcmQ Δ⋅= &          (14) 
 
where, is the mass burning rate and oxym& oxyHcΔ is a heat of combustion per oxygen consumed.  
The heat release rate is combined with a smoke yield for polystyrene foam estimated as an 
average from values in the literature for polystyrene and styrene. 

UL217 (1985) prescribes a strict test scenario in which smoke must reach each of the 
sampling locations within the test room in a specified concentration during a certain window of 
elapsed time. The smoke detectors must activate at some point during the test in order to be 
approved. 

The fire test room, which is 10.9 m long by 6.7 m wide by 3.1 m high, is shown below in 
Figure 12.  The test room has a smooth ceiling with no physical obstructions. The test is 
conducted with an ambient temperature between 20~25 °C.  Two detectors are to be tested on a 
ceiling panel, and another two detectors are to be tested in a sidewall position, one on each side 
of the test chamber.     
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Figure 12. The test room for the UL 217 Fire Tests (reproduced from UL 217, 1985)  

 
This setup was reproduced in FDS and the smoke alarm activation was modeled using the 

activation algorithm.  The cell size utilized was approximately 3.0 inch cubes, which is smaller 
than the expected ceiling jet depth based on standard correlations, and is larger than the 
maximum expected depth of the boundary layer, as is discussed in Section 2.1.8 above.  The fire 
test was modeled utilizing smoke detectors with generic lag time coefficients from the literature 
(I1 and I2 from Cleary et al. (2000) and Heskestad (1975) with an effective length of 1.8m) and 
the results for the various requirements for the buildup of smoke were compared with the model 
results.  A screen capture of the model is shown as Figure 13 below and the results of the model 
are shown as Table 1. 
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Figure 13 - The model test room for the UL 217 fire test validation.  The locations of the smoke alarms are 
indicated by the rectangular patches.   
 
Table 1 - The results of the UL 217 fire test validation using the smoke detector activation algorithm. 
 

REQUIREMENT Utilizing Flaming Km Utilizing Smoldering Km

Smoke buildup
Starts 35-45 seconds at ceiling location 45.3-46.0s 45.7-46.1s
Starts 25-35 seconds at sidewall location 41.5-43.2s 41.7-43.4s

10%/ft (32.81%/m)
Starts 70-90 seconds at ceiling location 67.4-68.1s 81.8-86.4s
Starts 60-80 seconds at sidewall location 51.6-53.4s 102.9->120s

After 10%/ft (32.81 %/m)

Remains at 10-13%/ft (32.81-42.65%/m) at ceiling location Both locations peak a little 
high (~18%/ft) Occurred

Remains at 10-17%/ft (32.81-55.77%/m) at sidewall location One station dips low (~7%/ft)
One station dips low 

(~6%/ft), other only quite 
low (~3%/ft)

All detectors activate during test Occurred

MODEL RESULTS
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As can be seen from the summary of results presented in Table 1 above, the model 
performed reasonably well considering there were still some sources of error independent from 
the FDS model.  First and foremost, as required by the standard, the smoke detectors in the 
model did activate during the time prescribed by the standard.  Similarly, the rate of smoke 
buildup and the attainment of 10% obscuration/ft did match the test requirements.  After 
attaining 10% obscuration/ft, the smoke level was to remain at the prescribed value for the 
duration of the test.  The smoke levels in FDS generally dipped a little low, but were within a 
range that would be considered reasonable considering the potential input errors.  The input 
errors in this model included the nature of the smoke yield of the polystyrene foam as well as the 
variability of the specific extinction coefficient (Km) due to the fact that the material does not 
entirely burn in the flaming mode of combustion, but instead flames, smolders, and melts during 
combustion.  Additionally, there is experimental error associated with the calorimetry techniques 
used to obtain the heat release rate of the polystyrene foam.  When all of these potential error 
rates are taken as a whole, the results from the FDS model are acceptable and demonstrate that 
this technique is capable of properly modeling fluid and smoke transport for use by the 
algorithm. 
 

6.2 Room-Corridor-Room Fire Test Validation 
Replication of the UL 217 test D affirmed that FDS can reasonably simulate the smoke density 
and velocity as inputs for the activation algorithm.  The activation algorithm must now be 
assessed against experimental smoke detector activation data to determine the level of accuracy 
the smoke detector algorithm can provide.  As a first validation of the algorithm, a relatively 
small-scale test geometry was chosen.  These tests were performed in a room-corridor-room 
geometry at Combustion Science & Engineering’s laboratory facilities in Columbia, Maryland.  
In these tests, a mix of 75% heptane and 25% toluene was burned in a pan to create a highly 
repeatable fire source.  Toluene is a highly sooting fuel when burned in a pool configuration 
(unlike the moderately sooty heptane) and the combination creates an environment which is 
detected quickly by a standard smoke alarms.  Ionization detectors were placed on sidewall and 
ceiling locations in the room of origin, sidewall and ceiling locations in the connecting corridor, 
and on a ceiling location in the room remote from the fire source.  Additionally, smoke density, 
velocity, and temperature measurements were made in order to log the relevant data associated 
with smoke detector activation.  The fire pan was placed on a load cell in order to monitor the 
mass loss rate.  The mass burning rate (and subsequent heat release rate) was relatively constant.  
More detailed information on the experimental procedure can be found in D’Souza et al. (2002).  
A screen capture of the model showing the test geometry is shown as Figure 14. 
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Figure 14 - Room-corridor-room test and model geometry. 
 

The experiment was run three times for repeatability, and the experimental average 
smoke detector activation times were determined.  Activation times ranged from approximately 
10 seconds to over 70 seconds, depending on the location.  The variation of activation time for a 
given alarm location was generally on the order of 5 seconds over the three tests.   However, 
more significant variation was found for detectors #2 and #4 (both located on the ceiling).  These 
results indicate the amount of real variation that can occur when modeling activation times.  The 
model was run utilizing a calculated heat release rate for the fire and a weighted average smoke 
yield for heptane and toluene from the literature.  The smoke detectors used in the test were not 
evaluated to determine the smoke lag time coefficients (via a wind-tunnel or NIST’s Fire 
Emulator/Detector Evaluator (FE/DE)), which are necessary as inputs for the activation 
algorithm.  Instead, values from the testing done by Cleary et al. (2000) were used as well as the 
default in FDS (Heskestad detector with L=1.8m) to determine how well the utilization of default 
and literature values could provide accurate results.  The cell size utilized was approximately 3.0 
inch cubes, which is smaller than the expected ceiling jet depth based on standard correlations, 
and is larger than the maximum expected depth of the boundary layer, as is discussed in Section 
2.1.8 above.  A screen capture of the model is shown as Figure 10 below and the results of the 
comparison between the model and the experimental results is shown are as Figures 15 and 16 
below. 
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Figure 15 - Room-corridor-room model. 
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Figure 16 - Room-corridor-room model results compared with experimental results. 
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Figure 17 - Room-corridor-room average model results compared with average experimental results (subset 
of Figure 16). 
 

As can be seen from the figures above, the model results agree reasonably well with the 
experimental data.  Average values from the model were only 15-20% different than the 
experimental averages.  There is also no consistent trend of under-prediction or over-prediction 
of the experimental values.  This validation also shows that when the velocity slows as the 
smoke travels to the more remote alarms, the model is still successful in predicting activation 
time.  This success is important as it is an indication that the algorithm velocity lag time 
correlations are accurately transporting the smoke into the sensing chamber and accurately 
accounting for the role of smoke velocity. 
 

6.3 NIST ‘Performance of Home Smoke Alarms’ Test Validation 
As a final validation of the activation algorithm and its incorporation into FDS, a fire test was 
modeled from the NIST ‘Performance of Home Smoke Alarms’ tests (Bukowski et al., 2003).  
This test series is also known in the industry as the Dunes 2000 tests, as a tribute to similar tests 
that were conducted in the early 1970s (known as the Indiana Dunes tests (Bukowski et al., 
1975, Harpe et al., 1977)).  Test 5 was selected for the validation, since it was a flaming fire in a 
manufactured home geometry.  Specifically, it was a flaming mattress fuel load ignited with a 
flaming source.  A load cell was used to measure the mass loss rate of the mattress.  In addition 
to the mass loss data, temperature (via thermocouples), velocity (via velocimeters), smoke 
obscuration (via photodiodes), and toxic gas measurements were recorded at locations 
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throughout the structure.  Figure 18 shows the geometry of the manufactured home with the 
locations of the sensing equipment.  Figure 19 shows a snapshot of the FDS model. 
 

 
Figure 18 - Geometry of the Dunes 2000 manufactured home (reproduced Bukowski et al., 2003)). 
 

 
Figure 19 - Dunes 2000 manufactured home test 5 FDS model. 
 

Smoke detector ‘stations’ were mounted at several locations in the residence.  At each 
station, several ionization, photoelectric, and combination type alarms were installed.  The 
alarms did not sound, but instead their internal chamber voltages were monitored and compared 
with calibrations in the FE/DE to determine when the alarms activated.  A range of ‘low’, ‘mid’, 
and ‘high’ activation thresholds were determined by NIST for the alarms.  The range of ‘low’ to 
‘high’ is expected to bracket the entire range of potential activation times of the particular alarm, 
and the ‘mid’ alarm is expected to be the best approximation of actual alarm time.  While the 
detectors were tested in the FE/DE to determine the ‘low’, ‘mid’, and ‘high’ activation 
thresholds, the detectors were not assessed to determine the lag time coefficients.  Therefore, as 
was done with previous validations described in this report, generic lag time coefficients from 
the literature were used (I1 and I2 from Cleary et al. (2000) and effective length of L=1.8m 
Heskestad, (1975)).  The cell size utilized was approximately 3.5 inch cubes, which is smaller 
than the expected ceiling jet depth based on standard correlations, and is larger than the 
maximum expected depth of the boundary layer, as is discussed in Section 2.1.8 above.   

At each station, the experimental times were averaged and large outliers were removed if 
it became apparent that a particular detector was not operating like similar detectors at that 
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station, or if there was a possibility of a data acquisition error.  Figure 20 shows the data from all 
the tests before the outliers were removed compared with the model data.  Figure 21 shows the 
data from the experiments after the outliers were removed compared with the model data.  
Finally, Figure 22 shows the data from the experiments after the outliers were removed averaged 
for the ‘low’, ‘mid’, and ‘high’ activation points compared with the averaged model data.   
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Figure 20 - All Dunes 2000 manufactured home test 5 experimental data (Bukowski et al., 2003) compared 
with the model predictions. 
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Figure 21 - Dunes 2000 manufactured home test 5 experimental data (Bukowski et al., 2003) with the outliers 
removed compared with the model data. 
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Figure 22 - Dunes 2000 manufactured home test 5 experimental data (Bukowski et al., 2003) averaged after 
the removal of outliers compared with the averaged model data. 
 

As is apparent from Figures 20-22 above, the activation algorithm and FDS model are 
accurately predicting the activation times of the smoke detectors, even for fairly complicated 
geometries in relatively large spaces as depicted in this validation.  In fact, at 3 of the 5 detector 
stations, the model is almost exactly matching the average activation times of the ‘mid’ detector 
threshold, which is expected to be the best approximation of actual alarm time.  This is 
particularly encouraging considering that the simulation results at the 3 detector stations furthest 
from the fire source (E, C, and A), the model still accurately predicted smoke detector activation 
considering the relatively slow velocity of the smoke.  To highlight this, Figure 23 shows the 
temperature in the model, Figure 24 shows the velocity in the model, and Figure 25 shows the 
smoke obscuration in the model outside the detectors and the smoke obscuration inside the 
chambers of the three model detectors (Cleary I1, Cleary I2, and Heskestad L=1.8m) at Detector 
Station C.  Figures 23-25 show the power of the activation algorithm in properly predicting 
smoke detector activation time utilizing FDS.  Figures 24 and 25 show that even though smoke 
arrives at the detector at approximately 110 seconds after ignition and with a velocity of initially 
0.15 m/s or less (and not much more over that critical velocity), the model smoke detectors do 
not activate until approximately 3-15 seconds later, at around 113-125 seconds, depending on the 
detector coefficients used.   
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Figure 23 - Temperature in FDS model at Detector Station C. 

 
 

 36



0.00

0.05

0.10

0.15

0.20

0.25

0.30

80 90 100 110 120 130 140 150 160

Time (s)

Ve
lo

ci
ty

 (m
/s

)

Station C

 
Figure 24 - Velocity in FDS model at Detector Station C. 
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Figure 25 - Smoke obscuration inside and outside the detector in the FDS model at Detector Station C. 

 
Other predictive methods for determining smoke detector activation time have been 

published in the fire protection literature.  Most notably is the temperature correlation (Heskestad 
and Delichatsios, 1977) and the optical density threshold method (Geiman and Gottuk, 2003).  
The temperature correlation, as described in Section 1, correlates smoke detector activation time 
with the time for a particular temperature rise at the detector.  Values of this temperature rise 
have been suggested in the literature to be anywhere from 4°C – 13°C (Heskestad and 
Delichatsios, 1977; Geiman and Gottuk, 2003).  The optical density threshold method of Geiman 
and Gottuk (2003) is a statistical post-processing method whereby when the smoke optical 
density reaches a certain threshold value at the smoke detector location for a given fire and 
detector type, the probability that the detector has activated by that time is given.  For example, 
at a certain value of optical density for a flaming fire and an ionization detector, the threshold 
method will state that 80% of all detectors subjected to those conditions will have activated.  
Therefore, the method only provides a range from the start of the test and is not actually trying to 
approximate the actual activation time of the detector.  A graphical comparison of the predictions 
made by the smoke detector activation algorithm with those of threshold method (Geiman and 
Gottuk, 2003) as well as the temperature correlation (Heskestad, 1975) is included as Figure 26.  
These other predictive methods are not as accurately predicting the smoke detector activation 
times, as can be seen in Figure 26.  In fact, for the detectors located at station A (most remote 
from the fire), the optical density thresholds still do not accurately predict the activation time 
despite having wide error bars.  This is because the threshold method does not explicitly account 
for smoke velocity.  Further, the threshold method is under-predicting the activation time of the 
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detectors at this location, thereby not erring on the side of a conservative answer from a design 
perspective. 

 

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6

Detector ID

Ti
m

e 
to

 A
ct

iv
at

io
n 

(s
)

FDS Activation Algorithm Model Average
NIST Exp. 'Low' Average
NIST Exp. 'Mid' Average
NIST Exp. 'High' Average
Temperature Correlation 4°C
Temperature Correlation 11.1°C
Temperature Correlation 13°C
Geiman/Gottuk Lowest Flaming Ion 80%
Geiman/Gottuk Highest Flaming Photo 80%

A B C D E

Outliers from experiment
removed

Error bars show 
exp. activation range

Had not 
activated 

 
Figure 26 - Smoke detector activation predications of the smoke detector activation algorithm and other 
methods postulated in the literature. 

 
Based on the analysis shown graphically as Figure 26, some standard smoke detector 

activation algorithms, working solely with an optical density criteria or a temperature correlation, 
are not predicting the smoke detector activation times as accurately as the activation algorithm 
integrated into FDS.  Further, these methods could be under-predicting activation times on 
occasion, possibly leading to poor positioning of a detection device.  Hence, the use of other 
correlations may not be conservative and could lead to an unsafe design.  It is expected that 
differences in predictive capabilities between the activation algorithm and other methods of 
determining smoke detector activation time will be highlighted for the detectors that are greatly 
remote from the fire or for fires in an incipient state or that are relatively small in size (i.e. low 
heat release rate), which result in low flow velocities. 

The above validations demonstrate that the FDS fluid flow and smoke transport model 
can be expected to accurately predict the smoke concentrations and velocities at a smoke detector 
location in a model within the expected range of errors of input variables into the FDS model.  
Further, from the two full-scale smoke detector activation model validations above, the 
activation algorithm can then be expected to accurately determine a smoke detector activation 
time within reasonable error rates, and as has been shown, will provide a more realistic and 
possibly more conservative estimation than other smoke detector activation time methods 
currently used in the fire protection profession. 
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Chapter 7 

7 Conclusions 
 

Early detection of fire plays an important role in the life safety of building occupants.  
The ability to accurately predict the performance of fire detection systems is an integral part of 
the analysis associated with fire safety design and fire reconstruction.  The equations and 
numerical algorithm presented in this document describe a model for predicting the activation of 
smoke detectors in the presence of compartment fires.  The smoke detector activation algorithm 
was designed to use the smoke concentration and velocity predictions of a computational fluid 
dynamics code, such as FDS, to predict the transport of smoke into detector housings.  The 
algorithm properly accounts for detector lag due to the flow resistance of the housings and time 
required for mixing within the detection chamber.   

The smoke detector activation algorithm has been validated against a number of fire 
scenarios and geometries.  Included in these validation cases are the UL 217 fire test room, a 
multi-room compartment, and the NIST ‘Performance of Home Smoke Alarms’ tests.  The 
algorithm and FDS model are accurately predicting the activation times of the smoke detectors, 
even for fairly complicated geometries in relatively large spaces.  Other predictive methods for 
determining smoke detector activation time, most notably the temperature correlation and the 
optical density threshold method, were found not to be as accurate as the numerical techniques 
used by the activation algorithm for obtaining detector activation times. 

An accurate prediction of the activation time of a smoke detector requires a proper 
description of the velocity flow field and smoke concentration in the area of the smoke detector.  
Hence, the predictions from the algorithm are inherently dependent on the quantities and 
properties that affect the CFD predictions, including the input variables and calculation 
techniques.  Important variables include but are not limited to grid resolution, material properties 
such as smoke generation rate and heat release rate, and sufficient detail in the geometry.  Hence, 
as the predictions of fire growth and smoke transport improve, the ability of the algorithm to 
predict smoke detector activation will also improve.   
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