NIST Time|NIST Home|About NIST|Contact NIST

HomeAll Years:AuthorKeywordTitle2005-2010:AuthorKeywordTitle

Flow Characterization of Flickering Methane/Air Diffusion Flames Using Particle Image Velocimetry.


pdf icon Flow Characterization of Flickering Methane/Air Diffusion Flames Using Particle Image Velocimetry. (539 K)
Papadopoulos, G.; Bryant, R. A.; Pitts, W. M.

Experiments in Fluids, Vol. 33, No. 3, 472-481, September 2002.

Keywords:

diffusion flames; flame structure; laminar flames; velocity distribution; velocity measurement; vortex strength

Abstract:

Phase-resolved measurements of the velocity field in acoustically forced, flickering laminar co-flowing methane/air diffusion flames have been made. Identical flames have been studied extensively in the past in order to characterize the effects of the vortical structures responsible for the flicker on the flame structure, but the initial velocity perturbation and the velocity fields have not been reported previously. Phase-locked measurements of the instantaneous two-dimensional velocity field at ten phases within a full excitation cycle were made using particle image velocimetry. The velocity measurements were complemented by phase-resolved shadowgraphs recorded in the vicinity of the flame base. Measurements are reported for the two forcing conditions that have most often been studied for this burner. When integrated with the results of previous studies these measurements provide a clearer picture of the interactions between the buoyancy-induced vortical structures and the flame sheets, as well as understanding of the initial conditions required for realistic modeling of these flames.