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This paper presents a theoretical description of a diffusion flame spreading against the wind on a semi-
infinite charring solid. It extends the previous flame spread models on ‘‘vaporizing’’ solids to charring
materials like wood and provides a realistic description of the gas phase. To make the problem analytically
tractable, a mixture fraction approach is used in the gas phase and the no-slip boundary condition is satisfied
only for x � 0. In the solid phase, the charring solid is assumed to decompose abruptly (endothermically
or exothermically) into char and fuel gases at a specified pyrolysis temperature. The steady-state coupled
elliptic equations for conservation of energy, mixture fraction, and momentum in the gas phase and con-
servation of energy in the char and the pristine solid are solved by using orthogonal parabolic coordinates.
A general analytical solution is presented that reduces to de Ris’s flame spread formula in the limit of zero
char thickness and with similar assumptions. The growing char layer in the solid phase has considerable
influence on the flame spread rate. It is seen that formation of a thicker char layer significantly retards the
spread rate. Unique steady-state solutions for the parabolic char-material interface were found to exist only
for Stefan number � �1. For Stefan number � �1 (i.e., exothermic), two solutions were found. One of
these solutions corresponds to the location of the char-solid interface at infinity, indicating the likelihood
of a thermal runaway. This happens regardless of the property values.

Introduction

Opposed-flow flame spread over the surface of a
semi-infinite solid has been a subject of much inves-
tigation in the past. Several elegant analytical flame
spread models have also appeared in the literature
[1–4]. It is indeed fascinating to note how the au-
thors of these studies reduced the complex flame
spread problem with novel approximations to obtain
analytical flame spread formulas. It is even more fas-
cinating to see how well these formulas agree with
the experimental measurements for materials for
which they were designed. Previous studies, how-
ever, have focused primarily on the gas-phase part
of the problem, and the solid was assumed to ‘‘va-
porize’’ at a known fixed temperature. Yet, a large
number of natural and synthetic polymers do not
simply vaporize; instead, they undergo a complex
thermal decomposition process which results in an
insulating layer of char on the surface. This char
layer thickens with time and gives rise to a two-phase
moving-boundary problem in the solid. Due to this
difficulty, an understanding of flame spread over
these solids and the role played by the char layer is
lacking. To obtain an analytical solution, it was also
necessary to simplify the gas-phase momentum and

continuity equations by using a uniform Oseen ve-
locity Ug and the constant pressure condition. Thus,
the objectives of the present study are (1) to extend
the previous work on vaporizing solids to charring
materials like wood and (2) to provide a realistic de-
scription of the gas phase.

The analyses most relevant to the present problem
are those of de Ris [1] and Wichman and Williams
[3]. De Ris, in his seminal work on opposed-flow
flame spread [1], used the Oseen approximation in
the gas phase, and by assuming infinite reaction
rates, he developed a flame spread formula relating
the flame spread rate to the solid and gas-phase
properties, which were assumed constant. His re-
sults indicate that due to the approximations made
in the gas phase, the flame sheet almost lies along
the fuel surface behind the flame-inception point.

Wichman and Williams [3] have also employed the
Oseen approximation in the gas phase and have util-
ized de Ris’s result [1] by hypothesizing at the outset
that the combustion heat release occurs along the
fuel surface. This hypothesis eliminates the necessity
of considering the gas-phase species conservation
equations and thus allows a more detailed analysis
of a simplified thermal model. Their model also
yields the same formula for the opposed-flow flame
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Fig. 1. Schematic of the physical problem: steady propagation of an opposed-flow diffusion flame on the surface of a
charring solid. Dotted lines show the approximations made in the gas and solid phases. The pyrolysis zone is approximated
by a pyrolysis front and the reaction zone by a flame sheet.

spread rate as de Ris’s model. Their formula was de-
rived by requiring that a steady spread rate must be
sufficient to remove the combustion heat release by
downstream gas- and solid-phase convection (in the
flame-fixed coordinates). Later, Atreya [5,6] showed
that to obtain de Ris’s formula, it was also unneces-
sary to consider heat transfer between the gas and
the solid phases upstream of the flame front. This
critical observation enabled the use of parabolic co-
ordinates that simplified the analysis. These con-
cepts for determining the steady flame spread rate
are exploited here to extend the theory of opposed-
flow flame spread to charring materials. In addition,
the Oseen approximation is eliminated and a realistic
description of the gas-phase flame is provided in
terms of a mixture fraction for a variable-density gas.
The coupled elliptic equations in the three media,
gas, char, and virgin material, are analytically solved
to obtain the flame spread rate.

Model Formulation

The physical problem considered here is sche-
matically shown in Fig. 1. In the model problem, the
slab is assumed to be semi-infinite and the diffusion
flame is assumed to extend to infinity downstream
of the flame-inception point (as shown by the dotted
line in Fig. 1 in the plane y � 0, the flame sheet).
In the real case, the thickening of the char layer and
reradiation from the char surface will result in ex-
tinction of the diffusion flame further downstream
of the flame-inception point. This aspect, caused by
finite reaction rates, is ignored. The origin of the
coordinate system is located at the flame-inception
point, and the flame is held stationary by feeding the
solid into the flame at the steady flame spread rate
V. As the solid travels into the flaming zone, it de-
composes abruptly (endothermically or exothermi-
cally) at a specified pyrolysis temperature TP, result-
ing in a pyrolysis surface (as shown by the dotted
line in Fig. 1 in the plane y � 0). Again, in reality, a

pyrolysis zone is formed where thermal decompo-
sition occurs over a region of finite thickness. How-
ever, this is ignored in the simplified model pre-
sented here.

A further simplification is made based on the pre-
vious results [5,6] that show that the heat exchange
between the solid and the gas across the plane y �
0 and x � 0 is small. Data for wood [7] shows that
the total heat exchanged across the plane y � 0 and
x � 0 is less than 15% of the heat conducted through
the solid across the plane x � 0 and y � 0. Physi-
cally, in the region x � 0, with both the solid and
the gas initially at T�, significant heat exchange be-
tween the two media does not occur until they reach
close to the flame-inception point. For high gas ve-
locities, additional heat is transferred to the gas in
the region x � 0 via upstream conduction of heat
through the solid and vice versa. Thus, most of the
heat conducted upstream across x � 0 in both the
solid and the gas phases remains within the respec-
tive phases. This is an important observation because
the temperature gradient in both phases can now be
approximated by zero on x � 0 and y � 0. This
enables the use of parabolic coordinates both in the
solid and the gas phases. Parabolic coordinates au-
tomatically satisfy the zero gradient boundary con-
dition on x � 0 and y � 0. As will be seen later, de
Ris’s flame spread formula [1] is recovered in the
limit of zero char thickness by this analysis, implying
that in the classical solution by de Ris, the Oseen
flow assumption, in effect, rendered the heat ex-
change between the two phases along y � 0 and
x � 0 irrelevant to determining the flame spread
rate.

Gas Phase

The conservation of mass, gaseous species, and en-
ergy are described by the following equations:

� �
(qu) � (qv) � 0 (1)

�x �y
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�Z �Z � �Z � �Z
qu � qv � qD � qD� � � ��x �y �x �x �y �y

(2)

where q(x, y) is the gas density and Z(x, y) is the
mixture fraction in a two-dimensional flow field u

r
�

(u, v). All scalar variables are assumed to be related
uniquely to the mixture fraction. The mass conser-
vation equation (equation 1) can be satisfied exactly
with the introduction of a stream function w(x, y)
defined as �w/�y � qu and �w/�x � �qv.

These equations are transformed by introducing
dimensionless parabolic coordinates defined by the
expression

U�
n � ig � (x � iy) (3)�m�

Here, U� is the ambient wind speed in a coordinate
system moving with the flame front, and m� is the
kinematic viscosity evaluated at ambient tempera-
ture. By defining a Howarth transformed variable,
f � (q(g)/q�)dg, postulating w � l�nf (f), andg�0
seeking solutions of the form Z � Z(f), equation 2
can be reduced to

dZ 1 d q(Z) D(Z) dZ
f (f) � � 0 (4)� �df Sc df q D df� �

Here, Sc � m�/D� is the Schmidt number. The as-
sumption that all scalar variables are functions of Z
implies that the Lewis number is unity. Thus, Sc �
Pr � lCp/k.

The boundary conditions for physical variables
such as temperature (T, or sensible enthalpy hS), fuel
and oxidizer mass fractions (YF and YO), and veloc-
ities are as follows. Char-gas interface:

S Sf � 0; y � 0; x � 0: T � T ; h � h ;S 0

Y � Y ; Y � 0, and u � 0 (5)F F,0 O

Far from the burning surface, ambient conditions
exist:

S Sf r �; g r �; y r �: T � T ; h � h ;� �

Y � 0; Y � Y , and u � U (6)F O O� �

The algebraic state relations are constructed such
that Z(0) � 1 and limfr�Z(f) � 0. Since Z depends
only on f, any physical quantity related to Z by state
relations will satisfy the zero normal gradient bound-
ary condition for x � 0. The gas-phase problem in
the burning region is essentially reduced to the prob-
lem solved by Emmons [8] because for x k y, that
is, inside the boundary layer, the parabolic coordi-
nates reduce to

yU x 1 U q(z)� �
n � and f � dy (7)�� �m 2 m x 0 q� � �

Upstream of the burning region, the no-slip condi-
tion is violated, but the upstream influence of the

variable density flow is retained. In the boundary
layer region, the x-momentum equation takes the
approximate form:

�u �u � �u
q u � v � l (8)� � � ��x �y �y �y

Choosing f (f) as the solution of equation 8, we have

d ql
f (f) f �(f) � f �(f) � 0 (9)� �df q l� �

Boundary conditions require that at the burning
surface u � 0, but the normal component of the
velocity v (the blowing velocity) must correspond to
that supplied by the solid-phase solution. Far from
the burning surface, u � U�. In terms of f (f), these
conditions reduce to

f (0) � �m f �(0) � 0 lim f �(f) � 2 (10)
fr�

Here, m is the dimensionless parameter that de-
scribes the magnitude of the blowing velocity. It has
to be determined by the solid-phase solution. It is
important to note that while the burning zone prob-
lem essentially reduces to the Emmons [8] problem,
the velocity field is valid everywhere. Moreover, the
solution is exact far from the burning surface be-
cause the asymptotic form of the solution for w is an
irrotational flow which exactly satisfies the constant
property Navier-Stokes equations. The asymptotic
solution for the stream function is w � 2l�n(g �
c).

The gas-phase problem is reduced to the solution
of two ordinary differential equations (ODEs). The
effect of the solid phase is felt only through the blow-
ing parameter m, the Schmidt number Sc, and the
state relations. Thus, within unknown values of m
and Sc, the gas-phase solution can be obtained. The
analysis is greatly simplified by assuming the tem-
perature dependence of viscosity and diffusivity are
such that ql � q�l� and q2D � Thus, the2q D .� �

governing equations become

f �(f) � f (f) f �(f) � 0 (11)

Z�(f) � Scf (f)Z�(f) � 0 (12)

The solution for Z that satisfies the boundary con-
ditions is readily found to be

Z(f, Sc) � 1 � g(f, Sc)/g(�, Sc)
f

Scwhere g(f, Sc) � [ f �(t)] dt (13)�0
The problem is now reduced to the solution of the

Blasius equation (equation 11) with boundary con-
ditions given by equation 10. Once Z is known, all
other scalar variables are found by appropriate state
relations as follows:
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S S[h (f) � h � Q (Y � Y (f))]� O O,� OZ(f) �
S S[h � h � Q Y ]0 � O O,�

SY (f) � (Y (f) � Y )F O O,�
� (14)

SY � YF,0 O,�

Using the fact that YO is zero on the fuel side of a
diffusion flame and YF is zero on the oxidizer side,
hS(f), YF(f), and YO(f) may be found from the
knowledge of Z(f). Also, Z(ffl) may be found by re-
quiring that both YF and YO are zero at the flame
surface. Finally, using the approximate equation of
state qhS � q� � const., we retrieve the parabolicSh�

coordinate g from f by the relation g � (q�/f�0
q(t))dt.

On the fuel side (Z � Zfl),
S Sh q h� 0

� � (1 � E) � Z(f) � E � 1� �S Sqh h� �

(15)

Here, hS is the sensible enthalpy, and the subscript
0 indicates the fuel surface. Also, E � (QOYO,�/

and QO is the heat of reaction per unit mass ofSh )�

O2 consumed. Thus,
S fh0

g � f(1 � E) � � E � 1 Z(f)df� � �S 0h�

(16)

On the oxidizer side (0 � Z � Zfl),
S Sh q h SY� 0 F,0

� � 1 � Z(f) � 1 � ES � � ��Sh q Yh� O,��

(17)

where S � (mOMO)/(mFMF) and YF,0 are the sto-
chiometric oxidizer to fuel ratio by mass and the
mass fraction of fuel at the surface. Thus,

S fh SY0 F,0
g � f � � 1 � E Z(f)df� � �� �S Y 0h O,��

(18)

Solid Phase

Equations for energy transfer in the pristine solid
and char (denoted by subscripts ‘‘w’’ and ‘‘c,’’ re-
spectively) are needed to describe the solid-phase
part of the flame spread problem depicted in Fig. 1.
Constant thermophysical properties are assumed,
and regression or oxidation of the char surface is
ignored. This leads to the following set of steady-
state equations for the temperature field in the two
media. For the pristine solid:

2 2�T � T � Tw w w
q VC � k � � 0w pw w� �2 2�x �x �y

�� � x � g(y); y � 0 (19)

for the char matrix:

2 2�T � T � Tc c c
q VC � k � � 0c pc c� �2 2�x �x �y

g(y) � x � �; y � 0 (20)

Appropriate boundary conditions require that
along the interfaces the temperatures are equal. At
the char-gas interface, the temperature is assumed
to be a constant, that is, Tg(x, 0) � Tc(x, 0) � Ts for
x � 0, and the boundary conditions along x � 0 are

T (x, 0) � T (x, 0) andw g

�T �Tg w
k (x, 0) � k (x, 0) � 0 for x � 0 (21)g w�y �y

Far from the interface, the boundary conditions are

T (��, y) � T (x, �) � Tg g �

T (�, y) is boundedg

T (��, y) � T (x, ��) � Tw w �

T (�, y) is boundedc

(22)

The location of the char-material interface (re-
ferred to as x � g(y) in Fig. 1) is not a priori known
and will be obtained as part of the solution. At this
interface, the pristine solid is assumed to abruptly
decompose (endothermically or exothermically) into
char and fuel gases at a specified pyrolysis tempera-
ture Tp. Thus, Tw[g( y), y] � Tc[g(y), y] � Tp. The
final condition is obtained by energy balance at the
isothermal boundary between char and the solid
(represented by f (x, y) � const.) as it moves with
the steady flame spread velocity V:

2 2 2 2�T �T �T �Tc c w w
k � � k �c w� � � � � � � �� ��x �y �x �y

2 2�f �f �f
� Qq V � (23)w � �� � � � ���x �x �y

Here, Q is the amount of heat liberated or absorbed
at the interface per unit mass of pristine solid, being
positive when endothermic.

The solid-phase equations and boundary condi-
tions again lend themselves to the use of parabolic
coordinates defined by the relation

2V
b � ix � (x � iy) (24)��w

where V is the flame speed and �w � (kw/qwCpw).
Again, solution of the form T � T(x) satisfies all the
equations and boundary conditions in the solid
phase. Normalizing temperature by the relations

h � (T � T )/(T � T )g g � s �

h � (T � T )/(T � T )w w � s �

h � (T � T )/(T � T )c c � s �

h � (T � T )/(T � T ) (25)p p � s �

and rewriting equations 19–23 in terms of parabolic
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coordinates after assuming h � h(x), we obtain two
ODEs that can be solved to yield

x c
h � h erfc erfc andw p � �� � �2 2� �

d d� �c c
h � 1 � (1 � h ) erf x erf cc p � �� � �2 2� �

(26)

where the value of c, which defines the parabolic
char-solid interface, is obtained from the transcen-
dental equation:

2 2c d ccexp � exp� � � �2 2(1 � h )p
k̄ d �� c� 	h cp d� 	c erfcerf c � �� �� 22 �

p¯� Q c (27)�2

In the limit as c r 0 (i.e., the char layer becomes
very thin), equation 27 indicates the physically ob-
vious result, that is, hP r 1. Thus, for c � 0, hc �
hp � 1. In equations 26 and 27,

k kw c
d �c �� ��� ��q C q Cw pw c pc

is the ratio of pristine solid to char thermal diffusiv-
ities and � (kc/kw) is the ratio of char to pristinek̄
solid conductivities. Also, Q̄ � Q/Cpw(Tp � T�) is
the ratio of heat required to decompose a unit mass
of pristine solid to the heat required to bring this
unit mass from ambient to the pyrolysis tempera-
ture. It is the Stefan number.

Flame Spread Rate

The steady flame spread rate is determined by two
physical conditions that have not yet been satisfied.
These are (1) The energy balance downstream of the
point of flame inception. Mathematically, this con-
dition along the burning surface (y � 0; x � 0) states

�T �Tg c
�k (x, 0) � �k (x, 0) (28)g c�y �y

(2) The second condition corresponds to the evolu-
tion of the fuel mass from the solid. This condition,
determined from the solid-phase solution, yields the
‘‘blowing parameter’’ m. Note that the pyrolysis
products are produced as the char-solid interface
(defined by the parabola x � c) travels through the
solid at a constant velocity V converting the pristine
solid to char and generating a mass proportional to
(qw � qc). After appropriate vector manipulation,
this condition yields � (qw �(qv)@y�0

qc) Equating this to wec � V/2x. �(�w/�x) ,� w @y�0
obtain an expression for m as

2� V (q � q )w w cf (0) � �m � � c (29)�m U q� � �,gas

Utilizing hS(f) from equation 14 after setting YO �
0 for the fuel side, we can obtain the temperature
gradient in the gas phase adjacent to the char sur-
face. Likewise, the temperature gradient in the char
is obtained from equation 26. Substituting these in
equation 28 yields

Scl q [ f �(0, m)]0 0 s s(h � h � Q Y )0 � 0 0�� �l q Sc • m • g(�, Sc, m)� �

2k q C q C (T � T )c c pc w pw s p
� (30)� ��pk q C q � qw w pw w c dcc • erf c� ��2

Here, f �(0, m) is numerically determined from the
Blasius solution for prescribed values of m and Sc.
As seen from equation 27, c—the parabolic char-
solid interface—depends entirely on the solid-phase
material properties. Thus, equation 30 determines
an appropriate value of m that satisfies the energy
balance at the burning surface. Once m is deter-
mined, equation 29 is used to determine the flame
spread rate. Throughout this analysis, U� is taken as
the gas velocity relative to a stationary flame. Thus,
for a flame moving at velocity V, the actual Ug is
equal to (U� � V). Using this, equation 29 yields
the flame spread formula in terms of m:

2 2 �1V c q � q 2�w c w
� � 1 (31)� � �� � � � �U m q v� �,gas �

For the special case of Oseen flow (and imposing
the assumptions of Refs. [1,3,5,6]), this analysis
yields the flame spread rate as

2V k q C T � T dg g pg f s c
� erf c (32)� � �� � � ���U k q C T � T 2� c c pc s p

It is interesting to note that in the limit of zero char
thickness (i.e., as c r 0 and Tp r Ts), a ‘‘vaporizing’’
solid is obtained. In this limit, equation 32 reduces
to de Ris’s spread formula [1].

Discussion and Conclusions

Char-Material Interface

The char-material interface is defined by the pa-
rabola x � c, where the value of c is obtained from
the solution of the transcendental equation (equa-
tion 27). In equation 27, Q̄ is the Stefan number
(positive for endothermic decomposition) and the
terms from left to right can be shown to be as (1)
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Fig. 2. Graphical determination of the value of the charring constant c that determines the parabolic char-material
interface described by equation 27.

the heat flux (non-dimensional) to the interface from
char (goes to 0 as c r � and goes to � as c tends to
0); (2) the heat flux (non-dimensional) leaving the
interface into the pristine solid (goes to 1 as c goes
to 0 and goes to � like as c as c tends to �);p/2�
and (3) the heat absorbed or liberated at the char-
pristine solid interface (on the right-hand side of
equation 27). The solution requires four input pa-
rameters: , Q̄, dc, and hp. For representative valuesk̄
of these parameters � 1/3, hp � 0.275, and¯(k
dc � 0.75), various terms of the transcendental
equation 27 are plotted in Fig. 2. The value of c is
determined by the intersection of the straight line
representing the right-hand side of equation 27 and
the composite curve representing the left-hand side
of equation 27. The slope of the straight line is pro-
portional to the Stefan number Q̄. It is interesting
to note that a steady-state solution presented here
exists only for Q̄ � �1. At Q̄ � �1 (exothermic),
the intersection occurs at a finite value of c as well
as at infinity, indicating the likelihood of a thermal
runaway. This happens for any set of values of dc,k̄,
and hp, because as c r �, the second term on the
left-hand side of equation 27 tends to � like cp/2�
and the first term goes to zero. Thus, the left-hand
side of equation 27 is asymptotic to a straight line
with slope and passing through the origin.� p/2�
Since such a thermal runaway has not been observed
for a charring material like wood, the maximum exo-
thermic value for the heat of decomposition should

not exceed 0.5 J/kg of wood (calculated using rep-
resentative values of Cpw and Tp).

Flame Spread Rate

Figure 3 shows how the flame spread rate changes
with the blowing parameter m and the charring con-
stant c, whereas Fig. 4 shows how the velocity and
mixture fraction profiles in the gas phase change
with the blowing parameter m. Clearly, as m in-
creases, both the flame (located at Z � Zfl) and the
boundary layer move away from the burning surface.
There are only a finite set of values of m for which
the boundary layer solution exists with the maximum
value of m being 1.239 before separation occurs [8].
This range is explored in Fig. 3, which shows that
there is a large increase in the flame velocity as the
value of the charring constant c, which defines the
char-material interface, is decreased for the same
value of m. For fixed values of c and m, the flame
speed is seen to be directly proportional to U�. This
is also predicted by deRis’s formula. Since small val-
ues of c result in higher flame speeds regardless of
the blowing parameter, fire-safe materials should be
designed to have large c values. These materials will
form a thick char layer.

The overall graphic representation of the com-
puted gas- and solid-phase solution is presented in
Fig. 5. The calculated isotherms in wood and char
(using the property values of Ref. [7]) are shown for
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Fig. 3. A semilog plot of the variation of the flame spread velocity normalized by the free-stream velocity for various
values of m and c. Boundary layer separation occurs for m � 1.239 [8].

Fig. 4. Velocity and mixture fraction profiles inside the boundary layer. Boundary layer separation occurs for
m � 1.239 [8].
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Fig. 5. Computed stream lines and the flame location in the gas phase along with the computed isotherms in wood
and char. The property values used are from Ref. [7] for wood char.

c � 0.501, a value obtained by the graphical solution
in Fig. 2. The corresponding calculations for the
flame location and the stream lines in the gas phase
are also shown. Upstream of the burning surface, the
violation of the no-slip condition is evident from the
stream lines for x � 0, whereas for x � 0, the stream
lines diverge as expected. It is important to reiterate
that this analysis, while not valid at the leading edge,
solves fully elliptic nonlinear equations both in the
solid and in the gas phase. The ‘‘thermal’’ part of the
problem (i.e., the mass, energy, and species equa-
tions) is solved exactly. The only reason the gas-
phase analysis is not an exact solution of the full Na-
vier-Stokes equations is that the solution to the
momentum equations breaks down locally for dis-
tances of the order of a few Stokes lengths down-
stream of the pyrolysis front and off the plate sur-
face. This result is a generalization of deRis’s result
[1] to charring materials with realistic gas flow. In
the limit of a non-charring material (zero char thick-
ness) and with Oseen approximation, it reduces ex-
actly to deRis’s solution.

Comparison with Experiments

Experimental data for comparison with the model
is not available in the configuration studied. This is
because most investigators did not measure the char
depth along with the flame spread rate. The available
data is for axisymmetric fire spread on horizontal
surfaces of wood [7]. For fire diameter greater than
5 cm, the flame spread may be approximated as two

dimensional along any radial direction. A compari-
son of this data with the model is presented in Fig.
6. The data are correlated according to the normal-
ization used in the model, that is, (Vy/�w)2 � c2 �
2c(Vx/�w). The value of �w used for poplar wood is
0.1 mm2/s, and (Vy/�w) is plotted against (Vx/�w).
For the data presented in Fig. 6, the actual mea-
sured flame velocity (which varied from 0.7 to
1.3 mm/s) for the four experiments was used. For
the correlation, an average flame velocity for all the
experiments (1 mm/s) was used. A good agreement
between the data and the correlation implies that the
measured flame spread rates and char depths follow
the parabolic shape of the char-wood interface as-
sumed in the model. The correlating equation also
yields a value of the charring constant as c � 0.2 for
poplar wood. Fig. 3 shows that for m ranging from
0.5 to 1 and c � 0.2, V/U� varies from 0.005 to 0.02,
implying that the induced air velocity (U�) must have
been between 0.2 and 0.05 m/s. This is a reasonable
estimate. The experiments and the model also show
that smaller char depths are produced by higher
flame speeds.

Nomenclature

Cp specific heat at constant pressure [J/kg K]
c charring constant defining the location of

char-material interface[–]
D mass diffusivity [m2/s]
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Fig. 6. Model correlation of experimental data from Atreya [7]. Measured flame spread rates and char depths are
correlated according to the equation shown. Smaller char depths are produced by higher flame speeds.

f an arbitrary function defining the unknown
isothermal boundary between char and
pristine solid by f (x, y) � constant; also,
solution of the Blasius flow problem

g an arbitrary function defining the unknown
isothermal boundary between char and
pristine solid by the equation x � g(y)

hS the sensible enthalpy
m boundary layer blowing parameter
Q heat liberated or absorbed at the interface

per unit mass of wood [J]
QO heat of reaction per unit mass of O2 con-

sumed
Q̄ Stefan number [–]
T temperature [K]
U free stream gas velocity in the flame-fixed co-

ordinate system [m/s]
V steady flame spread velocity [m/s]
u, v gas velocities in the stream/wise and trans-

verse directions describing the two-dimen-
sional flow field

b, x parabolic coordinates
x, y streamwise and transverse coordinates [m]
Y mass fraction
Z mixture fraction

Greek Symbols

� thermal diffusivity [m2/s]
dc ratio of pristine solid to char thermal diffu-

sivities [–]
k thermal conductivity [W/mK]
k̄ ratio of char to pristine solid thermal con-

ductivities [–]

m kinematic viscosity [m2/s]
q density [kg/m3]
h non-dimensional temperature

Subscripts

c char
F flame, fuel
g gas
p pyrolysis
w pristine solid (wood)
o oxygen
� values in the free stream
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COMMENTS

James Quintiere, University of Maryland, USA. In the
deRis model [1], a simple thermal analysis can produce the
solution, e.g., the flame speed, m � df /tig, where df is the
flame heating length and tig is the time to ignite the surface.
The ignition time can be approximately given as (kqc)solid

(Tf � Tig), with the flame heat flux approximated as q̇� �
kgas(Tf � Tig)/df . The flame heating length can be repre-
sented as a diffusion length, (k/qc)gas/ugas, where ugas is the
gas velocity.

The flame temperature is proportional to Dhc � Leffec-

tive, the net energy released per unit mass of the fuel. The
effective heat of gasification contains the effect of char, and
for a charring material, it is higher than that of a similarly
non-charring material. Will this simple model explain your
modified deRis solution?

REFERENCE

1. deRis, J. N., Proc. Combust. Inst. 12:241 (1968).

Author’s Reply. Your physical analysis of flame spread is
not different from the analysis presented in the paper. In
the physical picture you outlined, essentially, the steady
flame spread rate is obtained as a result of the balance
established between the heat flux provided by the flame
over a certain time (ignition delay time) and the ability of
the solid to respond to this heat flux to produce fuel gases
sufficient to support the flame. The primary difference is
that you considered this balance only at the flame foot,
whereas, in the similarity solution presented here, it is con-
sidered everywhere. For y � 0 and x � 0, that is, along
the burning surface, the energy balance is satisfied by equa-
tion 28, and the gas-phase heat flux is utilized to produce
fuel gases that yield the blowing parameter m according to
equation 29 of the paper.

The difference between the flame foot and the global
similarity analysis leads to a new way of thinking about
flame spread. The flame, which is essentially a stoichio-
metric surface, moves upstream into the ambient air (flame
spreads) as more fuel is produced by flame heat transfer to
the solid. Thus, if we artificially heat the burning zone, by
external radiation, everywhere except at and near the flame
foot (characteristic dimension defined by df � dg � �g/Ug,
as you identified), the flame spread rate will increase ac-
cording to the similarity analysis (because m will increase;
Fig. 3), but it will remain unaltered according to the flame
foot analysis. If such an experiment is conducted, we be-
lieve that it will show an increase in the flame-spread rate.

It is also important to emphasize that upstream diffusion
of energy and species in the gas phase is fully considered
in the model, since fully elliptic equations are solved. Thus,
both heat and mass diffuse upstream into the oncoming
ambient air, resulting in flame spread. Simultaneously, heat
also diffuses upstream into the solid to produce fuel. As
more fuel is produced, the flame moves upstream to ac-
commodate it, and flame spread is said to occur.

The treatment of charring materials by using an effective
heat of gasification, Leff, may be approximately possible.
Using deRis’s assumptions, we obtain equation 32, which
contains the charring factor � Tp). In theerf ( d /2c)/(T� c s

limit of zero char thickness (c r 0 and Tp r TS), this factor
reduces to (Ts � T�), and equationk q C / k q C� �c c pc w w pw

32 reduces to deRis’s flame spread formula. For a charring
material, the charring factor may be considered as modi-
fying the flame temperature term (Tf � Ts), and thus a Leff

may be identified. However, the thermal inertia of char
instead of the virgin material must be used.

●

Jay Gore, Purdue University, USA. Can the locations of
the charring front and the flame front leading edges be
separated from each other, as they appeared to be in the
experiments you showed?

Author’s Reply. We have never observed the location of
the flame front or the charring front separated from each
other, and they should not be because charring results in
the production of fuel that supports the flame. There are
three reasons why the experimental photographs look as
they do. First, they were not taken edgewise to observe the
flame foot. Second, the less luminous blue flame front is
not visible in the predominantly luminous yellow flame.
Third, the photographs image a much larger area com-
pared to the flame foot; thus, resolution at the flame foot
is poor.

●

Carlos Fernandez-Pello, University of California, Berke-
ley, USA. Could the transient aspects of flame spread in
charring materials often observed be incorporated in your
model through the parameter c, or can your model only
account for the growth of the charring layer?

Author’s Reply. The model is for steady-state flame
spread over charring materials. It solves the nonlinear
equations for the unknown parabolic char-material inter-
face defined by the parameter c. We do not believe that it
is possible to account for transient aspects through the pa-
rameter c in this model.
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