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ABSTRACT: Semiactive control systems combine the features of active and passive control to reduce the
response of structures to various dynamic loadings. They include: (1) Active variable stiffness, where the stiffness
of the structure is adjusted to establish a nonresonant condition between the structure and excitation; and (2)
active variable damper, where the damping coefficient of the device is varied to achieve the most reduction in
the response. This study is concerned with examining the effectiveness of variable dampers for seismic appli-
cations. Three algorithms for selecting the damping coefficient of variable dampers are presented and compared.
They include a linear quadratic regulator algorithm; a generalized linear quadratic regulator algorithm with a
penalty imposed on the acceleration response; and a displacement-acceleration domain algorithm, where the
damping coefficient is selected by examining the response on the displacement-acceleration plane and #ssigning
different damping coefficients accordingly. Two-single-degree-of-freedom structures subjected to 20 ground ex-
citations are analyzed using the three algorithms. The analyses indicate that, unlike passive dampers (where for
flexible structures, an increase in damping coefficient decreases displacement but increases the acceleration
response), variable dampers can be effective in reducing both the displacement and acceleration responses. The
algorithms are used to compute the seismic response of two structures: (1) An isolated bridge modeled as a
single-degree-of-freedom system; and (2) a base-isolated six-story frame modeled as a multi-degree-of-freedom
system. The results indicate that variable dampers significantly reduce the displacement and acceleration re-

sponses.

INTRODUCTION

New concepts for active and passive control have been de-
veloped for reducing the response of structures to wind, earth-
quake, blast, and other dynamic loadings. Passive control re-
fers to systems that utilize the response of structures to develop
the control forces without requiring an external power source
for their operation. Active control, on the other hand, refers to
systems that require a large power source to operate the ac-
tuators that supply the control forces, whose magnitudes are
determined using feedback from sensors that measure the ex-
citation and/or the response of the structure. Semiactive con-
trol combines the features of active and passive systems. These
systems require a small power source (e.g., a battery) to op-
erate and utilize the response of the structure to develop the
control forces that are regulated by algorithms using the mea-
sured excitation and/or response.

Semiactive control systems include two categories: (1) Ac-
tive variable stiffness; and (2) active variable damper. In the
first category, the stiffness of the structure is adjusted to es-
tablish a nonresonant condition between the structure and ex-
citation. Variable stiffness devices can be regulated to include
or exclude the stiffness of a particular section of the structure,
such as the bracing system. In the second category, supple-
mental energy dissipation devices, such as fluid, friction, and
electrorheological dampers, are modified to allow adjustments
in their mechanical properties to achieve significant reductions
in the response. In both categories, like passive systems, con-
trol forces are generated using the motion of the structure and,
like active systems, controllers are used to monitor feedbacks
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and develop the appropriate command signals for selecting the
stiffness or the damping coefficient of the device.

This study focuses on the use of semiactive control algo-
rithms for structures with variable damping devices. Several
investigators have studied the suitability of variable dampers
and have found them to be effective in reducing the response
of structures to different dynamic loadings. In addition to re-
quiring a small power source to operate, the control forces
developed by these devices always oppose the direction of
motion, thereby, enhancing the overall stability of the struc-
ture.

The next section presents a brief summary of previous work
on development of semiactive control algorithms for variable
damping devices. Three algorithms are then discussed, and
their effectiveness in reducing the displacement and accelera-
tion responses of structures to seismic loading is examined.
The algorithms are used in several structures modeled as sin-
gle-degree-of-freedom (SDOF) and multi-degree-of-freedom
(MDOQOF) systems subjected to different earthquake excitations
to demonstrate their effectiveness in reducing the response.

SUMMARY OF PREVIOUS WORK

For active variable dampers, the damping coefficient ¢(r)
during the response can be adjusted between upper and lower
limits, ¢ and Cpn; i.€.

Crin = C(t) = Crnax (1)

Several investigators have developed algorithms to select the
appropriate damping coefficient during the response. Patten et
al. (1993) and Sack et al. (1994) introduced a hydraulic ac-
tuator with an adjustable orifice and used a closed-loop control
algorithm to select the damping coefficient of the device at
each increment of time. Patten et al. and Sack et al. used a
clipped optimal control algorithm based on the linear quadratic
regulator (LQR) with a check on the dissipation characteristics
of the control force. The results of these investigators indicate
that a variable damper can significantly reduce the response
of a structure to seismic forces. In another study, Patten et al.
(1994a) used a bang-bang (also referred to as two-stage, bi-
state, or on-off) algorithm based on Lyapunov’s method to
select the damping coefficient. Patten et al. used the algorithm
in the analysis of a three-story frame subjected to the 1979 El
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Centro accelerogram. The variable damper reduced the re-
sponse of the frame by ~54% as compared to the response
with no control. Other studies have been carried out to inves-
tigate the effectiveness of similar devices in reducing the re-
sponse of bridges to vehicle-induced vibrations (Patten et al.
1994b, 1996).

Feng and Shinozuka (1990, 1993) have shown that, for seis-
mically isolated bridges, increasing the damping of the isola-
tion system reduces the relative displacement but increases the
absolute acceleration. Feng and Shinozuka suggested that the
isolation system should contain a variable damper and used
two algorithms for regulating the damping coefficient of the
damper. One is a bang-bang algorithm where c(f) is set t0 Cmax
when the relative displacement response divided by a refer-
enced displacement is greater than the absolute acceleration
response divided by a referenced acceleration. For the opposite
case, c(t) is set to o The other algorithm is an instantaneous
optimal algorithm introduced by Yang et al. (1987). Numerical
results indicate reductions of ~41% in peak displacement and
22% in peak acceleration responses for the case where the
bridge was subjected to the SOOE component of El Centro,
1940. Kawashima and Unjoh (1993) and Kawashima et al.
(1994) used a displacement-dependent damping model to se-
lect the damping coefficient of a variable fluid damper. Ana-
lytical results and shake table tests of a 30-m-long bridge in-
dicated reductions of 24 and 44% in displacement and
acceleration responses, respectively. In a later study, Yang et
al. (1994) used the sliding mode control theory to design an
algorithm for the variable damper suggested by Kawashima .
and Unjoh (1993) and Kawashima et al. (1994). The idea be-
hind the sliding mode control theory is to drive and maintain
the response trajectory into a sliding surface, where the motion
of the structure is stable. Numerical results indicate that further
reductions in the seismic response of the bridge can be
achieved using the sliding mode algorithm.

Dowdell and Cherry (1994a,b) used a bang-bang semiactive
LQR algorithm to control the slip forces in friction dampers.
Dowdell and Cherry computed the responses of an SDOF
structure and a six-degree-of-freedom structure to a band-lim-
ited white noise excitation with and without semiactive friction
dampers. The results indicated significant reductions in the in-
terstory drifts of the structures. In another study, Yang and Lu
(1994) introduced a multistage semiactive friction damper to
reduce the seismic response of cable-stayed bridges and dem-
onstrated numerically the effectiveness of the damper. Loh and
Ma (1994) used a bang-bang semiactive algorithm based on
Lyapunov’s theory for a three-story frame and showed that the
effect of variable dampers on the response can be significant.
Calise and Sweriduk (1994) used robust control techniques for
variable damping devices and demonstrated their effectiveness
in reducing the response.

In an extensive analytical and experimental study, Symans
and Constantinou (1995) developed and tested a two-stage
damper and a variable semiactive fluid damper. For the two-
stage damper, a base shear coefficient and a force transfer con-
trol algorithm were used, while for the variable damper, a
feedforward, a skyhook damping, an LQR, and a sliding mode
control algorithm were employed. Symans and Constantinou’s
study included a single-story frame and a three-story frame
under different seismic excitations. The results indicated that
while variable dampers significantly reduced the response as
compared to the case with no control, no reduction was ob-
served when compared to the device acting as a passive
damper with a damping coefficient ¢p,,.

The study by Symans and Constantinou (1995) indicates
that the use of semiactive dampers in structures is inefficient
when compared to passive systems. Since Symans and Con-
stantinou’s study was limited to an SDOF structure with a
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period of 0.36 s and an MDOF structure with a fundamental
period of 0.56 s, the efficiency of the device for other periods
merits further investigation. This study considers a broad range
of periods for which semiactive control with variable dampers
may be more efficient than passive dampers in reducing the
response. In the following sections, three semiactive control
algorithms are examined to determine the effectiveness of var-
iable dampers in reducing the seismic response. A semiactive
variable device with a damping coefficient between ¢, and
Cmsx and the same device acting as a passive damper with
damping coefficients c,,, and ¢, are compared to assess the
effectiveness of the variable damper.

ANALYSIS

Increased damping in structures allows the dissipation of a
larger portion of the input energy and, consequently, a further
reduction in the response. The reduction, however, depends on
the flexibility or rigidity of the structure. Feng and Shinozuka
(1990, 1993) have reported that for isolated bridges, increased
damping has opposite effects on the absolute acceleration of
the girder and the relative displacement between the girder and
the piers. A similar observation was made by Sadek et al.
(1996), who showed that for flexible structures (defined in this
study as structures with periods equal to or longer than 1.5 s)
an increase in damping further decreases the displacement re-
sponse and usually increases the acceleration response and
consequently the seismic forces. Variable dampers, where the
damping coefficient can be adjusted between an upper and a
lower limit, may be effective in reducing both the relative
displacement and absolute acceleration responses. Reducing
the absolute acceleration response is important in the design
of structures, such as hospitals, communication centers, com-
puter and electronic facilities, etc., which house sensitive
equipment that may be damaged by large floor accelerations.
In addition, in retrofit of existing structures, the use of passive
dampers may increase accelerations and consequently, seismic
forces and story shears where the increase may not be per-
mitted by the capacity of the existing lateral force resisting
system. Large accelerations may also cause discomfort to oc-
cupants.

To illustrate the influence of supplemental damping and
structural period on the seismic response of structures, six-
SDOF structures with periods 7 = 0.2, 1.0, 1.5, 2.0, 2.5, and

TABLE 1. Earthquake Records Used in Statistical Study

Peak
Source accel-
Magni- distance | Compo-| eration
Earthquake tude Station name (km) nent (9)

(1 Q) (3) “) (5) (6)
Northwest Califor-| 5.8 Ferndale City Hall 56.3 S44W 0.104

nia, 1077/1951 N46W 0.112
San Francisco, 53 San Francisco 11.2 NIOE 0.083
3/22/1957 Golden Gate S80E 0.105
Park

Helena, Montana, 6.0 Helena, Montana 6.2 S00W 0.146
10/31/1935 Carrol College S90W 0.145
Parkfield, Calif., 5.6 Temblor, California 59.6 N65W 0.269
6/27/1966 #2 S25W 0.347
San Fernando, 6.4 Pacoima Dam 7.3 S16E 1.172
2/9/1971 574W 1.070
250 E. First Street 41.4 N36E 0.100
Basement, Los N34wW 0.125

Angeles
Loma Prieta, 7.1 Corralitos-Eureka 7.0 90° 0.478
10/17/1989 Canyon Road 0° 0.630
Capitola-Fire Sta- 9.0 90° 0.398
tion 0° 0472
Northridge, 6.7 Arleta Nordhoff 9.9 90° 0.344
1/17/1994 Ave.-Fire Station 360° 0.308
Pacoima Dam- 19.3 265° 0434
Down Stream 175° 0415




TABLE 2. Average Response Ratios for Six-SDOF Structures with Passive Damping

Damplng T=02s T=10s T=15s T=20s T=25s T=30s
ratio Xorax Bmax Xnax Brax Xinax Bmax Xerax Amax Xenax Brmax Xrnax Amax
(1 2 (3) {4) (5) {6) (7) (8) 9 (10) (11) (12) (13)

En = 0.05 0.81 0.82 0.81 0.83 0.81 0.84 0.84 0.88 0.86 0.91 0.89 0.95

Enax = 0,40 0.46 0.54 0.42 0.72 0.46 0.94 0.54 1.19 0.56 1.36 0.59 1.55

3.0 s and a structural damping ratio B = 0.05 are used. Two
supplemental passive dampers with damping ratios § = 0.05
and 0.40 were considered. The structures were subjected to a
set of 20 horizontal components of accelerograms listed in
Table 1. These records include a range of earthquake magni-
tudes, epicentral distances, peak ground accelerations, and soil
conditions. The relative displacement and absolute accelera-
tion response ratios are computed as the ratio of the peak re-
sponse of the structure with the supplemental damper-to-the-
peak response without the damper. The average response ratios
for the 20 records for the six structures are shown in Table 2.
Table 2 indicates that for rigid structures (defined in this study
as structures with periods <1.5 s) increasing the supplemental
damping ratio from 0.05 to 0.40 decreases both the relative
displacement and absolute acceleration, whereas for structures
with T = 1.5 s (flexible structures), increasing the supplemen-
tal damping ratio decreases the relative displacement but in-
creases the absolute acceleration. Therefore, for flexible struc-
tures, reductions in both the displacement and acceleration
responses may be possible with a variable damper, i.e., achiev-
ing a displacement response close to that obtained with &q.x
and an acceleration response close to that obtained with £y,
For rigid structures, however, the efficiency of using a variable
compared to a passive damper is questionable. In the next
section, three semiactive control algorithms are discussed and
compared with each other to examine the effectiveness of var-
iable dampers in reducing the displacement and acceleration
responses of structures.

SEMIACTIVE CONTROL ALGORITHMS

The governing differential equation of motion for an n-de-
gree of freedom structure with mass matrix M, damping ma-
trix C, and stiffness matrix K with m semiactive dampers sub-
jected to ground acceleration £,(¢) is given by

Mx(r) + Cx(r) + Kx(t) = Du() — M1%,(») (2)

where the n-dimensional vector x(r) represents the relative dis-
placement; the m-dimensional vector u(#) the control forces
generated by the dampers; and the n-dimensional vector 1 the
unit vector. The matrix D (size n X m) defines the locations
of the control forces generated by the dampers. Using the
state-space representation, (2) takes the form

() = Az(1) + Bu(s) + Hx,(n 3)

where z(?) = [x7(#), X (£)] is a 2n-dimensional state vector. The
system matrix A and the matrices B and H are given in Soong
(1990). Three semiactive control algorithms for regulating the
damping coefficient of variable dampers are considered in this
study. They include (1) a semiactive LQR; (2) a semiactive
generalized LQR; and (3) a semiactive displacement-acceler-
ation domain.

Semiactive LQR Algorithm

This algorithm, referred to herein as SA-1, is the classical
LQR that has been extensively used for active control (Soong
1990; Yang et al. 1992) and for semiactive control (Patten et
al. 1993, 1994a; Dowdell and Cherry 1994a,b; Symans and
Constantinou 1995) of structures. In this algorithm, the control

force u(z) in (2) is selected by minimizing, over the duration
of the excitation, the following quadratic expression for the
cost function (Soong 1990):

J= J. [Z'(1)Qz() + u'(HRu(r)] dt 4)

where #, = duration of excitation; and Q (size 2n X 2n) and
R (size m X m) are positive semidefinite and positive definite
weighting matrices, respectively. If the elements of Q are
larger than those of R, reducing z(#) has priority over reducing
u(?). For a closed-loop control configuration, minimizing (4)
subject to the constraint of (3) results in a control force vector
u(r) regulated only by the state vector z(r), such that

u() = -—-12- R'B"Pz(t) = Gz(r) 5)

where matrix G (size m X 2n) represents the gain matrix; and
matrix P (size 2n X 2n) is the solution of the classical Riccati
equation, which after neglecting the excitation term reduces to

1
PA + AP - 2 PBR'B'P + 2Q =0 6)

The damping coefficient of damper i at time ¢ can be computed
from (5) as

2n
Z G, J z(0)

WO _ =

O )

where x(f) = relative velocity between the ends of damper i.

ck = i=1lm @)

" Using the constraints in (1), the damping coefficient is selected

as

Conini Ci*(t) = Cm]n,l
) =4 Cone <€) < Conaxs ®
Conax,i Cl*(t) = Cenax,i

A passive damper with coefficient ¢, is obtained when Q in
(4) and (6) is a null matrix, and a passive damper with coef-
ficient cn. is obtained when the elements of Q approach in-
finity.

To examine the effectiveness of this algorithm, two-SDOF
structures with periods T = 0.2 s and 3.0 s and a structural
damping ratio B = 0.05 are considered. Each structure contains
a variable damper with a damping ratio ranging from &, =
0.05 to £..x = 0.40. The structures are subjected to the 20
ground excitations listed in Table 1. In the analysis, R is a
scalar set equal to 1/K and Q is selected as [see Wu et al.

(1995)]
Q=4 [{f 1&] ©)

where g = parameter reflecting the importance of the reduction
in the state vector z(r) or the control force vector u(f). The
mean response ratios (the average of the peak displacement or
acceleration response with semiactive control divided by their
counterparts with no control) for g ranging from O to 1.0 are
computed and plotted in Fig. 1 for T= 0.2 s and in Fig. 2 for
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T = 3.0 s. The plots indicate that for g = 0, the mean response
ratios are very close to those with a passive damper with £,
= 0.05, and for ¢ = 0.5, the mean response ratios are nearly
the same as those with a passive damper with &n.. = 0.40
(compare Columns 2 and 3 of Table 2 with the ordinates at g
= 0 and 1 in Fig. 1, and Columns 12 and 13 with the ordinates
at g = 0 and 1 in Fig. 2). For g between 0 and 0.5, the response
ratios are between those with passive dampers with &, and
£.xx- For the structure with T = 0.2 s (Fig. 1), increasing ¢
decreases both the relative displacement and absolute accel-
eration. For the structure with T = 3.0 s (Fig. 2), however,
increasing g decreases the relative displacement but increases
the absolute acceleration. Fig. 1 shows that for the structure
with T = 0.2 s, a variable damper is inefficient and the use of
a passive damper with a damping ratio &, is more advanta-
geous.
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TABLE 3. Average Response Ratios for Structure (T = 3.0 )
with Passive and Semlactive Dampers

Passive, | Passive,

Control Ein Ernex SA-1 SA-2 SA-3
(1) (2) (3) (4) {5) (6)
Xenax 0.89 0.59 0.70 0.70 0.70
Aax 0.95 1.55 1.15 0.95 1.09

Table 3 (Column 4) shows the average response ratios for
the structure with 7 = 3.0 s, where ¢ is adjusted to give a
displacement response ratio of 0.70 (¢ = 0.12). This ratio is
selected as a baseline for comparing the responses from the
three algorithms, Table 3 indicates that, compared with a pas-
sive damper with £, (Column 3), using the SA-1 algorithm
increases the relative displacement by 0.11 (11%) (the x,,.. and




a,.. in Table 3 are percentages of the uncontrolled response)
and reduces the absolute accelerations by 0.40 (40%).

Semiactive Generalized LQR Algorithm

This algorithm, referred to herein as SA-2, was introduced
by Yang et al. (1992) for active control of structures and is
adopted for semiactive control in this study. In this algorithm,
the cost function is augmented by imposing a penalty on the
absolute acceleration of each degree of freedom to control the
acceleration response of the structure. The generalized cost
function has the form

in which %,(¢) = absolute acceleration vector; and Q, (size n
X n) = symmetric positive semidefinite weighting matrix. If
the elements of Q, are larger than those of Q, reducing the
absolute acceleration vector ¥,(¢) has priority over reducing the
state vector z(f). The absolute acceleration vector X,(¢) is com-
puted from (2) as

X,(0) = Agz(n) + Bou(t) (n

where A, = [-M™'K, —M~'C] and B, = M™'D. Thus, the
cost function takes the form

4 T, T,
- T T Q + AQA, AQ.B, (1)
= f [z, u (')][ BIQA, R+ B§QaBo] [u(r)] a
(12)
Minimizing (12) subject to the constraint of (3) results in a
control force vector u(f) given by

u(p) = —% R'B™P + 2BIQ.Az() = Gz(r) (13)

where G (size m X 2n) = gain matrix; and P (size 2n X 2n)
is the solution to the classical Riccati equation which takes the
form

R=R + BIQB,, A=A -BR'BIQA, (I5ab)

Q=Q + AJQA, — AJQBR'BJQ.A, (15¢)

Similar to the SA-1 algorithm, the damping coefﬁcxent of
damper ¢ at time ¢ can be expressed as ,

E G.2(r)

w0 R
et = X0 - x(1) ’

where X,(f) = relative velocity between the ends of damper i.
Imposing the constraints in (1), the damping coefficient will

i=1,m (16)

Coini  CX(1) = Couny
cHB) Coms <CHI) < Conax,i an
Conax.t Cf(’) = Cornaxst

c(t) =

For a null Q, matrix, the SA-2 algorithm reduces to the SA-
1 algorithm.

The two SDOF structures with 7 = 0.2 and 3.0 s with a
variable damper were analyzed using the SA-2 algorithm. The
same scalar R = 1/K and matrix Q [(9)] with g = 0.5 for both
T=0.2s and T = 3.0 s are used in this example. It should be
noted that g = 0.5 results in a response approximately the same
as that using a passive damper with £... = 0.40 (see Figs. 1
and 2). For SDOF systems, Q, is a scalar and equal to g, which
reflects the importance of the reduction in the state vector z(¢)
or in the acceleration response vector ¥,(f).

The mean displacement and acceleration response ratios for
the two-SDOF structures subjected to the 20 accelerograms for
g, ranging from 10° to 15° for T = 0.2 s and 10’ to 10’ for T
= 3.0 s are shown in Figs. 3 and 4, respectively. The figures
indicate that for small g, the response with a variable damper
is close to that with a passive damper with &, = 0.40 (compare
Columns 2 and 3 of Table 2 with Fig. 3, and Columns 12 and
13 with Fig. 4). Fig. 3 indicates that for the structure with T =
0.2 s, increasing g, increases both the displacement and accel-
eration responses, and again the variable damper is not as ef-
ficient as a passive damper with a damping ratio £... = 0.40.

T [
PA + AP - 3 PBR™'B'P + 2Q=0 (14) - Fig. 4 indicates that for the structure with T = 3.0 s, the variable
damper is effective in significantly reducing the acceleration
in which response while slightly increasing the displacement response.
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FIG. 3. Varlation of Displacement and Acceleration Response Ratios with g, for SDOF Structure with T=0.28 Using Algorithm SA-2
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Shown in Table 3 (Column 5) are the mean response ratios
for the structure with T = 3.0 s, where g, is adjusted to give
a mean displacement response ratio of 0.70 (g, = 1.0 X 10°).
Table 3 shows that compared with a passive damper with £,
= 0.40 (Column 3), the SA-2 algorithm increases the relative
displacement by 11%, but it decreases the absolute accelera-
tions by 60% [the acceleration response is the same as that
with a passive damper with £, = 0.05 (see Column 2 of Table
3)]. This demonstrates the effectiveness of the SA-2 algorithm
in reducing the acceleration response.

Semiactive Displacement-Acceleration Domain
Algorithm

This algorithm, referred to herein as SA-3, is a refinement
of the bang-bang algorithm presented by Feng and Shinozuka
(1990, 1993). The refinement assumes a displacement-accel-

IJ'c;(t)l / Q

v

Ix(t)]

FIG. 5. Displacement-Acceleration Domain for Algorithm
SA-3
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eration domain (Fig. 5), where the horizontal axis represents
the relative displacement response and the vertical axis the
absolute acceleration response normalized to a reference pa-
rameter (1. This parameter, which has the unit of s72, is used
as a weighting factor to impose different penalties on the dis-
placement and acceleration responses. At any time ¢, the re-
sponse may be represented by a single point on the displace-
ment-acceleration domain. The angle 6(r) between the
horizontal axis and the line connecting the origin to the re-
sponse point (Fig. 5) is used to select the damping coefficient.
This angle is expressed as

EAGILY’
|x(®)]

A small 8(7) indicates a large displacement response with re-
spect to the normalized acceleration and consequently requir-
ing a higher damping coefficient. The opposite is true for a
large 6(z). It is therefore desirable to assign a large damping
coefficient ¢, for small 8 (0 = 6(r) = 8,) and a small damp-
ing coefficient c,,, for large 6 (w/2 — 0, < 8(¢) < w/2), where
the angle 8, is yet to be determined. A linear variation of the
damping coefficient with 0(?) is used for 0, < 6(f) < ©/2 —
8, (see Fig. 5). The damping coefficient may be selected as
follows:

8() = tan (18)

Crnin w2 — 0, =00 < w2
o) = { Cons = 5%"‘2—-—& [0() — 6] 0, < 8() < W2 — 8,
~ 29]
o 0sen =6  (19)

Eq. (18) indicates that increasing {) decreases 6(f), which re-
sults in selecting a large (7). Consequently, reducing the rel-
ative displacement has priority over reducing the absolute ac-
celeration. The opposite is true for decreasing {). The reference
parameter {1, therefore, reflects the importance of reductions
in displacements or accelerations.

Contrary to the first two algorithms (SA-1 and SA-2), which
depend on the structural properties (stiffness, damping, and
mass), the SA-3 algorithm depends on the measured response
only [(18) and (19)]. The SA-3 algorithm is, therefore, robust
with respect to the uncertainties in estimating the structural
parameters.

The two-SDOF structures with 7 = 0.2 and 3.0 s with var-
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iable dampers are analyzed using the SA-3 algorithm. Differ-
ent values for 8, were assumed. It was found that a 9, between
w/10 and 7/30 resulted in the largest reductions in the re-
sponse. The mean displacement and acceleration response ra-
tios for the 20 records for 8, = w/10 and for () ranging from
10" to 10° s 2 for T=0.2 s and 107 to 10* s> for T= 3.0 s
are plotted in Figs. 6 and 7, respectively. Figs. 6 and 7 indicate
that for a small {) the response is approximately the same as
that with a passive damper with &, = 0.05, and for a large {2
the response is nearly the same as that with a passive damper
with £,.. = 0.40 (compare Columns 2 and 3 of Table 2 with
Fig. 6, and Columns 12 and 13 with Fig. 7). Fig. 6 shows that
for the structure with 7 = 0.2 s, a semiactive control is inef-
ficient and that a passive damper with §,,, is more advanta-
geous.

Table 3 (Column 6) shows the mean response ratios for the
structure with T = 3.0 s, where the value of ( is adjusted to

give a mean displacement response ratio of 0.70 (2 = 8 s77).
Table 3 indicates that compared with a passive damper with
&ano the SA-3 algorithm increases the relative displacement by
11% and reduces the absolute accelerations by 46%.

Analysis and Comparisons of Algorithms

Based on the analyses and the results presented, the follow-
ing may be concluded:

1. Variable dampers are more effective than passive damp-
ers in reducing the seismic response of flexible structures
(defined in this study as structures with T = 1.5 s), where
increased damping has opposite effects on the displace-
ment and acceleration responses. Examples of these
structures include base-isolated structures, tall buildings,
and isolated and cable-stayed bridges. For rigid struc-
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ned in this study as structures with 7 < 1.5 s),
however, variable dampers are not effective in improving
the response as compared to passive dampers.

2. Based on the results in Table 3, the generalized LQR
algorithm (SA-2) is more effective in reducing the re-
sponse than the other two algorithms. The use of the SA-
2 algorithm results in an acceleration response nearly the
same as that with a passive damper with a low damping
ratio (Emm = 0.05), while the displacement response is
increased by only 11% compared with a passive damper
with a high damping ratio (£, = 0.40). The effectiveness
of the SA-2 algorithm results from the penalty imposed
on controlling the absolute acceleration response.

3. Both the SA-1 and the SA-3 algorithms result in similar
responses (Table 3). The SA-3 algorithm, however, is
somewhat preferable to SA-1, since it is inherently ro-
bust with respect to structural uncertainties.

APPLICATIONS

Two examples are presented to demonstrate the performance
of variable dampers in reducing the seismic response of struc-
tures. The first is a bridge modeled as an SDOF, and the sec-
ond is a six-story base-isolated frame modeled as an MDOF.

Bridge

A bridge modeled as an SDOF structure was used to assess
the effectiveness of the algorithms in reducing the seismic re-
sponse. The bridge is similar to that used by Feng and Shi-
nozuka (1990, 1993). It has a mass of 1.02 X 10° kg, a hybrid
control system consisting of an isolator with a stiffness 3,300
kN/m, and a variable damper. The damping ratio for the bridge
is assumed as 2%, and the damping coefficient of the variable
damper varies between Cp, = 150 kKN-s/m and cpu = 1,200
kN -s/m. The bridge was subjected to four accelerograms—
the N21E component of Taft Lincoln School Tunnel, Wheeler
Ridge Earthquake, 1954; the S74W component of Pacoima
Dam, San Fernando Earthquake, 1971; the 0° component of
the Corralitos Eureka Canyon Road, the Loma Prieta Earth-
quake, 1989; and the 90° component of the Arleta Nordhoff
Avenue Fire Station, the Northridge Earthquake, 1994-—each
scaled to a peak ground acceleration of 1.0g. The results of
the analyses with no control and with passive control (passive

Table 4 (Columns 2-7) that indicate that an increase in damp-
ing decreases the relative displacements and increases the ab-
solute accelerations.

The bridge with a variable damper was analyzed using the
three algorithms. For the SA-1 algorithm, the scalar R is set
equal to 1/K and the matrix Q is computed by (9). By varying
g, different combinations of displacements and accelerations
are obtained. Table 4 (Columns 8 and 9) shows the responses
for a g = 0.12, where it is observed that x,.. and a,. are
between those obtained with ¢ and Cp,.,. For the SA-2 al-
gorithm, the analysis was carried out with a ¢ = 0.6 and dif-
ferent values of ¢,. The results for a g, = 3 X 10° are shown
in Table 4 (Columns 10 and 11), where it is noted that the
displacement responses are close to (or even lower than) those
with ¢, and the acceleration responses are close to those with
Cuin- For the SA-3 algorithm, the analysis was carried out for
8, = w/10 and different ) values. The results presented in
Table 4 (Columns 12 and 13) are for an ) = 7 s™% Similar to
the SA-1 algorithm, the responses are between those with a
low and a high damping coefficient. The results in Table 4
underscore the advantage of using the SA-2 algorithm.

Base-Isolated Frame

A six-story base-isolated frame was considered to examine
the effectiveness of the three algorithms in reducing the dis-
placement and acceleration responses of an MDOF structure.
The column stiffnesses are &, = 3 X 10* kN/m, floor masses
m; = 1.0 X 10’ kg, and the damping ratio is assumed to be
5% in each mode. The frame is supported at its base by an
isolator with a linear stiffness &, = 9,000 kN/m, a mass m, =
1.4 X 10° kg, and a variable damper with damping coefficients
between ¢, = 100 kKN s/m and ¢y, = 900 kN - s/m. Tables 5
and 6 show the responses with passive dampers to the S74W
component of Pacoima Dam, San Fernando Earthquake, 1971;
and the N21E component of Taft Lincoln School Tunnel,
Wheeler Ridge Earthquake, 1954; both scaled to a peak
ground acceleration of 1.0g. Tables 5 and 6 indicate (Columns
2-7 in each table) that an increase in the damping coefficient
of the isolator decreases the displacements and increases the
absolute accelerations.

The frame was also analyzed with a variable damper at the
base using the three algorithms. For the SA-1 algorithm, the

TABLE 4. Response of Bridge with No Control and with Passive and Semlactive Dampers

No Control Passive, Cun Passive, Grax SA-1 SA-2 SA-3
xﬂ\l)( aﬂ‘\ll xmlx aw x’t\.! am Xmax am‘l xle amm( x"\ll am-x
Control (m) ) (m) (9 (m) )] (m) (9) (m) (@ (m) (9)
(M 2 (3) 4 ) (6 7) 8) (9) (10) (11) (12) (13)
Taft, 1954 0.250 0.083 0.236 0.085 0.181 0.137 0.199 0.122 0.175 0.079 0.197 0.125
Pacoima Dam, 1971 0.170 0.056 0.144 0.050 0.114 0.086 0.118 0.074 0.106 0.048 0.116 0.074
Corralitos, 1989 0.297 0.098 0.246 0.083 0.157 0.137 0.183 0.107 0.151 0.088 0.182 0.091
Arleta, 1994 0.488 0.161 0.411 0.143 0.308 0.218 0.140 0.195 0.350 0.128 0.358 0.185
TABLE 5. Response of Six-Story Base-Isolated Frame to Pacoima Dam Accelerogram
Passive, Gun Passive, Cnax SA-1 SA-2a SA-2b
Xﬂ'\l! amu Xﬂ'\lx arnlx &P\IX a"!ll &T\IX amcx xﬂ"lx aﬂ\l!
Level (m) (9) (m) (9 (m) (9) (m) (9) (m) (9)
(1) (2) (3 (4) (5) (6) @) (8 9) (10) (11)
Top 0.150 0.256 0.115 0.302 0.136 0.282 0.115 0.266 0.116 0.242
5 0.150 0.245 0.115 0.279 0.136 0.263 0.115 0.246 0.116 0.230
4 0.149 0.226 0.114 0.258 0.135 0.238 0.114 0.227 0.115 0.226
3 0.147 0.203 0.114 0.213 0.134 0.213 0.113 0.198 0.114 0.204
2 0.145 0.208 0.112 0.223 0.132 0.212 0.112 0.211 0.112 0.200
1 0.143 0.212 0.111 0.245 0.130 0.224 0.110 0.224 0.110 0.210
Base 0.139 0.212 0.108 0.261 0.127 0.239 0.107 0.235 .0.108 0.223
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TABLE 6. Response of Six-Story Base-Isolated Frame to Taft Accelerogram

Passive, Cnn Passive, Cmex SA-1 SA-2a SA-2b

Xinax Bmax Xerax Armax Bmax Xinax max Xax Bmax

Level (m) (9 (m) (9 (9) (m) (9 (m) (9
(1) (2) (3) 4 (5) (7) (8) 9) (10) (11)
Top 0.170 0.337 0.141 0.428 0.161 0.370 0.134 0.378 0.136 0.396
5 0.169 0.311 0.140 0.392 0.160 0.340 0.133 0.370 0.135 0.374
4 0.167 0.273 0.138 0.322 0.158 0.286 0.132 0.324 0.134 0.336
3 0.164 0.278 0.135 0.326 0.155 0.305 0.129 0.319 0.132 0.333
2 0.161 0.308 0.132 0.392 X 0.357 0.127 0.345 0.129 0.346
1 0.157 0.33+ 0.128 0.432 0.147 0.384 0.124 0.362 0.127 0.343
Base 0.153 0.351 0.124 0.447 0.143 0.404 0.121 0.360 0.124 0.330

R matrix is a scalar and is set equal to 1, and the Q matrix is
computed from (9). Similar to the SDOF case, different dis-
placement and acceleration responses are obtained by varying
q. Columns 6 and 7 of Tables 5 and 6 show the responses
when g = 700, where the absolute accelerations are reduced
and the displacements are increased when compared with the
response with a passive damper with ¢

For the analysis using the SA-2 algorithm, R is set equal to
1, and the matrix Q is computed from (9) using g = 5,000 that
results in a response approximately equal to that with a passive
damper with cq,.. The Q, matrix is selected as

Q. =q.l (20)

where I = identity matrix (size 7 X 7). By varying g, different
penalties can be imposed on the state and acceleration vectors.
It was found that with g, = 1.5 X 10°, a displacement close
to that obtained with a passive damper with damping coeffi-
cient ¢, and an absolute acceleration close to that obtained
with damping coefficient ¢, were obtained as shown in Tables
5 and 6 (Columns 8 and 9). To further reduce the acceleration
response of the isolator, a higher penalty was imposed on its
absolute acceleration by changing the element that corresponds
to the isolator acceleration in the identity matrix—Element
(7,7)—to a larger number (7 instead of 1) and using a g, =
10°. This change resulted in a further reduction in the accel-
eration response of the frame as shown in Tables 5 and 6
(Columns 10 and 11).

A similar analysis was performed to investigate the effec-
tiveness of SA-3 algorithm for the base-isolated MDOF struc-
ture, where the displacement-acceleration domain was defined
using the isolator response. The analysis (results are not in-
cluded) showed that the algorithm was not effective, and the
accelerations obtained were greater than those using a passive
damper with damping coefficient €pua.

CONCLUSIONS

The overall objective of this study was to investigate the
effectiveness of variable dampers in reducing the response of
structures to earthquake loading. Three semiactive control al-
gorithms are presented and compared. They include: (1) an
LQR algorithm referred to as SA-1 that has been used exten-
sively in active and semiactive control of structures; (2) a gen-
eralized LQR algorithm referred to as SA-2 with a penalty
imposed on the acceleration response that was introduced by
Yang et al. (1992) for active control and adopted in this study
for semiactive control; and (3) a displacement-acceleration do-
main algorithm referred to as SA-3, where the damping co-
efficient is selected based on the location of the response pa-
rameters on the displacement-acceleration plane.

Two-SDOF structures (a flexible and a rigid) were analyzed
with the three algorithms using 20 accelerograms for the ex-
citation. The results indicate the following:

1. Variable dampers can be effective in reducing the accel-

eration response and consequently seismic forces in
flexible structures, such as base-isolated and tall build-
ings and isolated and cable-stayed bridges, where an in-
crease in damping adversely affects the acceleration re-
sponse. Variable dampers, however, are not effective for
rigid structures as compared to passive dampers.

2. The SA-2 algorithm is more efficient than the other two
in reducing the displacement and acceleration responses.
The efficiency of this algorithm is mostly due to the pen-
alty imposed in controlling the absolute acceleration re-
sponse.

4. The SA-1 and SA-3 algorithms result in similar effi-
ciency in reducing the response of SDOF structures, al-
though the SA-3 algorithm is more robust.

The three algorithms were used to compute the seismic re-
sponse of an isolated bridge modeled as an SDOF structure
and a base-isolated frame modeled as an MDOF structure. The
results indicate that for these two structures, which can be
classified as flexible, variable dampers are quite effective in
reducing the displacement and acceleration responses. The SA-
3 algorithm, however, is not effective for MDOF structures.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:
A = system matrix;

Q. = Maximum absolute acceleration response;
B = control force location matrix in state-space;
C = damping matrix;

c(t) = damping coefficient of variable damper;

Cmax = Maximum damping coefficient;

Cmin = minimum damping coefficient;

D = control force location matrix;
G = gain matrix;

g = gravity acceleration;

H = excitation location matrix in state-space;
I = identity matrix;

J = performance index;

K = stiffness matrix;

k, = isolator stiffness;
M = mass matrix;

m = number of dampers;
m, = isolator mass;

n = number of degrees of freedom;
P = Riccati matrix;

Q = weighting matrix;
Q. = weighting matrix;

g = parameter or multiplier;

q. = parameter or multiplier;

R = weighting matrix;

T = natural period;

t = time;

f, = duration of excitation;

u = control force vector;

x = displacement vector;

%, = absolute acceleration response vector;
X, = ground acceleration;

Xmax = maximum relative displacement;
Z = state vector;

0(¢) = angle defining response in displacement-acceleration do-

main;

&« = maximum damping coefficient of variable dampers;

&me = minimum damping coefficient of variable dampers; and
Q = reference parameter.




