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Abstract

The Modified Compression Field Theory (MCFT) is used to study the effect of shear friction and
biaxial softening on the computed shear strength of reinforced (RC) or prestressed concrete (PC)
beams. A comparison is presented of the various relationships that have been proposed to represent
the shear friction behavior of cracked reinforced concrete. A decrease in shear friction within the
range of experimental data, as found for example in high strength concrete, can lower the shear
strength of beams with minimum shear reinforcement by 15 % to 25 %, according to the MCFT.

In addition, a comparison is presented of different relationships used to represent the biaxial
compression-tension strength of reinforced concrete for RC and PC beams. Some theories of biaxial
softening of concrete do not predict concrete crushing even for very high deformations, but rather
show significant shear force gain after stirrup yielding and crack slipping. For the RC beam example,
some theories predict shear tension failure while others predict diagonal compression failure.
However, the first peaks of shear load, which occur close to stirrup yielding and crack slipping are
within 10% of one another for the various theories and within 10 % of the test value for the PC beam.

Introduction

The importance of aggregate interlock, or shear-friction, across shear cracks as one of the
mechanisms of shear resistance in reinforced concrete (RC) beams has been recognized for quite some
time (Fig.1 adapted from MacGregor 1992 and from the Joint ASCE-ACI Task Committee 426
Report on Shear and Diagonal Tension 1973, 1990). However, traditional ACI beam design equations
for shear (ACI 318-95) do not take explicit account of shear friction, but rather lump it together with
other factors such as dowel effect, and the shear carrying capacity of the compressed part of the
beam, into the concrete contribution term V, .

In the last 20 years, more rational methods for shear strength calculation have been able to explicitly
account for the contribution of shear friction across cracks in resisting shear. One noteworthy
method, which has now been adopted in the Canadian Code (CSA A23.3-94), the Norwegian Code
(NS 3473 E 1992) and the AASHTO LRFD Bridge Design Specifications (1994), is the Modified
Compression Field Theory or MCFT (Vecchio and Collins 1986, Collins and Mitchell 1991).




Another aspect of shear cracks is that they also weaken the concrete struts. The presence of
transverse tensile stress and strain lowers the corncrete compressive strength below its uniaxial
strength (softening). The MCFT provides a means to evaluate the effect of this softening on the shear
strength of RC beams.

Following reviews of the MCFT, and other works on shear friction and biaxial softening, this paper
presents the results of a parametric study that determines the effects of changes in shear friction and
concrete softening on the shear strength of RC and PC beams, as predicted by the MCFT.

Research Significance

The shear strength of RC and PC beams remains an active area of research, especially with the advent
of high strength concretes, which are beginning to exceed the data base (largely below 40 MPa) of
the ACI design equations. The current ACI Code shear design equations limit f°,to 69 MPa, although
higher strength concrete is allowed, provided the minimum shear reinforcement is increased
accordingly. In the last 20 years, rational methods have been developed, which incorporate the
knowledge of the friction laws of shear cracks and the softening of concrete under biaxial
compression and tension. This paper studies the sensitivity of the shear strength of RC and PC beams,
computed according to the MCFT, to softening models and changes in shear friction, with a view of
clarifying future research directions aimed at codifying the use of high strength concrete in structures.

Review of the Modified Compression Field Theary (MCFT)

The MCFT is a rational theory capable of predicting the strength of reinforced and prestressed
concrete beams under shear and axial loading. It is rationa!l in the sense that it satisfies equilibrium
of forces and moments, compatibility of displacements, and the stress-strain relationships of concrete
and reinforcing steel. One of the simplifying assumptions of the MCFT is that the principal directions
of stress and strain coincide. According to the MCFT, the shear strength ¥ of a RC beam is the sum
of a steel contribution V, and a concrete contribution V, . The steel contribution is based on the
variable angle (8) truss model, whereas the concrete contribution is the shear resisted by tensile
stresses f, in the diagonally cracked concrete. See Fig. 2. The concrete tensile stress £, is zero at
cracks and reaches a maximum halfway between cracks. (The notation is explained in Fig. 2 and at
the end of the paper).
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The concrete contribution, which depends on f,, is a function of the shear that can be transmitted
across cracks by aggregate interlock. Indeed, after yielding of the transverse reinforcement,
transmittal of fension across cracks requires local shear stresses t along cracks. The ability of the
crack interface to transmit the shear stress T depends strongly on the crack width w. Vecchio and
Collins (1986) allowed for the possibility of local compressive normal stress o across cracks. Based
on Walraven and Reinhardt’s (1981) experimental results, they suggested the following parabolic
equation to relate t to o (Fig. 3 from Vecchio and Collins 1986).
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Thus, 1, , the maximum shear stress transmissible across a crack is a function of the crack width w,
the concrete strength /°, and the maximum aggregate size c. As the normal stress o across cracks
increases, so does the shear stress T, but not quite as steeply as a linear relationship with a cohesion
term.

It turns out that o is negligible and Equation (2a) is simplified in later versions of the MCFT to
(Collins and Mitchell 1991):

T =018, 3)
The MCFT assumes a parabolic relationship (Hognestad 1952) to describe the stress-strain behavior
of concrete in compression:
/. € g,)?
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where €, is the strain at peak uniaxial stress and f,,,... . which is the compressive strength of concrete
panels in biaxial tension (direction 1) - compression (direction 2), depends on the transverse tensile
strain £,. A softening parameter (3 is defined as the ratio of £, to the uniaxial cylinder compressive
strength f°,. See Fig. 8b.
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Equation 5 was derived from panel tests with a mean ratio of test values to equation predictions of
0.98 and a coefficient of variation for the same rati> of 0.16.
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0.80 + 170¢, ©)
Equation 6 is used in the Canadian Code (CSA 1994). Thus, the principal compressive stress in the

concrete f, is a function, not only of the principal compressive strain €,, but also of the co-existing
principal tensile strain €,

For g, = 0.002, B =



Review of shear friction

Walraven and Reinhardt (1981), and Walraven (1981) performed some important work on the
constitutive relations of shear cracks in concrete. Their work accounts for aggregate interlock, dowel
action and axial tension of the reinforcement crossing a shear crack, combines experiment and theory
and shows good agreement between the two.

Direct shear tests with no bending were conducted on precracked, push-off, rectangular specimens
400 x 600 x 120 mm with a shear area of 300 x 120 mm. The two applied loads were collinear with
the crack, and wedges on the upper and lower faces of the specimen channeled the loads to either side
of the crack (Fig. 4). The specimens were either internally or externally reinforced, with the cube
strength (f,. ) of concrete ranging from 20 to 56 MPa, and included a lightweight concrete and one
mix with a discontinuous grading of aggregate size (no aggregate between 0.25 mm and 1.00 mm.
The other mixes had a distribution of aggregate sizes). The reinforcement ranged in ratio from 0.56%
to 3.35% and in inclination from 45° to 135° to the crack plane. In one series of experiments, the
reinforcement bars were covered with soft sleeves extending 20 mm on both sides of the crack to
eliminate dowel action. During the tests, crack displacements were recorded versus the applied shear
force. In addition, for the externally reinforced specimens, the (normal) restraint force exerted by the
reinforcement crossing the plane of the crack was measured. Thus, curves of shear stress and normal
stress versus crack slip for various values of crack width could be plotted for the externally reinforced
specimens (Fig. 5). Walraven and Reinhardt (1981) noticed that the behavior of the internally
reinforced specimens was totally different from that of the externally reinforced ones. The crack
displacement path (curve of crack width versus crack slip) was much more sensitive to the stiffness
of the reinforcement for the externally reinforced specimens than for the internally reinforced ones.
Nevertheless, Walraven and Reinhardt used the same model of aggregate interlock for both types of
specimens. In addition to aggregate interlock, the shear crack model of the internally reinforced
specimens also included the dowel action of the reinforcement and its bond to concrete.

The analytical model of aggregate interlock assume: the concrete to be composed of two phases: a
rigid, perfectly plastic mortar and rigid spherical aggregates of various sizes (Fig. 5b). Knowing the
volumetric ratio of aggregate to concrete and the size distribution of the aggregate, one can work out
the average number of aggregate particles encounter:d by a crack of a given length. The portion of
the mortar that interferes geometrically with the aggregate when the crack faces open and slide with
respect to one another is assumed to yield, thus er.gendering normal and shear stresses which are
related by a coefficient of friction p. Equilibrium is related to frictional sliding and crushing of matrix
material along the projected contact areas a, and a,. These depend on the crack slip v and opening
w and the mix proportions (maximum aggregate size and volumetric percentage of aggregate). The
constitutive equations for the analytical mode! of the cracked specimens are:

0 =0, .- pAy) and T =0, (Ay+pr) (7)

where A,=Y a,and A, =Y a, depend on the crack width w, the crack slip v, the maximum particle
diameter ¢ and the total aggregate volume per unit volume of concrete (Fig. 5b and c). The strength

of the mortar g, , assumed to be elastic-perfectly p'astic (Fig. 5a), and the coefficient of friction p



between mortar and aggregate were found from fitting curves to the experimental results:
 §=040 and 0, =639 in MPa ®)

Physically reasonable values can be found that fit all experimental curves well, thus lending credibility

to the theory. (The indeterminacy of the fwo parameters p and o,, in Eq. 7 means that swo curves

such as those shown in Fig. 5d can always be fitted well. The credibility of the theory lies in the good
fit of all the curves.) _

After performing further tests of 88 push-off, internally reinforced specimens with compressive
strengths ranging from 17 to 60 MPa, Walraven, Frénay and Pruijssers (1987) developed the
following empirical expression for the shear friction capacity of internally reinforced cracks as a
function of concrete strength and amount of reinforcement, but not of aggregate size :

Tmax = Cl(pvj:v)cz (9)

in which C,= 0.822f.%% and C,=0.1591."* inMPa

f..is the concrete compressive strength of 150 mm cubes, and p, and f, are the cross-sectional area
ratio and yield strength of the shear reinforcement. Comparison between theoretical values of t,,.,
according to Eq. 9 and experimental results by Hofbeck, Ibrahim and Mattock (1969), Walraven and
Reinhardt (1981), Frénay (1985), Pruijssers and Liqui Lung (1985) produced excellent agreement
(mean of 1.001 and standard deviation of 0.109 for the ratio experimental / theoretical values).

Mau and Hsu’s formula (1988) works well for the shear capacity of cracks in normal strength

reinforced concrete:
T
= = 066y <03 with © = p“/f’ .
Je e
When applied to the same test results, Eq. 10 performed almost as well as Eq. 9 and is much simpler

to use (mean = 1.019, standard deviation = 0.127 for the ratio experimental / theoretical values).
Again, aggregate size is not a factor.

(10)

Since crack surfaces are smoother in high strength concrete (HSC) than in normal strength concrete
(NSC) - cracks tend to go through the aggregate in HSC whereas they go around the aggregate in
NSC - one would expect a decrease in shear friction as the concrete strength increases. This is
indeed the case, as was borne out by shear friction tests on precracked, push-off specimens made of
concrete with a cylinder strength of 100 MPa or a cube strength of 115 MPa (Frénay et al. 1987,
Walraven and Stroband 1994, Walraven 1995). Shear-friction at a given crack slip and opening for
HSC (say 100 MPa) is reduced to 35% of its value for NSC (say 40-60 MPa) for externally
reinforced specimens, and in the range of 55% - 75% for internally reinforced ones. The constitutive
equations of the model for cracks in HSC are then:

6 =ko, A, - uAy) and T = kapu “,+ HA,) (11)
with k = 0.35 for externally reinforced HSC and & = 0.65 for internally reinforced HSC.




Besides the MCFT, other theories of beam shear strength also use Walraven’s experimental results

to account for shear friction. Reineck (1982, 1991) used the following constitutive equations for the

friction of crack faces:

+170 =Ty y-024w
0.096w + 0.01

T =1, MPa, mm (12)
The cohesion friction stress Ty, is the limiting value of shear strength without normal stress ¢ on the
crack face:

w
o ='0'45f‘(1—-(-)__9) - MPa, mm (13)

where f, is the concrete tensile strength.

Kupfer and Bulicek (1991) used the following relationships from Walraven and Reinhardt (1981):

T = e + (1 8 w8 + (0234 w0 - 0.20) fcc)v >0

;0 (14)
Jee _ (1-35 w08 4 (0191 w0552 - O.lS)fcc)v <0

where the units are MPa and mm.

Earlier, Kupfer, Mang and Karavesyroglou (1983) used:

7 =0.117 - 0.085 v forcase a: v=w
c v (15)
7 = 0017 + 0.1 — - 0.085v forcaseb: v=w

w

These equations were based on earlier work by Walraven and derived from experiments performed
on concrete with compressive strength of 25 MPa and for v > 0.20 mm. In beams, case (a) arises
when the average strain of both flanges equals the longitudinal component of the normal strain of the
compression struts. This situation occurs in prestressed beams. In case (b), the average strain of both
chords is zero. '

Poli, Prisco and Gambarova (1990) used a “rough crack model” (BaZant and Gambarova, 1980) to
describe aggregate interlock in their theory of beam shear strength:
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where
a,=98/f' a,=244-39/f' and r=viw.

In earlier work based on tests by Paulay and Loeber (1974), BaZant and Gambarova (1980) suggested
the following formulas, which were later updatcd to Eq. 16, for shear stress T and normal
compressive stress 0 in cracks of concrete members, as functions of crack opening w and slip v :

3
a,+a,|r
= - 0534 (145 It[) and t=1t - ara,lrl” N-mm units
1000 w 1+a,rt
\ ! a7
with t_=0245f — S and p=130[1- 0.231
c? + 100w? 1+0.185w +5.63w?
where
a,=10/1"’ a,=244-398/f’ and r=v/w.

A comparison of various relationships for shear and normal stresses versus crack slip for two crack
openings (w = 0.5 or 0.8 mm) is shown in Fig. 6. The curves are based on f,.= 59 MPa, f’, = 50.2
MPa, f,=3.5 MPa, and ¢ = 16 mm. Also shown are experimental data from Walraven and Reinhardt
(1981). The following can be observed:

» Walraven and Reinhardt’s (1981) Eqs. 14 are a good approximation of their experimental data
in the linear range. However, the equations neel to have a cap so shear and normal stresses do
not increase indefinitely as crack slip increases.

* Reineck’s (1991) Eqs. 12 and 13 also need to have a cap. They approximate the experimental
data well for a crack width of w = 0.5 mm, but not forw= 0.8 mm .

* Poli, Prisco and Gambarova ’s (1990) Egs. 16 and Bazant and Gambarova ’s (1980) Egs. 17
follow the general trend of the data, but there are significant deviations from Walraven’s
experimental data. A fine tuning of the parameters of the models could bring better agreement.

¢ Kupfer, Mang and Karavesyroglou’s (1983) Eq. 15b is based on weaker concrete and does not
agree well with Walraven and Reinhardt’s (1981) experimental data.

Review of Concrete Softening
The web of reinforced concrete beams under shear is in a state of biaxial tension-compression. The
presence of simultaneous transverse tensile strain leads to a deterioration of the compressive strength

of cracked concrete (Fig. 7). This softening behavior has been investigated in panel tests.

Vecchio and Collins (1993) reviewed various models of compression softening of cracked reinforced
concrete panels due to transverse tension. The following is adapted from their review. In an early




study, Vecchio and Collins (1982) expressed P as a function of the ratio of the principal strains:

_ 1
b= Sss0arere, (1%)

where ¢, is the principal tensile strain, averaged over several cracks. Vecchio and Collins used
Hognestad’s (1952) parabola for the uniaxial compressive stress-strain curve of concrete. Both peak
stress f”, and its associated strain &, were multiplied by B (Fig. 8a). Good agreement was found with
178 experimental data points (mean ratio = 1.01, coefficient of variation = 0.15).

Kollegger and Mehlhorn (1987, 1990) concluded that the effective compressive strength did not
reduce beyond 0.8 £,’ and that the prime influencing factor appeared to be the principal tensile stress
£, rather than the principal tensile strain €,. The value of B was given as follows, for different values
of normalized tensile stress:

for 0s<f,/f,<025 p=10

for 025<f,/f, <075 B =11-04F%,1f, (19)
and for 075 < f,,/f, < 1.0, P =08.

They based their conclusions on 55 panel tests which had the tension-compression loads applied
parallel to the reinforcement in most tests, but with some applied at 45°.

Miyahara et al.(1988) proposed a softening model based on the principal tensile strain:

for £, 00012, Pf=10
for 0.0012 <g, <0.0044, P=115-125¢, (20)
and for 0.0044 <¢,, B =0.60.

The degree of softening is much less than that predicted by Vecchio and Collins.

Shirai and Noguchi (1989) and Mikame et al. (1991) proposed the following relationship for the

softening parameter:
1

" 027 +0.96 (¢,/8,) 1 @1

They noted that the softening is greater for HSC than for NSC.

For HSC, Ueda et al.(1991) proposed the following:

1
B =
0.8 + 0.6 (1000 g, +0.2)*¥

(22)

Vecchio and Collins (1993) updated their model as fotlows: their new base uniaxial stress-strain curve
is the Thorenfeldt (1987) curve (Fig. 8c), which is more appropriate for HSC (more linear in its pre-
ultimate response) than Hognestad’s parabola (Fig. 8a). The parameters for the Thorenfeldt curve



were determined by Collins and Porasz (1989):

n(-¢g,/e,)
Sotvae = 2
c2base P n-1- (—ezlsp)"" (23)
where » = 0.80 + £,/17 (MPa)
k = 1.0 for -g, < e, <0,
k = 0.67 + f,/62 (MPa) for g <- (24)
A = maximum compressive stress for softened concrete

Equations 23 and 24 are used with f, =B /.’ and €, = €, = strain in uniaxial compression at peak
stress f.". The base stress-strain curve is modified in two possible ways:

Model 4 uses strength and strain softening, i.e., both peak stress and its corresponding strain decrease

(Fig. 8c):

p=—1
10+K.K, (25)

8 0.80
where K, 035( - 028] 210 for ¢ <eg,, and
£, :

K, = 0.1825 /7! (MPa) > 1.0.

g,, is the limiting tensile strain in the concrete at which the reinforcement at a crack begins to yield
and the concrete suffers little additional cracking. The curve is divided into three parts:

Pre-peak: For -g,<Peg,, f., is calculated from Eq. 23 with £, = Bf,’ and ¢,= Pe,;

Peak: For fe, < -€, < &, f,=f,=Pf.’; and

Post-peak: For -&,> €;, f.,= B /.60 With f54., calculated from Eq. 23 using f,=/."and &,= g,
Note that K> 1 for f°.> 30 MPaand K, > 1 for-¢,/ ¢, 2 4.

Model B uses strength only soﬁening (Fig. 8d):
B = where K, = 0. 27( - 0. 37] (26)
€

1+K

In a later update, Vecchio, Collins and Aspiotis (1974) conducted 12 shear tests of panels 890 mm
x 890 mm x 70 mm made of 55 MPa concrete. The panels were reinforced by two orthogonal grids
at 45° to their edges. Results show that the compression-softening formulation developed for normal
strength concrete elements apply equally well to HSC elements. Now Model B also has a K factor:

K, = 255 - 02629/ f/ (MPa) < 111 @7

Both models agree well with experiments, with the updated Model B being slightly superior.




Belarbi and Hsu (1991) also used Hognestad’s parabola as a basis and suggested one softening
parameter for stress and another for strain:

S99 g op =)

Po ‘/l +K g ‘/l +K € (28)

where K, and K, depend on the orientation ¢ of the cracks to the reinforcement and the type of
loading in the biaxial test as follows: v
Proportional Loading Sequential Loading

¢ KO Kt KO Kl
45° 400 160 400 160
90° 400 550 250 0

In a later paper, Belarbi and Hsu (1995) presented the results of tests of 22 panels 1400 x 1400 x 178
mm under biaxial tension-compression. The panels had a concrete strength of 40 MPa, minimal
reinforcement (0.54%) in the compression (transversz) direction and various reinforcement ratios in
the tension (longitudinal) direction. For a non-softened, standard cylinder, stress is a parabolic
function of strain as in Hognestad’s equation. The following stress-strain relationship is proposed for
softening (see Fig. 8a):

For ¢, < Bg, [y = ch’ 2(i) —[—ei-]zl

For ¢,>Pe, f,=Bf |1- P, (29)

[

B 0.9

\/_1-+Koel

where K, = 400 for proportional loading,

250 for sequential loading with some tension release just prior to failure.
K, = 400 is usually chosen for structural elements. This softening is less severe than that proposed
by Vecchio and Collins (1986). This may be attributed to the orientation of the reinforcements: 45°
to the principal directions for Vecchio and Collins and parallel to the principal directions for Belarbi
and Hsu (1995) . The amount of reinforcement, especially transverse, is therefore also different
between Vecchio and Collins on the one hand and Belarbi and Hsu on the other.

Tanabe and Wu (1991) presented some Japanese experimental results for biaxial tension-compression
and the corresponding softening coefficient. Maekaw and Okamura proposed the following softening

coefficient, based on measurements of reinforced cylindrical specimens under axial compression and
internal pressure:

10



B=10 for g, <e¢,

Tl

B=10-04

for ¢, < ¢ <¢g (30)

€ p28a
B =06 for €, <e¢,

where £, =0.0012 and ¢, =0.0044.

Shirai performed tests of small reinforced panels and proposed:

- (9-3-1-] tan” (4820¢, - 11.82) + 0.84

B, =
T

B, = -59 2L + 10 31
b

B=B *h

Some researchers have opted for a constant softening factor. Kupfer, Mang and Karavesyroglou
(1983) used an experimental softening factor of 0.85 coupled with a sustained load factor of 0.80:

.2,
f., =080x085x7 = ;fc (32)

Kupfer and Bulicek (1991) used:

f,=f,x08 x075}|1 - /e MPa (33)
250
where 085 = factor for sustained load,
075 = factor for irregular crack trajectory, and
(1-/.7250) = difference between cylinder strength and uncracked concrete prism.

For Reineck (1982, 1991) the strength of the web struts is not lower than
f., = 0807 . (34)

In a recent paper on beam shear strength, Prisco and Gambarova (1995) used Hsu’s (1993)
formulation. To account for the effects of transverse reinforcement in tension, the concrete strength
is reduced in one of two possible ways:

f,= 075f
0.9/, 1! (35)
or = — 2 =
1+600e, 2

11




As can be seen from the wide variety of formulations, a consensus has yet to be reached among
researchers on whether the concrete softening parameter is constant, or dependent on the average
principal tensile stress or strain. The question this paper addresses is, how do these various
formulations affect beam shear strength. The tool used for this purpose is the MCFT.

Parametric Study

As mentioned in the preceding review, the MCFT accounts for shear transfer across cracks, and
concrete softening due to the biaxial state of tension-compression in the web of beams loaded in
shear. Since many different formulations for shear friction and concrete softening exist, a parametric
study is performed using the MCFT to determine the influence of these two factors on beam shear
strength. For this purpose, the computer program “SHEAR” and two example beams (Fig. 9) are
adapted from Collins and Mitchell (1991). SHEAR can predict the load-deformation response of
reinforced or prestressed concrete beams subjected to shear or shear combined with axial load. At
each step, the user inputs a value of principal tensile strain €, and the program assumes a strut angle
0, then computes strains, loads, crack widths, etc. according to a 17-step procedure used by Collins
and Mitchell (1991) to implement the MCFT. In particular, Egs. 3, 4 and 6 are coded into SHEAR.
If convergence is not achieved, another value of © is tried. The program stops when equilibrium
cannot be achieved after a specified number of iterations, due to concrete crushing or all
reinforcement yielding.

Table 1: Measured and Predicted Shewr Strength (kN) of PC Beam CF1

Support Face h/2 away | Midspan
TEST 430
SHEAR 473
ACI 443 498
RESPONSE 342 400
DUALSECTION 369 423
AASHTO 373 . 389

The base case (F=1t /1T, = 0.18, p,= 0.61 %) corresponds to a PC beam tested by Arbesman and
Conte (Fig. 9a, b) and used as an example by Collins and Mitchell (1991). The measured strength of
the beam was 430 kN versus a prediction of 473 kN by SHEAR, which only accounts for shear and
axial forces, but not bending. The result of SHEAR would hold here for the middle of the test span
where the bending moment is zero, and is therefore comparable to the ACI sum of web-shear
cracking and stirrup capacity, ¥,,,+ ¥, = 325 + 173 = 498 kN. This value would apply here to a
section at a distance 4/2 of half the section depth from the support face. On the other hand, at the
support face of the test span - moments are highest at the support and at load 2P - the ACI sum of
flexure-shear cracking and stirrup capacity, ¥, + ¥, = 270 + 173 = 443 kN, provides a good

12




prediction of the failure shear load and the location of the failed section. More refined versions of the

MCFT have been implemented in computer programs capable of handling shear, axial forces and
handino moments RESPONSE nrprlmn a shear strenoth of 342 kN at the support face and 400 kN
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a distance A/2 away. The more accurate DUALSECTION predicts a shear strength of 369 kN at the
support face and 423 kN a distance 4/2 away. The AASHTO tables, which are based on the MCFT,
predict a shear strength of 373 kN at the support face and 389 kN a distance A/2 away. See Table 1.

Shear Frict

As mentioned above, shear friction enters into the MCFT as a parameter F =1t/ 1, =0.18 witht_
a function of crack width w and maximum aggregate size ¢ (Eqs. 2b and 3). This shear friction
parameter was varied from a low value of 0.35 x 0.18 = 0.063 to a high value of 1.5 x 0.18 = 0.27.
Computer program SHEAR was modified by varying F.

Shear Friction of PC Beams

Fig. 10a, b and ¢ show the computed shear force V versus crack width w relationship for a concrete
strength of f’, = 38.6 MPa, various combinations of shear friction parameter (¥ = 0.063, 0.18, or
0.27), and area of shear reinforcement ( p, = 0.12%, 0.28%, 0.61%, or 1.11%). The shear
reinforcement uses #2 bars (smooth, ¢ = 6 mm) at 355 mm or 152 mm spacing, #3 or #4 bars
(deformed, ¢ = 9.5 or 13 mm) at 152 mm spacing. As the shear reinforcement varies, so does its
crack control characteristics (s, , S,,) which must be input into the program (Table 2). The shear
reinforcement obeys ACI design guldelmes

Table 2 Stirrup and Crack Spacing for PC Beam

Stimupbar# |smm |p, % |Ss, mm |5, mm
2 (smooth) 355 0.12 414 1252
2 (smooth) 152 0.23 414 602

3 152 0.61 414 295
4 152 1.11 414 246

Maximum shear reinforcement ratio (ACI § 11.5.6.8):

8 /
< JZ Ib, inch system

o b,s
A, 07f, /336
or p,=—% JZ 0.7¢y336 _ 129 N, mm system
b,s j; 367
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Maximum stirrup spacing (ACI § 11.5.5.4):

4 | l b
s < —‘{1 ﬂd 7‘" Ib, inch or N, mm systems

j;u Ap:
64.5x367 80 559 | 152 . 355 mm
1682 926 359

or (ACI § 11.5.4.1);
s £ 075h = 0.75%610 = 457 mm

Minimum shear reinforcement:
50

p, 2 — Ib, inch system
y
or p,2 0345 _ 0345 _ 0.094 % N, mm system
J, 367

In all cases, failure was by shear compression (concrete crushes, symbol ¢ in curves), preceded by
stirrup yielding (symbol y) and crack slipping (symbol s). The program was run until failure, even
after crack widths had reached unrealistic values (the range of shear friction laws only extends to w
< 1.5 mm), to show the increase in ductility as the amount of shear reinforcement or the shear friction
parameter decreases. Also, as crack widths increase, the V-w curves for various friction parameters
approach one another, as they should, since shear friction approaches zero. Two types of behavior
can be observed:

- For high and medium shear reinforcement ratio (p, > 0.3 %, Fig. 10b), the curve V-w typically
follows a linear path up to stirrup yielding or crack slipping. The latter occurs when tension in the
concrete reaches a limit imposed by the shear reinforcement and shear friction across cracks:

A, )
55 (fy - )

-flh'mil = vci tane *

For high friction, stirrups yield before cracks slip; for low friction, the order is reversed; and for
medium friction, stirrup yielding and crack slipping occur simultaneously. Peaks of shear force V'
occur at initiation of crack slipping, although for low friction, it’s only a local peak (¥ in this case
reaches its global peak at large crack widths w > 2 mm).

- For low shear reinforcement, the shear force reaches a peak at a small crack width (w < 0.05 mm),
then drops precipitously when concrete starts to crack. For p, = 0.28 %, after the initial drop, the load
recovers and increases to a maximum until cracks start to slip, at which point, it starts to decrease
(Fig. 10c). For p, = 0.28 % and low friction, and for p, = 0.12 %, there is no load increase after the
initial sharp drop at initial cracking. However, for p,=0.12 % and high or medium friction, a change
of slope is still noticeable at initial crack slip.
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Table 3 Variation of Shear Force V of a PC Beam for Various
Values of Shear Friction F and Stirrup Ratio p, .

F 0.27 0.18 0.063

Method
% 6 | vaN) | % | 8 |van) | % | 80 | vawny | %

1.11 § 29.3 | 653.1 | 103 | 29.5* | 632.7¢ | 100 | 28.6* | 602.2* | 95 | 1 mm offset

309 | 646.7 | 100 | 30.9% | 645.0% | 100 | 29.9* | 593.4* | 92 | lincar limit

295 | 655.7 | 102 | 30.9* | 645.0* | 100 | 28.3* | 604.5* | 94 | peak

R ——

061 | 243 | 4773 | 105 | 239 456.5 | 100 | 23.2 4283 94 | 1 mm offset

26.8 | 4928 | 104 | 265 4728 | 100 | 25.6 414.1 88 | lincar limit

25.8 | 5005 106 | 26.5 472.8 | 100 | 227 429.7 91 | peak

0.28 | 20.8 | 318.7 | 107 | 205 2973 | 100 | 199 2618 88 | 1 mm offset

21.6 | 3296 | 111 | 205 2973 | 100 | 19.0 258.0 87 |w=1mm

22.6 | 3489 | 109 | 222 321.0 | 100 | 224 281.1 86 Pcak

012 | 172 | 2222 | 110 | 164 2015 | 100 | 14.9 169.3 84 | 1 mm offset

18.0 | 2343 116 | 164 2015 | 100 | 14.2 163.6 81 {w=1mm

215 | 2843 97 | 226 292.1 100 | 17.1 194.7 67 | slope change

* Results obtained using Eq. 2 or Eq. 3.

Because the shapes of the V-w curves vary (Fig. 10b, c), several methods are used to compare them:

Peaks of V are used. For p, = 0.12 %, “peaks” degenerate to points of sudden change in negative
slope.

Values of J at w =1 mm are selected.

Where a linear part exists (prior to crack slipping or stirrup yielding), the values of V at the end
of the linear range are selected.

Intersections of the curves with a straight line parallel but offset with respect to the linear part by
w =1 mm are also used.

Finally, where a linear part does not exist (e.g., for p, = 0.12 %), intersections of the curves with
a straight line passing through the value of V" at w = 1 mm for medium friction and parallel to the
initial slope of the closest set of curves with a definable initial slope (here p, = 0.28 %) are used.

Results are shown in Table 3.

Shear Friction of RC Beams

Fig. 9¢ shows the RC beam used in this study. The RC beam has the same external dimensions as the
PC beam, but the longitudinal reinforcement now corsists of 8 #7 bars (¢ = 22 mm) top and bottom
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and 2 #3 bars (¢ = 9.5 mm) at middepth for crack control. The concrete cylinder strength is 43 MPa,
and the shear reinforcement, similar to that of the PC beam, also satisfies the ACI requirements
(.094 % < p, < 1.2 %). Stirrup spacing does not exceed d/2 = 280 mm. Stirrups consist of #4 bars
(¢ = 13 mm), #3 bars (¢ = 9.5 mm) or #2 smooth bars (¢ = 6 mm) at 152 mm. An additional
configuration is #2 bars at 280 mm. These correspond to shear reinforcement ratio of p, = 1.11 %,
0.61 %, 0.28 % and 0.15 % respectively (Table 4). Behavior is similar to that of the PC beam
previously described. All beams failed by concrete crushing, the longitudinal reinforcement did not
yield. Quantitative comparison is easier here than for the PC beam, because in all cases an initial
straight line can be defined and the 1 mm offset method is straightforward. See Table 5 and Fig. 11.

Table 4 'Stirrup and Crack Spacing for RC Beam

Stirupbar# {smm {p, % |S,, mm |s,, mm
2 (smooth) 280 0.15 340 1008
2 (smooth) 152 | 028 340 602

3 152 0.61 336 302
4 152 | L1 333 251

Table S Variation of Shear Force V of a RC Beam for Various
Values of Shear Friction F and Stirrup Ratio p, .

F 0.27 0.18 0.063
p,% | 6° | VN) | % 6° | VKN) | % 6° | VAN) | %
1.11 | 314 | 6004 | 104 | 313 | 579.7 | 100 | 31.0 | 546.0 | 94 | 1 mm offset
0.61 [ 28.1 | 4123 | 106 | 28.0 | 387.2 | 100 | 27.7 | 352.2 91 | 1 mm offset

Method

0.28 | 263 | 2458 | 111 | 247 | 2218 | 100 | 263 | 1843 83 | 1 mm offset

015(247 ] 1746 | 114 1249 | 1538 | 100 | 254 | 1182 77 | 1 mm offset

028 [ 296 | 260.8 | 111 |20.1 [ 2353 | 100 | 35.0 | 1724 73 | peak or linear limit

0.15 1297 | 2069 | 112 {312 | 184.0 | 100 | 440 | 1359 | 74 | peak or linear limit

For both the PC and RC beams, the following is observed:
¢ As the shear reinforcement ratio decreases, the effect of shear friction increases. This is to be

expected since, as shear reinforcement decreases, the proportion of shear load carried by shear
friction increases. For a shear friction parameter of 35 % of the base case, as in HSC compared
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to NSC, the shear force V at or near its peak is 15 % to 25 % lower than for the base case,
depending on the method of estimation.

Two cases were run for the PC beam (for f°,=38.6 MPa, p, = 1.11 %, F = 0.18 or 0.063) using
the 1986 version of the MCFT, which has a more elaborate shear friction law, Eq. 2, compared
with the 1991 version, Eq. 3. The results of the two versions are indistinguishable from one
another, i.e., the normal compressive stress o across shear cracks is negligible.

Failure by concrete crushing is predicted to occur at high w (very wide cracks), much higher than
the range of Walraven’s experimental data ( v< 2 mm, w< 1.5 mm).

Biaxial Softening

Computer program SHEAR was modified by replacing Eqs. 4 and 6 with various biaxial softening
models. For the PC beam (Fig. 12), in the cases where SHEAR did not predict concrete crushing, the
program was stopped after large crack widths were attained (about 20 mm). The curve shear force
versus crack width ceases to be linear shortly after stirrups yield and cracks slip. Peaks (local peaks
in some cases) occur near that point and are compared in Table 6. Two types of behavior are
observed for the various softening models (Fig. 12 and Table 6):

Significant post-linear strength gain is predicted by the models of Kollegger, Okamura, Miyahara
and Shirai, which predict no concrete crushing (failure is by excessive deformation); and the
models of Ueda and Noguchi, which predict {airly similar behavior, concrete crushing after
considerable post-linear strength and wide cracks.

No post-linear strength gain is predicted by the models of Collins, Vecchio-B, and Hsu.

For the RC beam, the various models start deviating {rom linearity (of the V-w curve) and from each
other when stirrups yield, followed shortly afterwar:ls by crack slipping. Two types of behavior are
predicted:

shear compression failure (concrete crushing) :s predicted by the models of Collins, Hsu and
Vecchio-B.

shear tension failure ( yielding of the longitudinal reinforcement) is predicted by the models of
Ueda, Noguchi, Kollegger, Miyahara, Okamura and Shirai. Ueda’s model comes close to
predicting a balanced failure by both compression and tension.

Results are shown in Table 7.
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Table 6 PC Beam: Shear Force for Various Biaxial Softening Laws
(p, = 0.61 %. Subscript L for end of linear range. )

Model V. kN) w, (mm)
Kollegger 476 0.8
Shirai - 455 0.6
Okamura 465 0.6
Miyahara 438 0.6
Noguchi 460 0.6
Ueda 477 08
Hsu 471 0.6
Vecchio-B 459 0.6
Collins 468 0.7

s

'

Table 7 RC Beam: Shear Force for Various Biaxial Softening Laws (p, = 1.11 %)

Model Ve Ve Wopae At last iteration Mode of
kN % of mm (1000 ¢, = 1.83) failure
smallest S MPa | fyMPa | 1000¢,

Ueda 454 111 | 63 17.4 19.8 181 |Tension
Noguchi 454 111 52 17.2 253 1.78 |T
Kollegger 454 111 4.1 17.1 43.0 1.77 |T

Miyahara 437 107 3.7 17.3 25.8 1.80 |T

Okamura 454 111 52 17.3 25.8 1.80 T

Shirai 54 | 1 5.0 174 | 203 | 180 |1

Collins 409 100 4.6 13.7 14.1 1.35 | Compression
Hsu 429 105 3.1 14.8 15.3 147 |C
Vecchio-B 426 104 4.14 14.8 17.2 148 |C
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Table 6 PC Beam: Shear Force for Various Biaxial Softening Laws
(p, = 0.61 %. Subscript L for end of linear range. )
Model V. (KN) Vo/Vy (%) w, (mm)
Koliegger 476 111 08
Shirai 455 106 0.6
Okamura 465 108 0.6
Miyahara 438 102 0.6
Noguchi 460 107 0.6
Ueda 477 111 0.8
Hsu 471 110 0.6
Vecchio-B 459 107 0.6
Collins 473 110 0.7

Table 7 RC Beam: Shear Force for Various Biaxial Softening Laws (p, = 1.11 %)

Model Ve Ve Wpar At last iteration Mode of
kN % of mm (1000 ¢,=1.83) failure
smallest 5iMPa | fonuMPa | 1000,

Ueda 454 111 6.3 17.4 19.8 1.81 Tension
Noguchi 454 111 5.2 17.2 253 1.78 T
Kollegger 454 111 4.1 17.1 43.0 1.77 T
Miyahara 437 107 3.7 17.3 258 1.80 T
Okamura 454 111 5.2 17.3 258 1.80 T
Shirai 454 111 5.0 174 | 293 1.80 T
Collins 409 100 4.6 13.7 14.1 135 Compression
Hsu 429 105 3.1 14.8 15.3 1.47 C
Vecchio-B 426 104 4.14 14.8 17.2 1.48 C
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Conclusion

Laws for shear friction and biaxial softening of concrete used in various beam shear theories vary
widely. The modified compression field theory (MCF 1) was used to study the effects of various shear
friction and concrete softening formulations on the calculated shear strength of PC and RC beams.
According to the MCFT, a decrease in shear friction within the range of experimental data, as found
for example in high strength concrete, lowers the shear strength of beams with low shear
reinforcement by 15 % to 25 %, depending on the method of estimation.

In addition, a comparison is presented of different relationships used to represent the biaxial
compression-tension strength of reinforced concrete. For PC beams where the prestressing cables do
not fail, some theories of biaxial softening of concrete do not predict concrete crushing even for very
high deformations. For RC beams, some models predict shear tension failure while others predict
shear compression failure. However, the peak shear forces which occur close to stirrup yielding and
crack slipping are within 10 % of each other for the various theories and of the test value for the PC

beam.
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Notation

A, = area of shear reinforcement

a,,a, = projection parallel, perpendicular to crack of contact area between aggregate and mortar
b, = beam width

c = maximum size of aggregate

d = beam depth, from extreme compression fiber to centroid of tension reinforcement
F = friction parameter

A = concrete cylinder strength or uniaxial con:pressive strength

S = concrete cube strength or uniaxial compressive strength

Ju = principal tensile stress in concrete web

oz = principal compressive stress in concrete web

Jfoomae = compressive strength of concrete panel in biaxial tension-compression

Jiae = uniaxial compressive stress for Thorenfeldt curve
Sow = compressive strength of concrete web

Jo = maximum compressive stress for softened concrete
£, = concrete tensile strength

jA = stress in shear reinforcement

J,J, =yield strength of shear reinforcement

jd = beam shear depth
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h = overall section depth

s = stirrup spacing

s., = crack control characteristics of transverse reinforcement
s.. = crack control characteristics of longitudinal reinforcement
vV = shear force, shear strength

V., = concrete contribution to shear strength

V,  =shear force at flexure-shear cracking

V.  =shear force at web-shear cracking

v, = steel contribution to shear strength

v = crack slip

v, , T = shear stress at crack mterface

w = crack opening

B = softening parameter

€ = strain at maximum compresswe stress for uniaxial compression
£ = principal tensile strain in concrete

g, = principal compressive strain in concrete

€,; = concrete tensile strain at which reinforcement at crack begins to yield
€, = strain corresponding to f,

£, =yield strain of shear reinforcement

6 = strut angle

H = friction coefficient between aggregate and mortar

P, = shear reinforcement geometrical ratio

o = normal stress across a crack

0,, = mortar strength

To = cohesion friction stress (for 6 = 0)

T = maximum shear stress transmitted across a crack

max

(i) = crack angle, bar diameter
w = shear reinforcement mechanical ratio
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h = overall section depth

s = stirrup spacing

s,, = crack control characteristics of transverse reinforcement
S.. = crack control characteristics of longitudinal reinforcement
vV = shear force, shear strength

V. = concrete contribution to shear strength

V,  =shear force at flexure-shear cracking

V.. = shear force at web-shear cracking

v, = steel contribution to shear strength

Vy = experimental shear strength

v = crack slip

v, T = shear stress at crack interface

w = crack opening

B = softening parameter

€ = strain at maximum compressive stress for uniaxial compression
£ = principal tensile strain in concrete

£ = principal compressive strain in concrete

€, = concrete tensile strain at which reinforcement at crack begins to yield
£, = strain corresponding to f,

g, = yield strain of shear reinforcement

6 = strut angle

H = friction coefficient between aggregate and mortar

P, = shear reinforcement geometrical ratio

o = normal stress across a crack

0,, = mortar strength

Tp = cohesion friction stress (for 0 = 0)

T = maximum shear stress transmitted across a crack

max

¢ = crack angle, bar diameter
w = shear reinforcement mechanical ratio
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Fig. 5 - Walraven’s model for shear transfer across crack: (a) stress-strain curve of matrix
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(d) normal and shearing stresses as functions of crack width and slip (adapted from Frénay
1990)
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Fig. 6 - Crack behavior according to various researchers
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Fig. 10 - Effect of shear friction and shear reinforcement on prestressed concrete beam behavior
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(b) high reinforcement ratio
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Fig. 13 - Effect of concrete biaxial softening on shear behavior of reinforced concrete beam



