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ABSTRACT
There seems to have been some confusion in recent years regarding the stress
and displacements induced in a concrete material when either the matrix, the
aggregate, or a shell around the aggregate is expansive. The case of a single
spherical aggregate, surrounded by a single shell of arbitrary thickness, all of
which are embedded in a matrix, can be solved exactly for any combination of
elastic moduli and expansive strains. Solutions of this problem under various
choices of parameters are used to illustrate the features of stress, displacement,
and expansive cracking that are possible. These solutions can then be used to
help better understand the features seen under the microscope in concretes that
have been damaged by different expansive forces. © 1997 Eisevier Science Ltd

Introduction

There are many ways in which a concrete can be damaged by chemical action, including
various kinds of sulfate-attack, alkali-aggregate reaction, and others [1-3]. Often, the chemical
attack causes one or more phases in the concrete material, either in the paste or in the
aggregates, to grow physically. This growth induces tensile strains that cause cracking that can
eventually lead to severe damage to the material. The kinds of cracking that are produced
depend on which constituent has been induced to grow. Often the crack pattern that is seen
under the microscope is used to try to diagnose which deleterious mechanism was responsible
for the damaged concrete. There seems to have been some confusion in recent years concerning
what kinds of cracking imply what kinds of physical mechanisms.

The simple, analytically soluble case of a single isolated spherical aggregate, surrounded by
a shell of arbitrary thickness, all embedded in a uniform matrix, where each of the three phases
can have arbitrary elastic moduli and expansive strains, can be illustrative of what sort of
stresses and expansions one would expect to see given various choices of elastic and expansive
parameters. In a real concrete, the close positioning of many aggregate particles will of course
play a role, but the isolated aggregate case will dominate the overall qualitative features of the
stress and displacements that will be seen in the real material. In this paper, we show the general
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equations for this case, and illustrate the kinds of stress and displacement patterns that arise
from different choices of the elastic moduli and expansive strain parameters. Some of these
calculations, without the shell phase, have been done before [4].

Basic Equations

Figure 1 shows a cut through the center of the spherical aggregate, and defines the terminology
used. We take s = a + h, where a is the radius of the aggregate, h is the thickness of the layer
around the aggregate, and b is the overall radius of the composite system being considered. The
layer around the aggregate is not necessarily to be thought of as the interfacial transition zone,
but only as a parameter of the problem to be discussed. Figure 1 is not to scale, since in this
dilute limit the quantity ¢ = a*b’, the volume fraction of the aggregate phase, should be small
(<0.01-0.03).

Now suppose that at least one of the phases has a non-zero value of expansive strain, so that
displacements and stresses will be set up in the system. In spherical polar coordinates, the radial
component of displacement, denoted u, will be the only non-zero displacement and will be a
function of r only. The origin is taken at the center of the aggregate. In terms of u, the three
diagonal components of the strain tensor (all shear strains are zero) are: e, = du/or and ey = €,,
= u/r, where B and ¢ are the spherical polar coordinate angular variables. In the i'th phase, the
two independent (o4, = 0,,) diagonal components of the stress tensor are (all shear stresses are
zero):
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FIG. 1.

Showing the system analyzed in the paper: (1) matrix, s <t <b (2) shell, a <r <s, and (3)
aggregate, 0 <r < a, where r is the radial coordinate. The i'th phase has bulk modulus K;, shear
modulus G,, and expansive strain €;°.
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It has been shown before [5-7] that in phase i the displacement u will have the formu=a;r +
B./r’, where «; and B, are constants, different for each phase. Of course in phase 3, the
aggregate, B, = 0, because the displacement must not diverge. So there are five coefficients that
must satisfy five equations, in order for there to be a solution to this problem. The five
equations come from the fact that the displacement and the radial stress must be continuous at
the interfaces (r = a and r = a + h), and the radial stress must be zero at the free boundary (r =
b). These five equations are:
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Equation (3) comes from continuity of u at r = a, eq. (4) is from continuity of displacement at
r=a+ h, eq. (5) represents continuity of radial stress at r = a, eq. (6) is from continuity of radial
stress at r = a + h, and eq. (7) comes from the vanishing of radial stress at r = b. Taking various
choices of the parameters, these equations can easily, though a bit tediously, be solved for the
values of a and B in each phase. The stress, strain, and displacement anywhere can then be
easily found. For mathematical convenience, the Poisson's ratio of each phase is taken to be 0.2,
so that in each phase, K; =4G/3, and K, = K, = 1, and K, = 4 (arbitrary units). The qualitative
aspect of the solutions are not affected by this (physically reasonable) choice. It is easier to
solve egs. (3)-(7) for a given choice of parameters, then to develop a general solution into
which different choices of parameters are substituted. The general solution of egs. (3)-(7) is
rather complicated [5].

Results for Various Parameter Choices

Uniform Matrix Expansion. Several degradation mechanisms, including freeze-thaw, some
kinds of sulfate attack, and a hypothesized mechanism for so-called delayed ettringite formation
[8], involve a uniform, on average, expansion of the matrix. Let us examine what effect this
scenario has on stresses and displacements. Take h = 0, so that there is effectively no shell
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phase, and let €,° = ¢, and €;° = 0. Combining equations (3)-(7) into three equations for the three
variables «;, a,, and B, , we obtain

(5 — c)e -4a’e (1 — ¢)e
oy = » By = » B3 5 (3
5+ 3¢ 5+ 3¢ 5 +3c

These equations are exact, although, to be consistent with the dilute limit hypothesis, the
expressions in eq. (8) should really be expanded to O(c). Using these solutions in equations (1)
and (2) shows that o,, is tensile, and has its greatest value right at the matrix-aggregate interface.
If the stress generated is large enough, the aggregate should break away from the matrix along
the interface. The tangential stress, oq, is equal to o, in the aggregate, but is always
compressive in the matrix, so there should be no radial cracking in the matrix. If the aggregate
should break away from the matrix, then there will be a non-zero displacement of the rim of the
matrix. This can be computed using the same equations, but now eq. (3) can be ignored, and
eq. (5) becomes the vanishing of radial stress at the (now) free boundary at r = a. Solving for
the radial displacement at r = a, we find that u(r = a) = ea. Since the outer edge of the detached
aggregate will have zero displacement, there will be a gap around the aggregate of width ea,
which is proportional to the aggregate diameter. In a real concrete with many aggregates packed
closely together, as long as each aggregate breaks away from the matrix, each gap will, on the
average, have a width proportional to the radius of the aggregate. If some aggregates remain
attached to the cement paste matrix, the stress fields will be changed somewhat, but the overall
result should still be approximately true.

Thin Expansive Shell around the Aggregate. One proposal for the mechanism for damage
during so-called delayed ettringite formation is the formation of expansive ettringite right at the
cement paste-aggregate interface [8,9]. The expansion of this thin shell then produces tensile
radial stresses at the interface, which causes the aggregates to de-bond with the matrix, so that
arim of free space will be observed around the aggregate. By letting h/a << 1, so as to simulate
a thin shell, and €,° = €, = 0, €,° = ¢, we can investigate the kinds of stresses and displacements
that are produced in this scenario. Solving egs. (3)-(7) for this choice of parameters, we find
that, to first order in h/a,
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The radial stress is tensile, with again a maximum at the aggregate-cement paste matrix
interface. Cracking, if any, will again be circumferential. Separating the aggregate from the
matrix by taking o, = 0 at r = a, we can find the displacement of the cement paste edge atr =
a by re-solving the equations under this assumption. We find that the thickness of the ensuing
gap at the aggregate edge will be, to leading order in h/a, u(r = a) = 3hce/(1-c), which is
proportional to the thickness of the expansive region, not the aggregate radius. The assumption
of h << a simplified the mathematics, but approximately the same result will be found for larger
values of h.
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Expansive Aggregate. In an alkali-aggregate reaction, the gel may form inside the aggregate,
in aggregate pores or cracks. The expansive forces then act only on the aggregate, not the
cement paste matrix. We can model this case by setting €,° = ¢€,° = 0, ¢,° = ¢, and letting h =0
to remove the layer. Equations (3)-(7) then reduce to three equations for «, , B, , and «, , with
the result

4ce 4a’e 4(1 + c)e
s Byr—— 8y = ———— (10)
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The radial stress is found to compressive everywhere. The tangential stress o, is compressive
in the aggregate but tensile in the matrix, with its maximum tensile value at r = a. Therefore any
cracking will be radially outward from the aggregate, and so no open gaps around the
aggregates should in general be observed. In actual instances where expansive gel forms inside
the aggregate, there will be parts of the aggregate under tensile stress, since the whole aggregate
will not uniformly expand, so that there could be cracking within the aggregate as well.
Treatment of random expansive centers within the aggregate cannot be done analytically, and
must be handled by a numerical method {10,11].

Discussion

When different parts of the microstructure of a concrete undergo expansive growth, different
kinds of stress and displacement patterns result. Many scenarios can be studied with the
equations developed in this paper, since eqs. (1)-(7) are completely general for linear, isotropic
elastic materials. Viscoelastic effects have been ignored in this paper, though they do play a
major role in these kinds of deleterious processes [12,13]. In this paper, the shell phase was not
thought of as the interfacial transition zone, but it could be, allowing the interplay between
interfacial zone cement paste, bulk cement paste, and aggregate to be studied [5].

Under the assumptions of this paper, it is clear that uniform, on average, matrix expansion,
followed by circumferential cracking between aggregate and matrix due to radial stress in the
matrix, will lead to open gaps surrounding the aggregates, whose width is proportional to the
aggregate radius. If this circumferential cracking was caused by the expansion of a thin layer
located at the interface, like in some models of delayed ettringite formation-induced damage,
then the widths of the gaps observed would be proportional to the layer thickness, and not the
aggregate radii. Aggregate expansion leads to radial cracking, and so no gaps will appear at all.
All these results are of course subject to some modification due to the many aggregates that
appear in a real, non-dilute concrete, but the major qualitative differences between the kinds
of cracking produced by expansion of different parts of the microstructure will remain the same
as those predicted by this simple dilute model [11]. This makes the results of this paper useful
for interpreting cracks produced by unknown deleterious processes in field concretes observed
under the microscope. Non-spherical aggregate shapes will also not change the qualitative
aspects of the problem studied in this paper.
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