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Noise-Induced Sensitivity to Initial
Conditions

Emil Simiu and Michael Frey

ABSTRACT Deterministic chaos and noise-induced basin hopping are closely re-
lated in a broad class of multistable dynamical systems. A necessary condition for
sensitivity to initial conditions, based on the generalized Melnikov function and
originally derived for deterministic systems, can be extended to systems excited by
noise. This extension involves the representation of noise processes as sums of terms
with random parameters. Gaussian noise and shot noise can be accommodated for
both additive and multiplicative excitations. Our extension of the Melnikov approach
shows that, for the class of noise-excited systems being considered, basin hopping
implies sensitivity to initial conditions. Applications of this approach tonoise-excited
systems are discussed.

6.1 Introduction

Multistable systems excited by noise can exhibit irregular motions with jumps
between regions associated with the basins of attraction of their noise-free coun-
terparts. Such behavior has been referred to as basin hopping, or stochastic motion
with jumps. The same systems can have irregular motions with jumps in the ab-
sence of noise. The term deterministic chaos is used in this case. Numerical simu-
lations and physical experiments in various fields (e.g., physics [1], chemistry [2],
biomedicine [3), fluid elasticity [4]) have shown that deterministic and stochastic
motions with jumps can be visually indistinguishable (Fig. 6.1). Moreover, it has
been shown recently that features previously believed to characterize deterministic
chaos can be present in stochastic systems as well. These features include a finite,
predictable value of the correlation dimension [5], a convergent K, entropy [6],
an exponential falloff of the power spectrum [7], and a positive largest Lyapounov
exponent [8].

For weakly perturbed multistable systems whose unperturbed counterparts have
homoclinic or heteroclinic orbits, a useful mathematical correspondence exists
between deterministic chaos and stochastic motion with jumps. To show this,
we represent Gaussian noise processes as sums of harmonic terms with random
amplitudes, frequencies, and phase angles. Similar techniques are used for other
types of noise. Two concepts, the generalized Melnikov function (GMF) and phase
space flux, originally developed for déterministic systems, can then be extended
to systems excited by additive and/or multiplicative noise. This extension has a
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FIGURE 6.1. Dynamics of an oscillator. (a) Periodic forcing. (b) Noise driven.

theoretical consequence: For weakly perturbed multistable systems, noise-induced
jumps out of regions associated with the unperturbed system’s potential wells imply
sensitivity to initial conditions (SIC). The practical consequence of this extension
is that methods for investigating and characterizing the behavior of potentially
chaotic deterministic systems can also be used to investigate systems subjected to
noise.

In Sec. 6.2, we review results obtained for one-degree-of-freedom systems. We
consider systems excited additively or multiplicatively by Gaussian noise and other
types of noise. Although our approach does not at present allow mean exit times
(times between jumps) to be estimated, it does establish certain lower bounds on
exit time probabilities. In addition, for tail-limited noise and dichotomic noise,

criteria can be obtained that guarantee that exits from a safe region associated

with a potential well cannot occur. In Sec. 6.3, we verify for a specific system that
results based on the Melnikov approach coincide with results based on the use of
the Fokker-Planck equation. Section 6.4 discusses the extension of results in Sec.
6.2 to higher-dimensional and spatially extended systems. Section 6.5 summarizes
our conclusions.

6.2 One-Degree-of-Freedom Systems

6.2.1 Dynamical Systems and the GMF

We now demonstrate the basic ideas of our approach for systems of the form
i=~V'(2) +elg(t) + pf (2, )G(1) — B2), 6.1

where z is the state of the system, V is an energy potential, 0 <€ < 1, pand 8
are nonnegative, g is a smooth function representing deterministic forcing, G isa
random process that models the stochastic forcing, and f(z, z) is a smooth function
defining the excitation dependence on the system state. When f is constant, the
random excitation is additive; otherwise, the excitation is multiplicative.



Emil Simiu and Michael Frey 83

We assume that the unperturbed (¢ = 0) counterpart of the system in Eq. (6.1)
has two hyperbolic fixed points connected by a heteroclinic orbit (z5(t), z;(t)).
If the two fixed points coincide, then the orbit (z,(¢), Z;(¢)) is homoclinic. These
assumptions cover a large number of systems of interest in applications. The GMF
is, formally,

M@)=— f " P(r)dr + f ” z,(r)g(r +1)dT + f 2(1)G(x + t)dz. (6.2)

—-00 -00

We define orbit filters F and F; with respective impulse responses

h(t) = z;(—1), By (£) = 25(—1) f(25(—1), 2,(—1)). (6.3)

Then 00
Mg, G}=—IB+Flgl+ Fi[G], I= f if(t)dt. 6.4

-0

For systems with additive noise, f is constant and F; = F.
We consider first the case of deterministic and quasiperiodic excitation, where
p=0and

g(t) =Y yicos(wit + ;). (6.5)

i=]

The GMF is then

Mit)=—-I8+ f[i ¥; cos{w;t + ¢;)]. (6.6)

i=]

The GMF is a measure of the distance separating the stable and unstable manifolds
of the hyperbolic fixed point. If the GMF has simple zeros, those manifolds intersect
transversely. These intersections form an infinity of lobes, giving rise to structures
topologically equivalent to the Smale horseshoe map, which may lead to chaotic
behavior [9]. Thus, if the system parameters belong to the range of parameters for
which the GMF exhibits simple zeros, deterministic chaos is possible.

The formal expression of the GMF is mathematically justified when the noise
process G is uniformly bounded and ensemble-uniformly continuous (EUC) [8].

6.2.2 Additive Gaussian Noise

As an example, we consider the case of an additive Gaussian excitation. We ap-
proximate the Gaussian excitation using a randomly weighted modification of
Shinozuka noise:

m+N o0
G(t).-‘/% Y geslnttd) 2 fo S@W@do,  (6.7)

nem+] S(w" )

where wp, @y, n = m + 1,...,m + N are independent random variables, w,,
n=m+]1,...,n=m+ N are nonnegative with common distribution ¥,(w) =



84 6. Noise-Induced Sensitivity to Initial Conditions -

S w)¥(w)/o?, ¢, are identically uniformly distributed over [0, 2], W is the
spectral density of G, and § is the modulus of the Fourier transform of z;(—¢). In
the special case of white noise, W(w) = 1. In this case, using Parseval’s theorem,

olm f " S )V (w)dw = % / " SHw)¥(w)dow = f " $(—t)dt = m1.
0 -00 —00

The noise process G in Eq. (6.7) is uniformly bounded and EUC with zero
mean and unit variance. G can be specified with any desired power spectrum and
is Gaussian in the limit as N — oo [8, 10, 11, 12, 13]. Realizations of this noise
model are difficult to distinguish from realizations of band-limited Gaussian noise
[8].

Given G of the form in Eq. (6.7) we obtain an ergodic ensemble of GMFs:

m m+N
M(t)=—1Ip +.7-'[Z ¥i cos(w;t +¢;)) +po‘@f}[ Z ¥i cos(wit +¢;)]. (6.8)

i=] fmm+1

The necessary condition for SIC for any particular realization of the noise is
that M(r) have simple zeros. In the Gaussian limit, this condition is satisfied with
probability one in the presence of even vanishingly small noise, p — 0. We thus
recover the well-known result that jumps between stable states must eventually
occur for any realization of the Gaussian excitation, however small, although the
time between jumps can be quite long. We have also established that, given system
parameters in the necessary ranges, noise-induced motion with jumps is SIC and
interpretable as chaotic motion on a single strange attractor [8, 9].

6.2.3 Other Forms of Noise

Similar types of results are possible for forms of non-Gaussian noise. An oscillator
subject to multiplicative shot noise is considered by Frey and Simiu {14), in which
shot noise is represented by a uniformly bounded, EUC random process.

Non-Gaussian noise processes with infinite tails and specified spectral density
can also be treated. Representation of such processes as ensembles of harmonic
* sums is achieved by generating Gaussian paths and then mapping these paths into
non-Gaussian paths through an iterative procedure aimed at matching the target
spectrum. General conditions for the convergence of this procedure remain to
be established: A successful illustration of the method is available in a paper by
Yamazaki and Shinozuka [13]. When convergent, the method gives results similar
to Eq. (6.8).

In multistable systems, each potential well has a corresponding GMF. These
GMFs reflect the differences, if any, in the shape and depth of the wells. They will
also reflect the dependence of multiplicative noise on state as, for example, in the
blowtorch theorem [15]. This suggests that appropriate GMF ensemble statistics
may possibly be used as indicators of relative stability.
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6.2.4 Average Flux Factor

The phase-space flux is the rate of phase-space transport across the pseudosepara-
trix via lobes defined by intersecting stable and unstable manifolds. Phase-space
flux is 2 measure of the degree to which the system dynamics are chaotic [9]. For
small €, the average phase-space flux is €® + O(e?), where the flux factor ® is
proportional to a time average of the GMF [9, 16].

Frey and Simiu [8] showed that, for the system in Eq. (6.1) with additive noise
G, the flux factor is nonrandom with the expression

® = El(pA + B — IB)'], (6.9)

where A is arandom variable with distribution equal to the marginal distribution of
the process F[G], B is a random variable with distribution equal to the stationary
mean distribution of the function F{g}, A and B are independent, and + denotes
positive part of. When G is Gaussian (or nearly so, as in Eqg. (6.7)), A is a Gaussian
(or nearly Gaussian) random variable. Similar éxpressions were derived by Frey
and Simiu [14] for systems with multiplicative Gaussian noise and multiplicative
shot noise. Our earlier comment on the poss1ble use of GMF statistics as indicators
of relative stability applies as well to the average flux factor. We note that unlike
the GMF, the notion of phase-space flux appears so far to be applicable only to
systems with one degree of freedom.

6.2.5 Probability of Exit from a Safe Region

The reliability of a system is frequently expressed in terms of the probability of
exit from a safe region during a time interval T of duration T. For simplicity,
assume that no deterministic forcing is present, g = 0. During the interval Z, some
realizations of M(r) will have simple zeros while others will not. In the absence of
simple zeros, the stable and unstable manifolds do not intersect, and escape from
‘within the pseudoseparatrix is impossible. In the Gaussian limit N — oo and,
provxded that /8/po is sufficiently large (greater than 3, say), the probability that
M((t) will not have simple zeros during this interval is [17]

Prob{M(?) < 0} = exp[—E(X)T], (6.10)
I
E(k)-uexp[—iﬁ;]. n= Z,,_;’i' f S2(w)* ¥ (w)dw. (6.11)

~ We denote by #,, the time between successive jumps across a boundary separating
regions of phase space associated with the system’s potential wells. (Note that for
the perturbed system these boundaries, referred to as pseudoseparatrices, differ
from the separatrices of the unperturbed system). Since 7., must be larger than T
(there can be no exit as long as the stable and unstable manifolds do not intersect),
Eq. (6.10) provides a lower bound for the probability thatz,, > T. A similar result
also holds for g » 0.

Results of this type can also be obtained for non-Gaussian noise excitation. For
noise with tail-limited distributions—a case of interest in a number of engineering



86 6. Noise-Induced Sensitivity to Initial Conditions

applications [18]—the distribution of the GMF is also tail limited. It is then possible
to derive, in addition to probability bounds, criteria guaranteeing the absence of
exits (and SIC). This is of particular interest in the case of dichotomic noise.

6.3 Mean Time Between Peaks—Brundsen-Holmes
- Oscillator

In this section, we briefly review an application of our Melnikov-based approach
for which the result can be compared with a result obtained through the use of
the Fokker-Planck equation [12, 19). The oscillator is defined by Eq. (6.1), where
V(2) = 22 — z, ¥ = 0, G is Gaussian white noise, and 8, instead of denoting
constant damping, is a function B = § — kz2 of the system state z. The mean time
between successive maxima of z(¢)| is {19]

T=K- '“iM ), ©6.12)

u

where K is a constant, &, is the eigenvalue associated with the unstable manifold
linearized about the saddle point, and M is proportional to the average Melnikov
distance separating the stable and unstable manifolds of the perturbed system. The
following result was obtained in Stone and Holmes [19]: :
I
T =K, — 2P, 6.13)
Ay
For forcing given by Eq. (6.7), it follows from the definition of the GMF that M
“has the same distribution as the ensemble average of the modulus of the Melnikov
function at time ¢ = 0 {12]. In the white noise limit, this yields

—_ po [ 2
M-——] eV 2dy = | = po. 6.14
=) Iyl y ‘/xp 6.19)

Substitution of Eq. (6.14) into Eq. (6.12) yields Eq. (6.13); that is, our Melnikov-
based approach and the application of the Fokker-Planck equation in Stone and
Holmes [19] yield the same result.

6.4 Higher-Degree-of-Fréedom Systems

6.4.1 Slowly Varying Oscillators

The GMF can also be used to obtain a necessary condition for noise-induced SIC
in systems of the form

0
Xm E;H(x, ¥,2) +€lgi(x, y, z, & w) + G (D), (6.15)
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: 3
j= = HE . D+ eln@ . W +2GOL  (616)
= €gy(x, ¥, 2,1 1) + €03G5(t), 6.17)

where 0 < € « 1, H is a Hamiltonian with a vector z of parameters, p is a
-yector of parameters, and the functions g;, i = 1, 2, 3 are quasiperiodic with m;-
incommensurate frequencies w;j, j = 1,...,m;, i = 1,2, 3. If there exists an open
interval J € R such that, forevery z € J the unperturbed system (¢ = 0) has a
hypcrbohc fixed point p, with a homoclinic solution ¢,(t) connecting p, to itself,
then the fixed points form a smooth curve C = y(z) in the phase space x, y, z [20].
The homoclinic solutions form a two-dimensional surface I', which connects C to
itself.

Let G;(?),i = 1, 2, 3 be independent Gaussian processes approximated by mod-
ified Shinozuka processes as in Eq. (6.7). A necessary condition for SIC is that
the GMF for the system have simple zeros. The proof is similar to that given by
Wiggins and Holmes [20] for periodic forcing. The expression for the GMF has the
same form as in the case of periodic excitations {20] except that (i) the quasiperi-
odic functions g; (y(z,,))+ PiGi(¥(zo)),i = 1,2, 3 are substituted for their periodic
counterparts, and (ii) z, is a point such that

83(7(20)) + p3G3(¥(2,)) = 0, (6.18)

d
3;33(? (z0)) + p3G3(¥(2,)) ¥ 0, (6.19)

where the overbar denotes averaging over time [21].

The Melnikov approach restricted to a periodic vector (g1, g2, g3) of determinis-
 ticexcitations has been applied [22] to the estimation of the onset of chaos induced
by harmonic wind velocity fluctuations in ocean flow over certain topographies.
Its extension to the case of quasiperiodic functions, including representations of
Gaussian noise, allows the solution of the more realistic problem in which the wind

fluctuations are random rather than periodic.

64.2 A Spatially Extended System

To demonstrate the possibility of extending our work to spatially extended sys-
tems, we consider snap-through motion (jumps) induced by transverse random
excitation of a buckled column with continuously distributed mass. The excitation
may be due, for example, to seismic motion, fluctuating hydrodynamic effects,
aerodynamic turbulence, or effects arising in mechanical systems. Assuming uni-
form mechanical properties over the Iength of the column, the equation of motion
of the column is

1
L+ Zyyyy + T2y — E2yy j; (¢, )dt = e[y (y) cos(@r) + pG(t) ~ Bz), (6.20)

where z(y, t) is the transverse deflection at time ¢ and point y (0 < y < 1) along
the length of the column. I" is the external compression load, £ is the stiffness
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due to membrane stress, B reflects the degree of damping, y(y)cos(w?) is the
deterministic forcing, and oG(t) is the random excitation. Both ends of the column
are assumed to be hinged so the boundary conditions on Eq. (6.20) are z(0,r) =
Z(1,£) = z,y(0, 1) = zyy(1,2) = 0. The eigenvalues of the linearized, unforced
equations are then A ; = +aj(C—mj?)2, j = 1,2,...: As in Holmes and Marsden
[23], we assume 72 < T < 42 Then the solution z = 0 has one positive and
one negative eigenvalue, and the system with € = 0 and § > 0 has two nontrivial
buckled equilibrium states.
For p = 0 the GMF of the column is

0o 1
M) = [ f [y () cos(T)zo(y, T — 1) ~ B2i(y, T — )ldydr, ~ (6.21)
-0

where z,(y, t) = [y sin( y)sech(§ ‘/21) isthe system coordinate along the homo-
clinic orbit of the unperturbed system, and I'; = 2[(T' — r2)/£]!/2. After inserting
this expression for the homoclinic orbit into the GMF,

prigiz2 _ wl'i(e/2+27/m) sinor)
6r 7 cosh(w/(T1£1/2)) '

where ¥ is the mean of y(y), and « is a coefficient in the Fourier expansion of y(y)
[23]. Equations (6.21) and (6.22) are valid, provided the following nonresonance
condition is satisfied: '

Yt -T)dw?, j=2,3,4,.... (6.23)

M(t) =

6.22)

By expanding z(y, ¢) in the eigenfunctions sin(jxz) of the linearized problem
and using Galerkin's method, the following equations are obtained for the modal
coefficients a;(¢), j = 1,2,...

’ 1
aj(1 +ef + j*a’(j*n? — M) mey;cos(wst), y;= fo sin(jry)dy. (6.24)

IfEq. (6.23)is satisfied, a;(r) is O(¢) forall j, and the Poincaré map of the perturbed
map possesses a hyperbolic saddle point p, such that p, = py + O(e), where py is
the saddle point of the unperturbed system. If the nonresonance condition is not
met, then the modal coefficients are O(1) and the GMF is not meaningful.

If y(y) = 0, p # 0 and the spectrum of G(#) is band limited, it follows from
elementary random vibration theory that a;(t) is O(e'/2) {24, 25]. For sufficiently
small ¢, this is sufficient to ensure that the saddle point and its associated stable and
unstable manifolds persist under perturbation. The expression for the GMF then
has the same form as Eq. (6.21), except that y cos(wt) is replaced by a modified
Shinozuka sum of randomly weighted harmonics. The proof of this follows the
same steps as in the work of Fréy and Simiu (8] and Wiggins [16). G(¢) can
be superimposed on one or more harmonic excitations (which must satisfy the
nonresonance condition) and need not be uniform or coherent over the column

length.
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6.5 Conclusions

Melnikov theory, originally developed for deterministic systems, can be extended
to noise-excited multistable systems. This extension reveals that for weakly per-
turbed multistable systems, noise can induce sensitivity to initial conditions. This
extension can also be used to establish lower bounds on probabilities of exit from
a safe region during a specified time interval. For tail-limited noise including, for
example, dichotomic noise, criteria can be given that provide a guarantee that exits
will not occur. Our approach may also provide at least rudimentary measures of
relative stability for systems with multiplicative noise. The range of applicability of
our approach includes one-degree-of-freedom systems, higher-degree-of-freedom
systems such as slowly varying oscillators, and spatially extended systems such
as a buckled column with continuously distributed mass.

Our interest in Melnikov-based methods is motivated by applications to oceanog-
raphy and structural/mechanical reliability, but we believe potential applications
to other disciplines exist.
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