EXTREME WIND DISTRIBUTION TAILS:
A ““PEAKS OVER THRESHOLD’’ APPROACH

By E. Simiu' and N. A. Heckert?

ABSTRACT: We seek to ascertain whether the reverse Weibull distribution is an appropriate extreme wind-
speed model by performing statistical analyses based on the *‘peaks over threshold’® approach. We use the de
Haan method, which was found in previous studies to perform about as well or better than the Pickands and
cumulative mean exceedance methods, and has the advantage of providing estimates of confidence bounds. The
data are taken principally from records of the largest daily wind speeds obtained over periods of 15 to 26 years
at 44 U.S. weather stations in areas not subjected to mature hurricane winds. From these records we create
samples with reduced mutual correlation among the data. In our opinion, the analyses provide persuasive evi-
dence that extreme wind speeds are described predominantly by reverse Weibull distributions, which unlike the
Gumbel distribution have a finite upper tail and lead to reasonable estimates of wind load factors. Instructions
are provided for accessing the data and attendant programs.

INTRODUCTION

A fundamental theorem in extreme value theory states that
sufficiently large values of independent and identically distrib-
uted variates are described by one of three extreme value dis-
tributions: the Fréchet distribution (with an infinite upper tail),
the Gumbel distribution (whose upper tail is also infinite, but
shorter than the Fréchet distribution’s), and the reverse (neg-
ative) Weibull distribution, whose upper tail is finite (Castillo
1988).

The wind loading provisions of the American National Stan-
dard ANSI A58.1-(1972) were based on the assumption that a
Fréchet distribution best fits nontornadic extreme wind speeds
blowing from any direction in regions not subjected to mature
hurricane winds. However, an extensive study concluded that
the Gumbel distribution is a more appropriate model (Simiu
et al. 1978). It is a physical fact that extreme winds are
bounded, and one would expect the probabilistic model to re-
flect this fact. Therefore, to the extent that an extreme value
distribution would be a reasonable model of extreme wind
behavior, one would expect the best-fitting distribution to have
a finite tail, that is, to be a reverse Weibull distribution.

In addition to the certainty that wind speeds are bounded,
there is at least one other indication, albeit indirect, that the
Gumbel model might be an inappropriate model of extreme
wind behavior. Estimated safety indices for wind-sensitive
structures based on the Gumbel model imply unrealistically
high failure probabilities (Ellingwood et al. 1980). This is
likely due to (at least in part) the use in those estimates of a
distribution with an unrealistically long (infinite) upper tail.

In this paper we seek to ascertain whether the reverse Wei-
bull distribution is an appropriate extreme wind-speed model
by performing statistical analyses based on the *‘peaks over
threshold’” approach. This approach enables the analyst to use
all the data exceeding a sufficiently high threshold, and is more
effective than the classical approach, which uses only the larg-
est value in each of a number of basic comparable sets called
epochs (typically, for extreme wind analysis an epoch consists
of one year). To illustrate this point, consider, for example,
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two successive years in which the respective largest wind
speeds are 30 and 45 m/s. Assume that in the second year
winds with speeds of 31, 37, 41, and 44 m/s were also re-
corded (at dates separated by sufficiently long intervals to view
the data as independent). For the threshold theory, for a 30 m/
s threshold, the two years would supply six data. The classical
theory would make use of only two data points. It may be
argued that, by choosing a somewhat lower threshold, the
number of data points used in the analysis could be consid-
erably larger than six in our example. However, excessive low-
ering of the threshold would introduce correlation to the se-
quence and render the underlying assumptions of asymptotic
extreme value theory invalid. Simulations reported by Gross
et al. (1994) suggest that, in samples taken from normal or
extreme value populations, optimal results are obtained if the
threshold is chosen so that the number of exceedances is of
the order of 10 per year.

Given a sample of data exceeding a sufficiently high thresh-
old, the analyst using the peaks over threshold approach must
choose an appropriate estimation method. In this paper we use
the estimation method proposed by de Haan (1994). Our
choice is based on two reasons. First, Monte Carlo simulations
suggest that the de Haan method performs about as well or
better than two available alternative methods, the Pickands
method and the cumulative mean exceedance method (Gross
et al. 1994). Second, the de Haan method has the advantage
of providing estimates of confidence bounds.

Data used in this paper are taken principally from records
of the largest daily wind speeds obtained over periods of 15
to 26 years at 44 U.S. weather stations in areas not subjected
to mature hurricane winds. A storm system usually affects a
given location for longer than one day, so that wind-speed data
recorded on two or even more consecutive days are not nec-
essarily independent. We describe the data samples and our
procedure for creating, from the samples of largest daily
speeds, samples with reduced mutual correlation among the
data. In addition to samples of daily data, we describe and
analyze 115 samples consisting only of the largest yearly
speeds recorded over periods of 18 to 54 years at locations
not subjected to mature hurricane winds. To our knowledge
no tornado winds have affected any of our data. All the data
samples used in our analyses are available in an anonymous
data file. Instructions for accessing the file and attendant pro-
grams are given in Appendix 1. '

In our opinion, the results presented in this paper provide
persuasive evidence that extreme wind speeds of extratropical
origin and excluding tornadoes are described predominantly
by reverse Weibull distributions. This result is in itself useful
from a structural engineering viewpoint, and we discuss its
potential implications for the estimation of load factors for
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wind-sensitive structures. Our analyses also suggest that esti-
mates of extreme wind speeds based on the reverse Weibull
model may not be obtainable with sufficient confidence from
the information and by the method used in this paper. This
suggests the need for: (1) data samples based on longer re-
cording periods; and (2) more efficient estimation methods.

The paper is organized as follows. We first review basic
theoretical results pertaining to the peaks over threshold ap-
proach. Next we briefly review the de Haan method. We then
describe the data used in the analyses, and present the main
results of our investigation. These are used for a discussion of
the load factors issue. The last section presents our conclu-
sions.

“PEAKS OVER THRESHOLD"” APPROACH
Generalized Pareto Distribution

The generalized Pareto distribution (GPD) is an asymptotic
distribution developed by using the fact that exceedances of a
sufficiently high threshold are rare events to which the Poisson
distribution applies. The expression for the GPD is

G(y) =Prob[Y = y] =1 — {[1 + (cy/a)]™™} a>0,
[1+ (cyla)] >0 (¢))]

Eq. (1) can be used to represent the conditional cumulative
distribution of the excess Y = X — u of the variate X over the
threshold u, given X > u for u sufficiently large (Pickands
1975). The cases ¢ > 0, ¢ = 0, and ¢ < 0 correspond (respec-
tively) to Fréchet (type II extreme value), Gumbel (type 1 ex-
treme value), and reverse Weibull (type III extreme largest
values) domains of attraction. For ¢ = 0 the expression be-
tween braces is understood in a limiting sense as the expo-
nential exp(—y/a) [Castillo (1988), p. 215].

Given the mean E(Y) and standard deviation s(¥) of the
variate Y

a = 1REY){1 + [EY)Vs(Y)P}; ¢ = 1/2{1 — [EX)s(Y)T*}
2,3)

(Hosking and Wallis 1987).

Gumbel and Reverse Weibull Distributions

We recall that the expressions for the Gumbel and reverse
Weibull distributions are, respectively

Fg(x) = exp{—exp[—(x — pc)ogl} @
Fy(x) = exp{—~[(pw — xVowl"}, x < pw (&)

For the Gumbel distribution, relations between the distribution
parameters and the expected value E(X) and standard deviation
5(X) are

a6 = (6"m)s(X); pe = E(X) — 0.57722(6"1m)s(X) (6, 7)
For the Weibull distribution
ow = sQOHT(L + 20y) — [Tt + VPP pw = EX)
+ o' + 1/y) 3.9

where I' = gamma function (Johnson and Kotz 1972). For
example, for E(X) = 50, s(X) = 6.25, and vy = 2, oy = 13.49
and py = 61.96. The tail-length parameter v is related to the
parameter ¢ in the GPD distributions as follows:

y=—lec (10)

(Smith 1989).
Mean recurrence intervals of variate X as functions of GPD
parameters and exceedance rate: The mean recurrence interval
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R of a given wind speed, in years, is defined as the inverse of
the probability that the wind speed will be exceeded in any
one year [see, e.g., Simiu and Scanlan (1996)]. In this section
we give expressions that allow the estimation from the GPD
of the value of the variate corresponding to any percentage
point 1 — 1/(AR), where A is the mean crossing rate of the
threshold u per year (i.e., the average number of data points
above the threshold u per year). Set

Prob(Y < y) = 1 — 1/(AR) (11)
Using (1) '
1— (1 +cylay“=1-1UA\R) 12
Therefore
y=—all — A\R))c (13)

(Davison and Smith 1990). The value being sought is
X=ytu - (14

where u = threshold used in the estimation of ¢ and a.

DESCRIPTION OF DE HAAN ESTIMATION METHOD

Let the number of data above the threshold be denoted by
k, so that the threshold u represents the (k¢ + 1)th highest data
point(s). We have N\ = k/ny,,, where n,, denotes the length of
the record in years. The highest, second, ..., kth, (k + 1)th
highest variates are denoted by X, ., Xo-1, Xo-tetywr Xnoin =
u, respectively. Compute the quantities

k=1

M= % D [108XKnm1) = logXKop o r=1,2  (15)
=0

The estimators of ¢ and 4 are then

1
2(1 - (MPTAMP]Y

p=Léz=0p=11-8),é6=<0

E=MP +1 - a=uMPp, (16,17)

(18a,b)

The standard deviation of the asymptotically normal estimator
of cis

s.d.(&) = [(1 + VK™, ¢ =0 (194)
Lo e[ 80 =20
5.d.(&) = {[(1 &7 - 28) [4 s
12
G - 1180 — 26) )
=300 - 49 ]/k} 1€<0 (19b)

(de Haan 1994).

WIND-SPEED DATA

Uncorrelated samples obtained from largest daily data rec-
ords: Sets of daily fastest mile wind speeds for winds blowing
from any direction were obtained from the National Climatic
Data Center, National Oceanic and Atmospheric Administra-
tion. In most samples a number of daily fastest miles were
missing. The speeds on days with missing fastest mile data
were estimated from speeds recorded on the respective days
at 3-h intervals, using observations of the approximate relation
between these speeds and daily fastest mile speeds. Wind
speeds so estimated exceeded 15.6 m/s (35 mph) only at the
following stations and dates: Boise, Idaho (April 26, 1987,
16.1 m/s); Portland, Oregon (November 14, 1981, 19.7 m/s),
Salt Lake City, Utah (February 1, 1987, 16.1 m/s), and Toledo,
Ohio (February 6, 1986, 18.8 my/s). Forty-four samples were
used in the analyses. For 14 of these samples corrections based
on the largest yearly records were made. Details on these cor-



rections are given in (Simiu and Heckert 1995). The influence
of these corrections on results of the analyses is discussed in
the following section. The length of the records ranged from
15 to 26 years, the average length being about 18.5 years.

The anemometer elevations were changed during the period
of record at the following stations: Duluth [16.2 m (53 ft) to
October 15, 1975, 6.4 m (21 ft)] thereafter], Dayton [6.1 m
(20 ft) to February 4, 1964, 7.7 m (22 ft) thereafter], Missoula
f6.1 m (20 ft) to June 24, 1982, 9.8 m (32 ft) thereafter],
Oklahoma City [16.8 m (55 ft) to October 21, 1965, 6.1 m
(20 ft) thereafter], Portland [7.6 m (25 ft) to March 1, 1973,
6.1 m (20 ft) thereafter], San Diego [3.1 m (21 fi) to August
13, 1969, 6.1 m (20 ft) thereafter], Toledo [6.1 m (20 ft) to
November 1, 1968, 10 m (33 ft) thereafter], and Winnemucca
[10.4 m (34 ft) to April 22, 1966, 6.1 m (20 ft) thereafter].
For these stations the daily data were corrected to correspond
to a common 10-m elevation using the logarithmic law for
open terrain. For all other stations the anemometer elevations
did not change during the period of record and (except for
Denver, where the data were also corrected to correspond to
a 10-m elevation) the original recorded data were used, that
is, no elevation correction was effected.

From samples of largest daily wind speeds we obtained, as
follows, samples that have a reduced mutual dependence
among the data. Partition the sample of daily maximums into
small periods of size equal to or larger than the duration of
typical storms in days. [Based on statistical tests reported by
Thom (1964), a reasonable choice of the length of the period
is four to eight days.] Pick the largest value in each period. If
the maximums of two adjacent periods are less than half a
period apart, replace the smaller of the two maximums by the
next smaller value in the respective period, which is at least
half a period apart from the larger maximum. A data sample
is thus obtained, in which adjacent data are one period apart
on the average and never less than half a period apart. Fol-
lowing are the daily maximums at Boise, Idaho in the first six
eight-day periods in 1965. The periods are separated by ver-
tical bars. The data selected by the procedure just described
are in bold type. In the sixth period we underlined the period
maximum, 26, discarded and replaced it by the next largest
value, 18, because of the proximity to the larger maximum,
31, of the adjacent period.

23, 32, 35, 20, 26, 24, 24, 14|13, 16, 5, 11, 5, 12, 12, 7|6, 6,
9,9, 11, 12, 25, 2615, 12, 12, 7, 15, 12, 29, 10|7, 10, 15,
20, 20, 17, 24, 31|26, 9, 16, 14, 18, 16, 14, 12|

In spite of our selection procedure, small correlations among
data might subsist. Nevertheless, we refer to a sample obtained
by the selection procedure just described as an uncorrelated
data sample based on eight-day (four-day) intervals or, for
short, an eight-day (four-day) interval sample. An assessment
was made of differences between results of analyses based on
four-day- and eight-day-interval samples at the same station.
Since in all cases the differences were insignificant, we present
in this report only results based on four-day-interval samples.

Fig. 1 contains typical histograms of the full samples of
daily data and of the four-day-interval samples obtained from
them for each of the 44 stations. Histograms for all 44 stations
are included in Simiu and Heckert (1995). Owing to the small
scale of the graphs, in some cases high wind data are not
perceptible on the daily data histograms; however, they can be
seen on the four-day-interval data histograms. A comparison
between the histograms of the full daily data samples and the
histograms of the four-day-interval samples shows that our se-
lection procedure considerably reduces the number of lowest
wind-speed data. The selection procedure also results in a
shifting of the highest ordinate of the histogram toward higher
wind speeds.

ASILENE, TX — DALY MAXIMA ALBANY, NY ~ DALY MAXIMA
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FIG. 1. Typical Histograms of: (a,b) Daily Largest Wind Speeds;
{c,d) Four-Day-Interval Uncorrelated Wind Speeds

Largest yearly data samples: Also available were samples
of largest yearly fastest miles for winds blowing from any
direction, recorded over periods of 18 to 54 years at 115 U.S.
stations not subjected to mature hurricane winds. The data in
those samples were obtained and checked against original
charts by M. J. Changery, Chief, Applied Climatology Branch,
National Climatic Center, National Oceanic and Atmospheric
Administration (personal communication December 20, 1988)
and are an update of the information included in Simiu et al.
(1979).

As noted earlier, all the data samples used in our analyses
are available in an anonymous data file. Instructions for ac-
cessing the file and programs for generating uncorrelated data
sets are given in Appendix I.

ANALYSES AND RESULTS

Analysis of uncorrelated data samples by the probability
plot correlation coefficient method: Before applying the peaks
over threshold approach, we estimated the best-fitting distri-
butions for the four-day samples from among a set of seven
distributions or families of distributions (normal, double ex-
ponential, lognormal, Gumbel, Fréchet, Weibull, and reverse
Weibull). This analysis was viewed as a tentative step toward
understanding the probabilistic structure of the populations
from which the threshold exceedances were taken. The esti-
mation of the best-fitting distribution was based on the prob-
ability plot correlation coefficient (PPCC) (Filliben 1975). As
an example, Fig. 2 shows the PPCC plots for the Albany, New
York four-day-interval samples. For this sample the mean and
standard deviation were E(X) = 10.5 m/s (23.5 mph) and stan-
dard deviation (s.d.) (X) = 3.14 m/s (7.03 mph); for the full
sample of daily data E(X) = 7.82 m/s (17.5 mph) and s.d.
X) = 3.12 m/s (6.98 mph). .

The reverse Weibull distribution was found to best-fit the
data in majority of the cases. Even in the cases where other
distributions fitted the data better, the reverse Weibull was typ-
ically very close to being the best-fitting distribution, that is,
its PPCC differed only in the fourth or even fifth significant
figure from the PPCC of the best-fitting distribution. There-
fore, we reanalyzed the eight-day-interval samples by assum-
ing that the populations for all stations have reverse Weibull
distributions with a single, site-independent value of the tail-
length parameter, and site-dependent location and scale param-
eters. For each station we calculated the PPCCs by "assuming
that the shape parameter vy was 1, 2, 3, ..., 50. For samples
of data based on eight-day intervals the mean and median of
the PPCCs, taken over all the stations, were largest for y = 11
and y = 13, respectively. If it were true that a reverse Weibull
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FIG. 2. Probability Plots for Nondimensionalized Speeds V (Four-Day-Interval Sample, Albany, New York)

distribution with a single tail-length parameter characterized
the extreme winds at all sites, then our analyses would indicate
that the value of that parameter is y ~ 12.

The assumption that there exists a universal tail-length pa-
rameter for extreme wind distributions is implicit in current
practice, except that it is applied to the Gumbel distribution
(for which y = ). To see whether that assumption is tenable
if applied to the reverse Weibull distribution with vy =~ 12, 44
samples corresponding to 18-yr record lengths based on 8-day
intervals were generated from reverse Weibull populations
with (1) vy = 8, (2) v = 12, and (3) ¥ = 16. The number of
simulated samples for which the best-fitting reverse Weibull
distribution had shape parameters with y = 12, 13 = y = 20,
and 'y = 21 are shown in Table 1. Also shown in Table 1 are
the numbers of observed samples based on 8-day intervals for
which the analysis yielded y = 12, 13 =y = 20, and vy =
21. The results of Table 1 would suggest that a reverse Weibull
distribution with y =~ 12 is an appropriate model for popula-
tions of extreme winds representing data based on 8-day in-
tervals, except for the larger number of samples with v = 20
among the observed samples than among the simulated sam-
ples. We interpret this larger number as reflecting the relatively
frequent presence of outliers among the observed samples.
This may suggest that, because wind-speed populations are
mixed (in addition to extremes they include ordinary winds
whose meteorological structure may differ from that of the
extremes), a sample taken from such a population is not likely
to be a sound basis for inferences on extremes. It is therefore
desirable to ‘‘let the tails speak for themselves.”” The appli-
cation of the GPD-based peaks over threshold approach is an
attempt to do just this.

Estimation of tail-length parameter by peaks over threshold
analyses of uncorrelated data samples: We applied the de Haan
estimation method to the four-day-interval samples using, for
each sample, a highest threshold such that the number of its
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TABLE 1. Comparison of Results for Simulated and Observed
Samples
Simulated
samples y=12 13=y=20 y=21
(1 (2) 3 4)
v=8 44 0 0
ye12 26 15 3
v =16 7 22 15
Observed samples® 25 10 9

"Stations for which v = 21 were: Green Bay, Greensboro, Huron,
Lansing, Louisville, Macon, Moline, Portland, or, San Diego. Those for
which 13 = y = 20 were: Binghamton, Fort Smith, Fort Wayne, Gren-
ville, Milwaukee, Minneapolis, Springfield, Topeka, Tucson, and Yuma.

exceedances be equal to, or larger than and as close as possible
to, 16; any higher threshold was deemed to result in data sets
too small to yield useful statistics. Denoting a sample’s max-
imum threshold by u,., the next higher thresholds we consid-
ered Were Upax — 1, Umax — 2, . . ., Unex — 24. Estimated values
(point estimates) of ¢ are shown for typical stations in the plots
of Fig. 3. Also shown on the plots are 95% confidence bounds
[i.e., lines corresponding to ¢ = 2 s5.d.(6)]. On the horizontal
coordinate axis of each plot we indicate the thresholds, in
miles per hour, and the size of the data samples (i.e., the num-
ber of exceedances) for each threshold.

Fig. 4 is an example of a similar plot (¢ versus number of
threshold exceedances) presented for a different type of ex-
treme value problem by de Haan (1990). Like the plots in Fig.
3, this plot exhibits fairly strong fluctuations in the region of
the highest thresholds where the sample size is relatively
small. In the region of the smaller thresholds the 95% confi-
dence bounds become narrower—a result of the increasing
sample size—but a bias sets in, which is due to the inclusion
in the data samples of data not properly belonging to the tails.
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FIG. 4. Point Estimates of Tail-Length Parameter ¢ and 95%
Confidence Bounds versus Number of Exceedances N (de Haan
1990)

In de Haan’s (1990) judgment: ‘It looks from the graph as if
the value ¢ = 0 is not a bad choice in this case.”’

We propose to apply this type of judgment to the plots in
Fig. 3. For example, it would appear that, for Boise, ¢ < 0,
perhaps ¢ = —0.20. The plots of Fig. 3 and similar plots in
Simiu and Heckert (1995) indicate that ¢ < O for most, though
not all, stations. This is an interesting result in itself, insofar
as it would indicate that in most cases extreme wind distri-
bution tails are indeed finite.

Let us again assume for a moment that extreme wind speeds
in regions not subjected to mature hurricanes are described by
a reverse Weibull distribution, with site-dependent location
and scale parameters and a site-independent tail-length param-
eter ¢. The weighted mean of ¢ may be written as a function
of threshold order g as (Gross et al. 1995)

44 44
bug = {Z c",,,/s,’q} / > s, (20)
inl =]

where the index g = 1, 2, ..., 25 is the order of the highest,
second highest, . . ., 25th highest threshold for the 44 samples
being analyzed; and é,, s, = estimated value of ¢ and the
estimated standard deviation of ¢ for station i, based on the
threshold of order q. (Recall that the threshold corresponding
to g = 1 for each station was chosen so that at least 16 data
points exceed that threshold.) The plot of ¢,, is shown in Fig.
5 and, in our opinion, tends to confirm the view that, at most
if not all stations, the estimated value of ¢ is negative, perhaps
¢~ —0.2 or ¢ ~ —0.25. As suggested by Monte Carlo sim-
ulations (Gross et al. 1994), for sample sizes not exceeding
about 10% of the total number of data, the bias in the esti-
mation of c is about —0.05, that is, sufficiently small not to
invalidate our judgment that (predominantly), ¢ < 0.
Estimation of tail-length parameter by peaks over threshold
analyses of largest yearly data samples: Fig. 6 includes point
estimates of ¢ for typical stations for which largest yearly
speeds were available. Also shown on the plots are 95% con-
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FIG. 5. Mean of Estimates of Tall-Length Parameter ¢ Weighted

.over 44 Four-Day-Interval Samples versus Order of Threshold
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fidence bounds [i.e., lines corresponding to ¢ * 2 s.d.(¢)]. The
estimates are plotted against the threshold speed and the num-
ber of exceedances of the threshold, as in Fig. 2. For these
plots the larger samples are not likely to be affected by bias,
since the lowest wind speed in those samples is itself a largest
yearly wind, and hence it will be within or close to the dis-
tribution tail. Though the plots are not always easy to interpret,
in our opinion they confirm the view that at most stations c is
negative. Fig. 7, which shows the weighted average of the
estimated tail-length parameter for the 115 data samples [(20)],
lends further credence to this view.

Estimation of wind speeds with specified mean recurrence
intervals by peaks over threshold analysis of correlated data
samples: Fig. 8 contains plots of point estimates of the extreme
winds with mean recurrence intervals of 100, 1,000, and
100,000 years. The estimates were based on four-day-interval
samples at each of the 44 stations. They are plotted against
the threshold speed and the number of exceedances of the
threshold, as in Fig. 2.

We reproduce in Fig. 9 an example of a plot where the
quantile fluctuates strongly as a function of threshold (de Haan
1990). De Haan comments: ‘‘If one would be forced to give
a point estimate a value of 510 cm ... would not be unrea-
sonable.”” The comment is indicative of the spirit in which
results based on the peaks over threshold method must be in-
terpreted in cases where fairly large fluctuations are present,
as is the case for Fig. 9 and many of the plots in Fig. 8. We
do not attempt in this report to estimate extreme wind speeds
for various mean recurrence intervals. Rather, having found
that the tail-length parameter ¢ of the GPD is negative for
majority of the stations, we assess in the following section the
potential implications of this finding for the estimation of load
factors.

Influence of data errors on analysis results: Simiu and Heck-
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AVERAGEOF C

FIG. 7. Mean of Estimates of Tail-Length Parameter c Weighted
over 115 Largest Yearly Data Samples versus Order of Thresh-
old

ert (1995) list errors in the recorded daily data discovered at
14 stations, and the respective corrected values based on an
examination of original traces at those stations. Plots of esti-
mated ¢ values were found to be generally weakly influenced
by such errors. However, speeds with various mean recurrence
intervals were in some cases affected fairly significantly by
the errors in data. The plot of the weighted mean over all 44
stations, computed from results obtained by using the uncor-
rected data, was indistinguishable from Fig. 5.

LOAD FACTORS FOR WIND-SENSITIVE
STRUCTURES

Extreme wind loads used in design include nominal basic
design wind loads (e.g., the 50-yr wind load) and nominal
ultimate wind loads. A basic design wind load is an extreme
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FIG. 9. Point Estimates and 95% Confidence Bounds for
Quantile q (in cm) versus Number of Exceedances N (de Haan
1990)

load with the specified probability of being exceeded during a
basic time interval. In the United States that interval is usually
50 years. A basic design load with a 50-yr mean recurrence
interval has a probability of almost two-third of being ex-
ceeded during a 50-yr period.

A structure or element thereof is expected to withstand loads
substantially in excess of a 50- or 100-yr wind load without
loss of integrity. The wind load beyond which loss of integrity
can be expected is referred to as the nominal ultimate wind
load. The nominal ultimate strength provided for by the de-
signer is based on a nominal ultimate wind load equal to the
basic design wind load times a wind load factor. This state-
ment is valid for the simple case where wind is the dominant
load. It needs to be modified if load combinations are consid-
ered, but for clarity we refer here only to this case.

The load factor should be selected so that the probability of
occurrence of the nominal ultimate load is acceptably small.

This probabilistic concept is important from an economic or
insurance point of view. To the extent that evacuation or sim-
ilar measures cannot be counted on to prevent loss of life, it
is also important from a safety point of view.

A probabilistic approach has proven helpful in a number of
cases, particularly for relative assessments of alternative de-
sign provisions, for example, for mobile homes. However, in
most cases the difficulties of obtaining wind load factors by
probabilistic methods have proven to be substantial if not pro-
hibitive. For this reason code writers have largely relied on
wind load factors implicit in traditional codes and standards.
For example, the ASCE Standard A7-93 (1993) specifies a
wind load factor of 1.3. In a very large number of applications
the wind load is proportional to the square of the wind speed,
so that a basic design wind speed and a nominal ultimate wind
speed may be defined, which are proportional to the square
root of the basic design wind load and the square root of the
nominal ultimate wind load, respectively. For example, for
Lander, Wyoming, the ASCE Standard A7-93 (1993) specifies
a basic design 50-yr design speed of 35.8 m/s (80 mph) (fastest
mile at 10-m elevation). The corresponding nominal ultimate
wind speed would then be 1.3'235.8 = 40.8 m/s (91.2) mph.

Reliance on traditional code values is part of the process
sometimes referred to as ‘‘calibration against existing prac-
tice.”” Traditional codes were generally adequate for many
types of structures, but questions remain on whether safety
margins implicit in those codes may be applied to modern
structures, which can differ substantially from their predeces-
sors in their materials and design/construction techniques. For
this reason an assessment of wind load factors used in codes
and standards would be desirable. For example, one would
wish to answer the question: what is the approximate mean
recurrence interval of the nominal ultimate wind speed?

The answer to this question depends strongly on the prob-
ability distribution assumed to best-fit the extreme wind
speeds. For example, a PPCC analysis of largest yearly fastest-
mile speeds recorded at Denver between 1951 and 1977, based
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on the assumption that the best-fitting distribution is Gumbel,
yielded a 27.9 m/s (62.3 mph) estimate of the 50-yr wind
speed at 10 m above ground. The corresponding nominal ul-
timate wind speed would be 1.3%27.9 = 31.8 m/s (71.0 mph),
to which there would correspond, under the Gumbel assump-
tion, a mean recurrence interval of about 500 years (Simiu et
al. 1979). If taken at face value this would be an alarmingly
short recurrence interval, since it would entail an unacceptably
large probability of exceedance of the nominal ultimate wind
load during the life of the structure.

However, the 500-yr mean recurrence interval is based on
the Gumbel model. Since our results support the assumption
that (predominantly) the appropriate model is a reverse Wei-
bull distribution, rather than a Gumbel distribution, we wish
to answer the question: what is the mean recurrence interval
corresponding to 1.3"? times the wind speed with a 50-yr mean
recurrence interval? For Denver, if one had to estimate the
tail-length parameter ¢ from the plots of Figs. 3 and 6, and
the 50-yr speed from the plot of Fig. 8, one might choose ¢ =
—(.2 (a conservative choice: according to the plots ¢ is likely
to be somewhat lower, that is, the distribution tail is likely to
be somewhat shorter than that corresponding to ¢ = —0.2),
and x5, = 26.8 m/s (60 mph). For a threshold of 16.5 m/s (37
mph)—a value that is roughly consistent with these choices
(see Denver plot, Fig. 3)—we have A = 139/15 = 9.27/yr.
Assuming x5 = 26.8 m/s (60 mph), it would follow from (13)
and (14) that 4 = 2.5 m/s (5.64 mph). The estimated maximum
possible wind speed corresponding to the parameters ¢ = —0.2
and 4 = 2.5 m/s (5.64 mph) is obtained by letting R — ® in
(13), (14). Its value is Xy, = 4 — 4/¢ = 29.1 m/s (65.2 mph).
The estimated mean recurrence interval of the nominal ulti-
matg wind speed 1.3"%x5 = 1.3'"2 X 26.8 = 30.6 m/s (68.4
mph) is therefore infinity (i.e., such a wind speed is estimated
to never occur).

This estimate is of course subject to sampling errors: the
actual maximum possible wind speed may be higher than 29.1
m/s (65.2 mph), and the mean recurrence interval of the 30.6
m/s (68.4 mph) speed may in fact be finite, though likely much
longer than 500 years. In spite of the uncertainties inherent in
our estimates, our result suggests that a load factor of 1.3—
specified in ASCE standard on the basis of practical experi-
ence—is in fact reasonably adequate from a probabilistic point
of view. This is contrary to what would be concluded if the
analysis were based on the assumption that the Gumbel dis-
tribution holds.

Since the probabilistic model of extreme wind speeds sug-
gested by our results tends to be consistent with experience of
long standing incorporated in standard provisions for wind
loads, its prudent adoption should help remove doubts still
persisting among some practitioners on the usefulness and ad-
equacy of probabilistic approaches to the development of cred-
ible wind loading criteria. However, for this to be the case,
the reliability framework used for such development should
make proper allowance for the uncertainties inherent in esti-
mates of the extreme wind-speed distribution parameters.

CONCLUSIONS

We presented estimates of the tail-length parameters of ex-
treme wind distributions for nontornadic winds blowing from
any direction in regions unaffected by mature hurricanes. In
our opinion, these estimates support the view that the reverse
Weibull distribution is an appropriate probabilistic model in
most if not all cases. They also suggest that load factors for
wind sensitive structures specified by current standards pro-
vide for reasonable safety margins against wind loads, and that
the adoption of the Gumbel model likely results in an unreal-
istic assessment of structural reliability under wind loads.

However, owing to fluctuations of our estimates with the
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threshold value, it is difficult to provide reliable quantitative
estimates of the tail-length parameters. This difficulty is even
more pronounced for quantile estimates. We tentatively ascribe
these difficulties to the relatively small size of our samples
(15-26 years). It would therefore be desirable to assemble
data for longer records than those used in this paper. In ad-
dition, more efficient estimation methods should be developed,
if possible.
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APPENDIX .

Instructions for Accessing Data Sets and Attendant
Programs

Note: Only corrected data are included in the data files.

+ ftp enh.nist.gov (or: ftp 129.6.16.1)

* Suser anonymous

* enter password >guest

* >cd emil/datasets (to access data)

* >cd emil/programs (to access programs)

e >prompt off

* >mget * (this copies all the data files)

e >dir (this lists the available files)

e >get <enh name> <local name> (this copies a specific file;
example: get boise.id boise.id)

* >quit
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