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ABSTRACT

The objective of this study is to describe the application of
artificial neural networks to the problem of fauit diagnosis in
an air-handling unit. Initially, residuals of system variables
that can be used to quantify the dominant symptoms of fault
modes of operation are selected. Idealized steady-state pat-
terns of the residuals are then defined for each fault mode of
operation. The steady-state relationship between the dominant
symptoms and the faults is learned by an artificial neural net-
work using the backpropagation algorithm. The trained neu-
ral network is applied 1o experimental data for various faults
and successfully identifies each fault.

INTRODUCTION

Modern buildings are being designed with increasingly
complex operating systems that have seemingly limitless capa-
bilities for monitoring and controlling the conditions in the build-
ing. Unfortunately, building operators are not always able to
monitor and process the enormous amounts of data that are
generated. Hence, there is a need for robust fault detection and
diagnostic tools that can be used to assist the building operator
and ensure that the system is operating in the manner in which it
was designed. The benefits of a properly operating building
system are numerous, including improved energy efficiency,
improved occupant comfort and health, and longer equipment
life.

In a companion paper, Lee et al. (1996) describe methods
for fault detection in an air-handling unit (AHU). One approach
used in that study is to define residuals that represent the differ-
ence between the existing state of the system and the normal
state. Residuals that are significantly different from zero repre-
sent the occurrence of a fault. If the system that is being moni-
tored is not too complex, the building operator should have little
trouble isolating the source of the fault after the initial detection.
However, for complex systems, isolating the fault can be chal-

lenging and diagnostic tools are needed. This paper describes the
use of artificial neural networks (ANNs) for this purpose.

Several studies that examine the use of ANNSs for fault diag-
nosis appear in the literature. Watanabe et al. (1994) and Fan et
al. (1993) used ANNS for fault diagnosis of chemical processes.
Watanabe et al. (1994) proposed a two-stage, multilayer ANN.
In the first stage, the faults were diagnosed, and in the second
stage, the degree of the fault was estimated. The study of Fan et
al. (1993) was based on steady-state operating conditions. Koive
(1994) reviewed studies that utilized ANNs for fault diagnosis
and control and summarized the architectures most widely used
in practice. The paper also summarized steady-state and
dynamic fault diagnosis and control for a paper-making
machine.

Faultdiagnosis can be thought of as pattern recognition, and
ANN s are well suited to this task. For example, ANNs using the
backpropagation algorithm can be used for character recognition
(Ananthraman 1995; Demuth and Beale 1992). The input
patterns are matrix representations of the dark (1's) and light
(0’s) pixels of the 26 characters of the alphabet, and the output
patterns are 26-bit strings of 1’s and 0’s that represent the various
characters. A similar approach can be applied for fault diagnosis.
Normal and fault modes of operation typically have operational
signatures or distinguishing patterns for each mode of operation.
ANNSs can learn and exploit these patterns to diagnose the
current operational mode of a system. The objective of this study
is to describe the application of an ANN to the problem of fault
diagnosis in an AHU. As an intermediate step, a second ANN is
used as a process model for a cooling coil valve subsystem.

The first two sections of the paper provide a brief descrip-
tion of the AHU and the residuals used in the fault diagnosis. The
eight faults and their corresponding symptoms and dominant
residuals are then described. Next, a brief description of ANNs

_and the backpropagation algorithm is provided. Applications of

ANNS to the development of a model of the cooling coil valve
subsystem and fault diagnosis are then discussed. Finally, results
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of the fault diagnosis are presented and conclusions and recom-
mendations for future work are discussed.

AIR-HANDLING UNIT

A schematic diagram of the variable-air-volume (VAV)
AHU utilized for this study is shown in Figure 1. The same
system was used for a companion paper on fault detection (Lee
et al. 1996). The AHU consists of fans, dampers, a cooling coil,
sensors, and controllers. The static pressure in the main supply
duct is maintained at a constant setpoint value of 249 Pa (1.0 in.
H,0) by sensing the static pressure and controlling the rotational
speed of the supply fan. The supply air temperature is controlled
by modulating the cooling-water control valve to maintain a
constant setpoint value of 14.5°C (58.0°F). The airflow rate
difference between the supply and return airstreams is controlled
by the variable-speed return fan to maintain a constant setpoint
value of 0.472 m/s (1000.0 cfm). A proportional-integral-
derivative (PID) algorithm is used to control the cooling water
valve, and PI algorithms are used to control the supply and return
fan speeds. Although notshown in Figure 1, a personal computer
(PC) and a data-acquisition system (DAS) are used for purposes
of computing control signals and logging data. The sampling
period for control and data collection is 10 seconds.
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Figure 1 Schematic diagram of a variable-air-volume
air-handling unit.

RESIDUAL DEFINITION

The approach used in this paper relies on the ability to iden-
tify patterns of residuals that can be used as signatures for various
faults. Through laboratory testing, it was determined that seven
residuals are needed to identify the eight faults considered here
(described in the next section). The first three residuals represent
the difference between actual and setpoint values of the supply
air temperature, supply air pressure, and the airflow rate differ-
ence between the supply and return ducts. The residuals are
given by
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Rg = 0p=0Cp.sp €
where
R = residual value,
Tg = supply air temperature,
Pg = supply air pressure,
op = airflow rate difference in the supply and return ducts,
Ts sp = setpoint value of Tg
Ps sp = setpoint value of PS and

Op,sp = setpoint value of @p.

The cooling coil valve control signal can provide valuable
insight into the operating status of the AHU. A residual is defined
for the operation of the cooling coil valve and is given by

Ry = Ucc—Uccev @

where
Ucc = actual control signal to the cooling coil valve,
Ucc, Ev = expected value of Uc(.

Ucc is determined by the PID controller for the supply air
temperature; however, there is no obvious way to specify
Ucc Ev: In this study UCC EV is determined using an ANN
model of the cooling coil valve subsystem. The model for
UCC,EV is described in a later section.

Residuals for the operation of the supply and return fans are
given by

R NS = N s - US (5 )
where
Ng = measured value of the supply fan speed,
NR = measured value of the retumn fan speed,
Us = control signal for supply fan, and
Ugr = control signal for return fan.

The final residual is based on a comparison of the actual
cooling coil valve position and the expected value based on the
actual cooling coil control valve signal. The residual is given by

RV = VP— UCC (7)

where
Vp = two-way cooling coil valve position.

Residuals such as Ry require the comparison of measured
values to model values and can cause difficulties arising from the
use of models. The most obvious problem is model error. Even
ifthe model is accepted as being an accurate representation of the
physical process, it may require the identification of parameter
values specific to each physical system. In addition, the charac-
teristics of the system can change over time and require that the
parameters be identified periodically. However, these models
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and the residuals based upon them contain the underlying phys-
ics of the process(es) involved. They provide information on
state variables, such as the rate of heat transfer from a coil, that
cannot be (easily) measured directly. Thus, it is not practical to
think that such model-based residuals can be eliminated. As
stated previously, and as will become more apparent in the next
section, R/ is a symptom of several of the faults studied here.
Hence a reliable model of the operation of the cooling coil valve
under normal operating conditions is needed, and part of this
study is devoted to a discussion of the use of an ANN for this

purpose.

FAULT DESCRIPTION

Faults are typically classified as belonging to one of two
categories, namely, faults due to a complete failure of a compo-
nent or system and faults due to performance degradation. The
main factor used in categorizing faults is the rate at which they
occur. Complete failures typically occur abruptly, although they
may be due to factors such as equipment wear that take place
over years of use. Faults involving performance degradation
evolve over periods that are typically measured in weeks,
months, or years. Faults of this nature are difficult to detect in
their early stages because only subtle changes occur in the
component or system performance. The faults considered in this
study represent complete failures of components of the system.
Complete failures are considered because they can be easily
introduced in a laboratory system and the fault symptoms can be
observed almost immediately. Simulation studies are more
appropriate for faults caused by performance degradation.

Eight faults representing complete failures of various
components in the AHU are described. The dominant symptoms
of each fault are also described. The faults are introduced when
the system is operating at normal, steady-state conditions, and
the dominant symptoms correspond to the steady-state condi-
tions after a fault has occurred. With the exception of the pump
fault, all faults are simulated in the laboratory AHU by either
sending faulty control signals from the PC to an actuator or by
overwriting sensor signals that are logged by the DAS with faulty
values. In each case, the faulty control or sensor signal is equal
to its minimum possible value (usually zero). The pump fault is
introduced manually by reducing the pressure of the cooling
water supplied to the cooling coil.

Fault 1 is a failure of the supply fan. During normal opera-
tion the supply fan is controlled to maintain a static pressure of
249 Pa (1.0 in. H,O) in the supply air duct, and the return fan is
controlled to maintain a flow difference of 0.472 m%/s (1,000
cfm) between the supply and return air ducts. The fault causes the
supply fan rotational speed to decrease to zero, the supply air
pressure to decrease to zero, and the control signal to the supply
fan to increase to its maximum value in an attempt to offset the
decreasing supply air pressure. The control signal for the return
fan decreases to zero in an attempt to maintain the flow differ-
ence between the supply and return air ducts at the setpoint
temperature; however, this condition cannot be achieved due to
the fault. Because there is no airflow, the supply air temperature

542

gradually increases, resulting in the cooling coil valve control
signal increasing to its maximum value. Thus, the dominant
residuals for fault 1 are Rp Ry, Ry, and Ry

Fault 2 is a failure of the return fan. The fault causes the
return fan rotational speed to decrease to zero, the flow differ-
ence between the supply and return ducts to increase, and the
control signal to the return fan to increase to its maximurm value
in an attempt to offset the increasing flow difference. Thus, the
dominant residuals for fault 2 are R and Ryp.

Fault 3 is a failure of a chilled-water pump. It is assumed that
more than one pump is used to deliver the chilled water to the
AHU and therefore the fault causes the water flow rate to
decrease, but not to zero. The decrease in the flow rate of cooling
water causes the supply air temperature to increase initially, This
causes the cooling coil valve signal to increase, thus opening the
valve. By opening the cooling coil valve it may be possible to
bring the supply air temperature back to the setpoint value;
however, the control signal to the cooling coil valve will be
different from the normal condition. The dominant residual for
fault 3 is Ry;.

Fault 4 is a stuck cooling coil valve. After the fault is intro-
duced, nearly normal operation continues and the residuals
remain near zero until a disturbance occurs that calls for a signif-
icant change in the valve position. As an example, a load
decrease in a zone causes the damper of the VAV box for that
zone to close, thus increasing the static pressure in the supply
duct. This causes the supply fan speed to decrease to bring the
static pressure back down to the setpoint value and, conse-
quently, the supply air temperature decreases. In an attempt to
compensate for the decreasing supply air temperature, a signal is
sent to the cooling coil valve to close further. However, because
the valve is stuck, the position does not change. Over time, the
integrator portion of the control algorithm causes the cooling coil
control signal to decrease to its minimum value. The dominant
residual for fault 4 is Ry

Fault 5 is a failure of the supply air temperature thermocou-
ple. A thermocouple failure typically results in a voltage signal
that varies randomly between large positive and negative values.
If the sensed value of the supply air temperature is outside the
range of normal operating conditions (0°C to 40°C, for exam-
ple), the temperature could be automatically set to zero so that
the residual R would not fluctuate. This type of failure is simu-
lated by overwriting the sensed supply air temperature with a
value of 0°C. A zero supply air temperature signal causes the
signal to the cooling coil control valve to decrease to its mini-
mum value and thus close the valve in an attempt to raise the
supply air temperature. The dominant residuals for fault 5 are Ry
and Ry;.

Fault 6 is a failure of the supply air pressure transducer.
When this failure occurs, a zero reading is obtained for the
supply air pressure (by overwriting the actual value). This causes
the control signal to the supply fan to increase to its maximum
value in an attempt to increase the supply pressure. The supply
airflow rate increases for a short period (until the VAV boxes
respond) and this makes it necessary for the cooling coil valve to
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open further to maintain the supply air temperature at the
setpoint value. The return fan control signal also increases for a
short period in order to maintain the flow rate difference between
the supply and return ducts at the setpoint value. The dominant
residual for fault 6 is Rp

Fault 7 is a failure of the supply fan flow station. When this
fault occurs, a zero reading is obtained for the supply flow station
(by overwriting the actual value) and the return fan controller
believes that there is no flow in the supply duct. Thus, the control
signal to the return fan is decreased to its minimum value in an
attempt 0 maintain the flow difference between the supply and
return ducts at the setpoint value. However, the measured flow
difference can only approach zero and does not reach the setpoint
value because this would require a negative flow of 0.472 m*/s
(1,000 cfm) in the return duct. The dominant residual for fault 7
is RQ.

Fault 8 is a failure of the return fan flow station. When this
fault occurs, a zero reading is obtained for the return flow
station (by overwriting the actual value) and the return fan
controller believes that there is no flow in the return duct. Thus,
the control signal to the return fan is increased to its maximum
value in an attempt to maintain the flow difference between the
supply and return ducts at the setpoint value. However, the
measured flow rate difference is unchanged by this compensa-
tion due to the presence of the fault. The dominant residual for
fault 8 is Ro.

ARTIFICIAL NEURAL NETWORKS

Introduction

The ANNs used in this study have a multilayer feedforward
network structure and are trained using a backpropagation
learning rule. Multilayer feedforward networks consist of an
input layer, an output layer, and one or more hidden layers. A
schematic diagram of a multilayer feedforward network with
one hidden layer is shown in Figure 2. The inputs to the n; input
units are denoted x1, x7, ... Xngh the outputs of the n, output
units are denoted y, y7, ... Yny and outputs of the ny, hidden
layer units are denoted hy, hy, ... hy, . The nonshaded units are
bias units whose inputs are set equaf’ to unity. The connections
between the units of different layers of the network are weights
and biases. The variable names assigned to particular weights
and biases are given in Figure 2 and correspond to the dotted
line connections in the figure. The ANN is trained to learn the
functional mapping of inputs to outputs using input/output
training pairs. The output training data are referred to as the
target output of the ANN. The goal is to train the network until
the output of the ANN is suitably close to the target output
(Hertz et al. 1991).

Consider initially the forward pass through the network.
For a specific input pattern (set of input values), the output of the
Jjth hidden layer unit is given by

h; =f[z w']-,»xi"'b'j) (3)
i=1
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Input Layer

Hidden Layer

Figure 2 Two-layer feedforward nerwork.

where

f = activation function,

w’; = strength of connection from ith input unit to jth
hidden layer unit,

b’; = bias value for jth hidden layer unit.

The output of the kth output unit is given by

iy
i =f( > wkjhj'*"ka )
j=1
where
Wi = strength of connection from jth hidden layer unit to
kth output unit and
by = bias value for kth output unit.

The backpropagation algorithm uses a gradient descent
algorithm to update the weights, and therefare the activation
functions must be differentiable. The activation functions used
for the ANNs in this study are

f) = x (10a)

1) = - S (10b)
te

1) = - 2 -1 (10c)
+e

where the functions given by Equations 10a through 10c are
referred to as the pure linear function, the log-sigmoid func-
tion, and the tan-sigmoid function, respectivély. The result of
the forward pass is the output pattern yy, yo, ... Yny

As stated previously, training is continued until the output
patterns are suitably close to the target patterns. Mathematically
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this is achieved by minimizing the sum-of-squares error (SSE),
given by
n, n, )
SSE= X X (5,,~y,,) (11
p= 1g=1
where
Y.p = target value for the kth output unit of the pth pattern,

Yep = actual value for the kth output unit of the pth pattern,
and

np total number of training patterns.
From Equation 11, SSE is computed by summing over all n,,
output values for all np training patterns.

The ANN is trained by updating the weights using a back-
propagation learning rule. The change in weight (') is based
on the gradient descent rule and is given by

. _ _0(SSE)
ij‘. = —T]—EW (12)
where
n = learning rate.

A more complete description of ANNSs and the backpropaga-
tion algorithm is given by Hertz et al. (1991).

Application of an ANN to the Cooling
Coil Valve Subsystem

Tocompute residual R/, amodel is needed to determine the
expected value of the cooling coil valve control signal U CCEV
An ANN can also be utilized for this purpose. Curtiss et al.
(1993) described the modeling of a heating coil using a neural
network where the objective was to determine the foad on the coil
for the next time step. For this study the goal is to determine the
current value of U for normal operating conditions. A sche-
matic diagram of the cooling coil and the cooling coil valve
subsystem is shown in Figure 3. Tz and ¢4 are the mixed air
temperature and relative humidity, respectively; Q¢ is the supply
airflow rate; and Ty is the temperature of the cooling water at
the inlet to the cooling coil. The other variables retain their previ-
ous definitions.

The ANN used to model the cooling coil valve subsystem
has a single hidden layer with 10 units. Knowledge of the phys-
ical process and extensive training and testing of different combi-
nations of input variables and network topologies were utilized
to identify the inputs to the ANN. As discussed later in this
section, the inputs represent a tradeoff between performance of
the ANN under normal and faulty conditions. The input and
output variables for training are:

Inputs Qg(i), Qi — 1), Tg(d), T(i ~ 1), Tpg(d), Typli - 1),

Twid), Tyi= 1), ps(0), dpg(i— 1), QD) [Tpg(D
= Tg(D), Qs(i— 1) [Tag(i ~ 1) = T(i= 1)]
Output U-x)

where (i) refers to the current discrete time value and (i — 1)
refers to the previous value. Inputs of the form Q¢(?) [Tys(i) -
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Figure 3 Schematic diagram of the cooling coil and
cooling coil valve subsystem.

T¢(i)] are measures of the load on the coil at a particular time.
The ANN is trained in a batch mode (off-line) using experi-
mental data obtained as the system operates in a normal mode.
The training data consist of 2,271 input/output patterns, and
training proceeds until the average error for each training pat-
tern is approximately 0.0015. A tan-sigmoid activation func-
tion is used for the hidden layer and a pure linear activation
function is used for the output layer. A commercial ANN soft-
ware package is used for the training (Demuth and Beale
1992).

The actual value of U and the ANN model value of
Ucc Ev are plotted as a function of time (denoted 7} in Figure 4
for a stuck valve fault (fault 4). The fault and a load decrease are
at + = 1,800 seconds. The load decrease at 1,800 seconds causes
U to decrease to its minimum value (1 V in this case) in an
attempt to bring the supply air temperature up to the setpoint
temperature. Ucc gy also shows a decrease at 1 = 1,800
seconds; this is due to the decrease in the supply airflow rate that
occurs when the load decreases. A distinct difference in the two
signals is observed and this difference is used to compute Ry;.
This plot demonstrates that the ANN model responds to normal
system changes in the appropriate manner; however, the model
does not respond to the changes caused by the fault.

7 Uce: Measured Value

Uccgv: ANN Model Va]uek

Cooling Coil Valve Control Signal, V

0 L — L 2 L

0 600 1200 1800 2400 3000 3600

Time, s

Figure 4 Actual and predicted cooling coil valve con-
trol signals.
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For all testing, the supply air temperature inputs to the ANN
are replaced by the supply air temperature setpoint. This is done
to avoid contaminating the ANN inputs with fauity data. In addi-
tion, Qg(i) is monitored so that if its value goes to zero, the input
to the ANN model is modified so that Q ¢(7) is equal to its average
value from the previous 20 time steps. Hence, faulty data asso-
ciated with the supply fan fault (fault 1) and the supply fan flow
station fault (fault 7) have only a minimal effect on the compu-
tation of the expected value of the cooling coil valve control
signal, Ucc, Ev

In general, the ANN model is susceptible to faulty input
data, as would any model that uses real data as input. This is a key
issue in the development of the ANN model because the goal is
to predict the operation of the valve for normal conditions, not for
fault conditions. For the latter case, a sufficiently trained ANN
would simply track the faulty control signal and the residual Ry
would not indicate the presence of a fault. In this study this was
avoided by not using past values of U as inputs to the ANN
model.

The input training data do not exhibit a great deal of varia-
tion for Tyyy, 0y, and Tyy and, therefore, the ANN can only be
used reliably for a relatively small range of these variables.
Future effort will be devoted to collecting data over a wider range
of conditions; however, the current set of training data is suffi-
cient to demonstrate this application of ANNs. The need for a
large training data set that covers the complete range of operating
conditions for the process is a practical consideration that must
be overcome to implement this model.

Application of an ANN to Fauit Diagnosis

To utilize an ANN for fault diagnosis, the ANN must first be
trained using data that are representative of the normal condition
and of the various fault conditions. The inputs are seven normal-
ized values of the residuals in Equations 1 through 7 and the
outputs are nine values that constitute a pattern that represents
the normal mode or one of the eight fault modes of operation.
Hence, nine input/output patterns are used to train the network.
Actual measured data for normal operation may be available
from historical databases or can be obtained as the system oper-
ates. However, this may not be the case for fault conditions. Intro-
ducing a fault to the system so that fault data can be collected
may not be possible due to concerns for occupant comfort.
Hence, an alternative method for obtaining patterns of residuals
during fault modes of operation is needed.

In this study, idealized training patterns are specified by
considering the dominant symptoms of each fault. Following the
discussion in the “Fault Description” section, examples of domi-
nant symptoms/residuals for several faults are:

IF Supply fan failure  THEN Supply fan rpm is zero.
Supply air pressure is zero.

Supply fan control signal is
maximum.

Flow difference between
supply and return ducts is zero.
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IF Return fan failure THEN Return fan rpm is zero.

Flow difference between
supply and return ducts
increases.

Return fan control signal is
maximum.

IF Pump failure THEN Cooling coil valve control

signal changes.

Cooling coil valve position
changes.

IF Cooling coil control THEN Cooling coil vaive control
valve failure signal changes.

Cooling coil valve position
does not change.

Using this type of reasoning it is possible to construct a
pattern of dominant training residuals for each fault. The match-
ing of dominant residuals to the various faults is depicted in
Figure 5.

Fault Fault Fault Fault Fault Fault Fault Fanit
#1 #2 #3 #4 #5 #6 #7 #8

Figure 5 Matching of dominant residuals and faults.

The residuals are normalized so that the dominant symptom
residuals have the same magnitude for the different fault cases.
A dominant symptom residual is assigned a value of 1 depend-
ing on the sign of the residual, and all other residuals are assigned
a value of 0. The idealized input/output training patterns for the
normal mode of operation and the eight faults are given in Table 1.
The input patterns are based on conditions that are expected to
exist after the system has reached steady state. Each output train-
ing pattern consists of eight values of 0 and one value of 1. The
normal mode has a | as the output for the first unit, fault  has a
1 as the output for the second unit, and so on.

For testing of actual data, a normalized residual is obtained
by dividing a residual from Equations 1 through 7 by the absolute
value of the maximum value obtained for this residual from
measured fault data. Thus, the maximum value of the absolute
value of Ry obtained for a particular fault is used to normalize
the supply air temperature residual for all the considered faults.
The normalized residual for the supply air temperature is:

= TS B TSv SP ( 1 3)
Ts=Ts, 5Pl max
where the subscript “max” denotes maximum.
The ANN architecture is 7 X 5 x 9, where the first number
is the number of inputs (residuals, n;), the last number is the
number of outputs (normal mode plus eight fault modes, n,), and

Ry
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TABLE 1

Normalized Patterns for AHU Fauit Diagnosis Used in ANN Training

Net Inputs
R, R, R, R, Ry R, R, Net Outputs Fault Diagnesis
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Normal
-1 -1 0 -1 0 0 0 1 0 0 0 0 0 0 0 #1 Supply fan
0 1 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 #2 Return fan
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 #3 Pump
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 #4 Cooling coil vaive
0 0o -1 -1 0 0 0 0 0 0 0 0 1 0 0 0 #5 Thermocouple
-1 0 0 0 0 0 0 0 0 0 0 0 0 l 0 0 #6 Pressure transducer
0 -l 0 0 0 0 0 0 0 0 0 0 1 0 #7 Supply flow station
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 #8 Return flow station

the middle number is the number of units in the hidden layer (n5).
A log-sigmoid activation function is used for both the hidden and
output layers. The network is trained until the sum-of-squares
error is less than 1070 or until the number of training epochs
exceeds 5,000. A commercial ANN software package was used
for the training (Demuth and Beale 1992).

The methodology described above is one example of how
ANNSs can be used for fault detection and diagnosis. Model-
based approaches are a second example of the use of ANNs for
this task. Model-based approaches compare ANN models of
normal and faulty system or subsystem operation to the actual
system operation. Diagnosis of the current state of the system is
based on determining which model has the greatest degree of
similarity to the actual system operation. The model-based
approach is not used in this study.

Network Topology and Training

The selection of the appropriate number of hidden layers
and the number of units in a layer is problem dependent and typi-
cally requires considerable engineering judgment (Schalkoff
1992). As is the case for most numerical algorithms, a tradeoff
between accuracy and computational requirements may exist.
For instance, by adding more hidden units and layers to a
network, the agreement between the actual and target outputs
may be improved but at the cost of increased training time and
memory requirements. In addition, if too many hidden units are
used, overfitting of the training data may occur and the general-
ization to new input patterns may be poor. This is similar to the
effect seen when curve-fitting with too many free parameters
(Hertz et al. 1991).

Hecht-Nielson (1990) provides guidelines for training and
testing ANNs. The basic approach is to divide the available data
into a training set and a testing set. Both sets should include data
that cover the full range of operating conditions. The amount of
training required to yield a sufficiently accurate ANN is also
prcblem dependent. For most ANNs an optimum number of
training epochs exists that minimizes the error for the testing
data. Additional training epochs will most likely yield lower
training errors; however, the errors for the test data may increase.
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This phenomenon occurs commonly for ANNs trained with the
backpropagation learning rule and is known as overtraining.
Overtraining can result in an ANN that exhibits poor generali-
zation because the ANN simply memorizes the input training
patterns. In most cases, the appropriate network topology and
number of training epochs can only be determined through an
extensive trial-and-error process.

RESULTS AND DISCUSSION

Faults in the AHU are diagnosed by inputting residual
vectors to the trained ANN. The residual vectors are obtained by
introducing faults in the laboratory AHU and recording the
subsequent response of the system. The system response is input
in a batch mode to the trained ANN model of the cooling coil
value subsystem to compute Ucc gy This computation could
also be done on-line. Residuals are calculated using steady-state
values of the system variables measured 900 seconds after a fault
is introduced. Residuals for the normal mode and eight fault
modes of operation are given in Table 2. Normalized residuals
computed using expressions such as Equation 13 are given in
Table 3 and are used as input to the ANN for fault diagnosis.

A more systematic approach to determining the steady-state
residual values would be to develop and implement a steady-
state detector. One possible method for detecting steady-state
conditions would be to use regression techniques to obtain linear
equations that characterize the responses of variables such as T,
Pg, and Qp. Steady-state conditions would be indicated if the
slopes of these lines were less than the threshold values defined
for each signal. A steady-state detector such as this would be
necessary for on-line implementation in a real system because
the onset of a fault is not known a priori.

Results of the fault diagnosis are given in Table 4. From the
training patterns in Table 1, a perfect diagnosis would yield
values on the diagonal of unity, and all other values would be
zero. The values on the diagonal in Table 4 are near unity (under-
lined), indicating that the ANN successfully diagnosed each
condition. Thus, although the training was based on simple,
idealized relationships between the symptoms and faults, the
ANN accurately discriminates between the various faults and the
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TABLE 2 Measured Residuals 900 s After the Occurrence of a Fauit

Fault oiiifﬁn R, R, R, R, Rys Byr R,
Normal -0.004 0.011 ~0.080 0.130 0.037 0.065 0.011
#1 Supply fan fauit -0.249 -0.398 0.790 4.005 -9.983 0.017 -0.249
#2 Retumn fan fault 0.004 0.652 I 0.063 -0.097 0.071 -9.983 -0.042
#3 Pump fault -0.004 0.079 0.013 2.145 0.043 0.072 -0.354
#4 Cooling coil valve fault -0.003 -0.068 -1.095 -1.577 0.044 0.016 3.247
#5 Thermocouple fault 0.002 -0.027 -14500 -3.697 0.063 0.056 -0.274

#6 Pressure transducer fault -0.249 0.036 0.010 0.529 —0.003 0.079 -0.010
#7 Supply flow station fault 0.005 -0.868 -0.072 -0.086 0.055 0.017 0.014
#8 Return flow station fauit ~0.001 1.072 0.000 -0.299 0.048 -0.011 0.099

TABLE3 Normalized ANN Input for Fault Diagnosis

Fault System Operation RP RQ RT RU RNS RNR R v
Normal -0.016 0.010 -0.006 0.032 0.004 0.007 0.003
#1 Supply fan fault -1.000 -0.371 0.054 1.000 -1.000 0.002 ~-0.077
#2 Return fan fault 0.016 0.608 0.004 -0.024 0.007 -1.000 -0.013
#3 Pump fault -0.016 0.074 0.001 0.536 0.004 0.007 -0.109
#4 Cooling coil valve fault -0.012  -0.063 -0.076 -0.394 0.004 0.002 1.000
#5 Thermocouple fault 0.008 -0.025 ~1.000 -0.923 0.006 0.006 -0.084
#6 Pressure transducer fault -1.000 0.034 0.001 0.132 0.000 0.008 -0.003
#7 Supply flow station fault 0.020 -0.810 -0.005 -0.021 0.006 0.002 0.004
#8 Return flow station fault -0.004 1.000 0.000 -0.075 0.005 -0.00t 0.030

TABLE 4 Diagnosis Results for the Data in Table 3

System Operation Output Pattern
Normal 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Supply fan fault 0.000 1.000 0.000 0.000 0.000 0.000 0.022 0.000 0.000
Return fan fault 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
Pump fault 0.017 0.001 0.000 0.927 0.000 0.000 0.000 0.000 0.000
Cooling coil valve fault 0.004 0.000 0.000 0.000 0.998 0.000 0.041 0.001 0.000
Thermocouple fault 0.000 0.000 0.102 0.000 0.000 1.000 0.000 0.000 0.000
Pressure transducer fault 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
Supply flow station fault 0.005 0.000 0.000 0.000 0.000 0.002 0.000 0.999 0.000
Return flow station fault 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

TABLES Additional Training Patterns for Select Faults

Net Inputs
R, RQ RT RU RNS RNR R, Net Outputs Fault Diagnosis
0 0 0 1 0 0 0 o 0 o 1 0 0 0 0 O | #3Pump
0 0 0 0.5 0 0 0 0 0 0 1 0 0 0 0 0 | #3Pump
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 | #4Cooling coil valve
0 0 0 0. 0 0.5 0 0 0 0 1 0 0 0 0 | #4Cooling coil valve
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normal condition when actual data are used. Because of their'

ability to generalize and to filter noise, ANNs appear to be useful
tools for fault diagnosis. For the set of faults and the associated
symptoms considered in this study, fault diagnosis methods
based on if-then rules, or pattern recognition techniques such as
the nearest neighbor algorithm (Schalkoff 1992), are also
expected to be effective. As the number of faults increases,
however, implementation of the if-then rules may become
cumbersome. Extension of the ANN method for fault diagnosis
to include other faults is expected to be straightforward. The
major computational requirement for ANNs occurs during train-
ing (which can be performed off-line) and this is not expected to
present a problem during on-line operation.

It should be noted that the success achieved for this set of
data is not guaranteed in general. Because training is based on a
small set of idealized data, generalization problems can occur
when actual data are considered. This potential difficulty is
easily envisioned for normalized residuals with values near =0.5,
as for fault 3 in Table 3. Although this fault is correctly diag-
nosed, this set of residuals could also have been identified as a
normal operating condition. In this case, the problem is linked to
the severity of the fault. That is, a more severe pump fault would
produce a larger value of U~ and, therefore, a larger value of
Ry;. This would improve the likelihood of a correct diagnosis.

A second case where generalization may be imperfect
relates to the state of the system when the fault occurs. As an
example, consider the stuck-valve fault, If the valve sticks in a
position where it is roughly half open and the value used for
normalization is based on the maximum possible difference
between the actual and expected positions, the corresponding
normalized residual Ry will again be near +0.5. Thus, the same
kind of generalization problem as cited previously could be
encountered.

The reliability of the ANN for diagnosing imperfect input
data patterns can be improved in two ways. First, the input train-
ing data set can be extended to include patterns that account for
less severe faults and faults related to the state of the system prior
to the occurrence of the fault. For instance, the training patterns
for the pump fault and valve fault could be extended as shown in
Table 5. This kind of extension of the input training data is rather
straightforward to envision once the patterns for the severe faults
have been established. A second way in which the ANN can be
taught to generalize more accurately is by training the network
with noise added to the idealized input patterns. For instance,
random noise that is normally distributed with a mean value of
0O and a variance of 0.1 can be added to the input patterns in Table
1. The training data then consist of the original idealized input
patierns and the noisy patterns. Additional noisy input patterns
with different values of the variance can also be added to the
training data set. Both approaches are currently being investi-
gated to improve the robustness of the diagnosis.

It is also possible that the input to the ANN will represent a
fault mode of operation for which the ANN was not trained. In
fact, it seems probable that this will occur occasionally and there-
fore must be accounted for in an actual implementation of the
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method. The most desirable output in this scenario would be a
warning that the system is operating in some unknown fault
mode. However, because the training data do not include this
type of input, the output may be erroneous. Although this may
appear to be a drawback of the ANN method, the reality is that
this scenario is likely to cause problems regardless of the method
used for fault diagnosis.

The diagnosis of experimental faults is based on steady-
state or near-steady-state conditions and dynamic conditions are
not considered. Further study is needed to determine how the
method can be extended for use when dynamic conditions exist.

CONCLUSIONS AND RECOMMENDATIONS

The objective of this study was to describe the application
of ANN:s to the problem of fault diagnosis in an AHU., Initially,
residuals of systemn variables were selected that could be used to
quantify the dominant symptoms of fault modes of operation.
Idealized steady-state patterns of these residuals were then
defined for each mode of operation studied. The steady-state
relationship between the dominant symptoms and the faults was
learned by an ANN using the backpropagation algorithm. The
trained ANN was applied to experimental data for various faults
and successfully identified each fault.

An ANN was also used successfully as a model foracooling
coil valve subsystem. The output of the ANN was the expected
value of the cooling coil valve control signal. Although the
agreement between the actual and predicted control signals
during normal operation was not perfect, the ANN model was
adequate for identifying normal and fault modes of operation.
The agreement for normal operating conditions could be
improved by changing the inputs to the ANN; however, this may
lead to a model that tracks the operation of the valve during fault
conditions rather than providing an estimate of the normal oper-
ation of the valve under normal operating conditions.

This study demonstrates the feasibility of using ANNs for
diagnosis of faults in HVAC systems. Eight fault modes of oper-
ation were considered and all faults were of a severe nature.
Hence, the symptoms of these faults are relatively easy to distin-
guish. Nonetheless, it is anticipated that, because of their abilities
to learn complex, nonlinear relationships and to generalize,
ANNS will also be effective for less severe faults.

The method can be extended in a straightforward manner to
consider additional faults such as damper faults in the mixing
box. Itis likely that this will require the introduction of additional
residuals to the analysis. As the complexity of the system and the
number of faults considered grows, it may be desirable to
develop separate ANNs for various subsystems and to use a
preprocessor to identify the appropriate subsystem to examine
for the existence of a fault.
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QUESTIONS AND COMMENTS

Jean Lebrun, Professor, Laboratoire de Thermody-
namique, University of Liege, Liege, Belgium: I guess the
ANN technique could also be used to interpret time variations:
we could include time derivatives as input and output vari-
ables.

John House: You bring up a very good point. Yes, time deriv-
atives could be included as inputs to the neural network,
although we have not attempted this. Including time deriva-
tives may make it possible to diagnose faults more quickly by
eliminating the need to wait for steady-state conditions to pre-
vail. In certain circumstances this may be advantageous, but in
most cases it would seem to introduce additional questions.
For instance, can we expect the dynamic response of a given
system to always be the same for a given fault or is it depen-
dent on the operating point or load? Can we expect the
response to be the same in another system? Are we better off
to wait for steady-state conditions to exist since the faults are
not typically life threatening and we have a better sense of the
state to which the system will evolve for a given fault?
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