Advances in Nonlinear Stochastic Mechanics IUTAM Symposium,
July 3-7, 1995, Trondheim, Norwary. Proceedings. Naess, A.,
Krenk, A., Editors. Kluwer Academic Publishers, Boston, MA, 1996.

A NEW TOOL FOR THE INVESTIGATION OF A CLASS OF NONLINEAR
STOCHASTIC DIFFERENTIAL EQUATIONS: THE MELNIKOV PROCESS

E. SIMIU and M. FRANASZEK
National Institute of Standards and Technology
Gaithersburg, MD 20899, USA

1. Introduction

The Melnikov process, a construct rooted in chaotic dynamics theory, was recently
developed as a tool for the investigation of a broad class of nonlinear stochastic
differential equations [1-6]. This paper briefly reviews the stochastic Melnikov-based
approach and applications to (i) oceanography, (ii) open-loop control of stochastic
nonlinear systems, and (iii) snap-through of buckled beams with distributed mass
and distributed random loading.

2. Melnikov Processes
2.1 DYNAMICAL SYSTEMS

The stochastic Melnikov-based approach reviewed in this paper is applicable, among
others, to systems described by the equation

I=fz)+ e[ p2+G(1)] )

where | e |<«1, and the function f and the random process G(t) are assumed to be
sufficiently smooth and bounded. (This restriction on G(t) may be in practice be
removed: if G(?) is not smooth and/or bounded, it may be replaced by a bounded
and sufficiently smooth process G,(z) that approximates G(t) as closely as desired
over any any arbitrarily large, though finite, time interval. For example, one may
approximate broadband Gaussian noise by a sum of a large number of bounded
harmonic terms with random frequencies and phases [7]; white noise by broadband
noise with constant spectrum and very large cut-off frequency [4]; square wave coin-
toss dichotomous noise by a series of sums with a random (coin-toss) parameter
and a non-random parameter defining the position of the square wave on the time
axis, each sum in the series representing an arbitrarily close Fourier approximation
of a square wave [5].) In addition, it is assumed that the unperturbed system has
two hyperbolic critical points z, and z,, not necessarily distinct, and that there is an
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orbit y(¢) which connects them. (The orbit is called homoclinic if the two points
coincide, and heteroclinic otherwise.) In particular this assumption holds for
systems with f(z) =dV/(z)/dz, where V{z) is a two- or multi-well potential. Examples,
in addition to others given later in the paper, are the Duffing-Holmes equation, the
Josephson junction, and models of vessel capsizing in beam seas [2).

Equation 1 with ¢=0 is referred to as the unperturbed system.

2.2 MELNIKOV-BASED NECESSARY CONDITONS FOR ESCAPES

2.2.1 Persistence Theorem :
For the system approximating Eq. 1 [i.e,, Eq. 1 in which G,(¢) is substituted for _
G(t)], the persistence theorem can be used to show that, for sufficiently small ¢, the
hyperbolic critical points persist in a phase space slice through the approximating
system’s extended phase space [8]. This means that the perturbed system will
possess separated stable and unstable manifolds.

2.2.2 Application of Smale-Birkhoff Theorem

The Smale-Birkhoff theorem states that a necessary condition for the occurrence
of chaos (i.e., for sensitivity to initial conditions) is that the stable and unstable
manifolds of system (1) intersect transversely [8]. Crossing of a potential barrier
(i.e., escapes from regions of phase space associated with the interior of a potential
well) can occur only via lobes resulting from the transverse intersections of the
system’s stable and unstable manifolds [8]. The existence of such intersections is the
a necessary condition for chaotic transport. In particular, for systems with stochastic
excitation, it is a necessary condition for the occurrence of escapes. Therein lies the
connection between chaotic dynamics and the study of escapes in nonlinear
multistable stochastic differential equations [1,4].

To first order, the Melnikov process is a measure of the distance beween the
stable and unstable manifolds of the stochastic system approximating Eq. 1. If a
realization of the Melnikov process has simple zeros, the corresponding stable and
unstable manifolds intersect transversely.

It can be shown that: (a) the process Ga(t) induces a Melnikov process
arbitrarily close to the process

M(t) = -Bf22(r)dr +[h(r)G(t-r)dr @

where Z, is the ordinate in the 22 phase plane of the unperturbed system’s
heteroclinic or homoclinic orbit; (b) the filter in the convolution integral of Eq. 2
is A(1) = 2(-t); and (c) the mean zero upcrossing time of the Melnikov process, r,,
is a lower bound for the system’s mean escape time, r, [1,3,4]. To increase r_ it is
therefore necessary to increase r,. If the marginal distribution of the noise G(r) is
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bounded, for values of §, v such that M(#)<0 for -o<t<w N0 €scapes can ever occur.
In some applications the mean value and spectral density of M(z) are useful. They
are, respectively, -BK, where K denotes the value of the first integral of Eq. 2, and

2n¥p(w)=2n%( w)'yzSz(w). A3)

S(w), the Fourier transform of 4(z), is known as the Melnikov relative scale factor.
Finally, we note that although in theory the results just reviewed are valid for
small ¢, in practice they were found to hold even for relatively large e [9).

2.3 EXTENSIONS TO OTHER TYPES OF DYNAMICAL SYSTEMS

Results similar to those just reviewed have been extended to: systems with
multiplicative noise [4]; a class of systems of two first-order stochastic differential
equations with a slowly-varying parameter; and a stochastic partial differential
equation whose deterministic counterpart was first studied by Marsden and Holmes
[10] -- see Sections 3 to 5. Similar results can be obtained for multi-degree of
freedom systems whose unperturbed counterparts have homo/heteroclinic orbits.

3. Model of Along-shore Currents Due to Randomly Fluctuaung Winds Over
Continental Shelf With Penodxc Corrugations Normal to Coastline

This problem was studied by Allen et al. (1991) [11] for the case of harmonically
fluctuating wind forcing. In the absence of friction and forcing this model exhibits
homoclinic orbits due to the presence of ocean bottom corrugations normal to the
coastline, which correspond in the mathematical model to potential wells separated
by a barrier. Under excitation by wind with low frequency harmonic fluctuations,
and in the presence of friction, for low wind speeds the steady-state motion of a
fluid particle will occur within a well for all time. However, if the wind speeds are
sufficiently strong, the system’s Melnikov function will have simple zeros, and the
particle can behave chaotically, that is, move back and forth across the potential
barrier in an apparently random fashion {11}.

The equations of motion governing the current motion belong to a class of
deterministic second order systems with a slowly varying parameter studied by
Wiggins and Holmes (1987) {12]. An extension to the stochastic case was reported
in [3], and allowed consideration of the more realistic case where the alongshore
currents are excited by random wind fluctuations. The fluctuations induce a
Melnikov process (that is, an ensemble of Melnikov functions). Assume for example
that the excitation is Gaussian. Then, with probability one, the Melnikov process
will have simple zeros, and escapes across the potential barrier are possible --
provided that one waits a sufficiently long time. However, the probability that
escapes will occur within a specified finite time interval is less than one. Using
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estimates of the mean zero upcrossing time of the Melnikov process, a weak upper
bound for this probability was estimated in [3,4].

4. Melnikov-based Open-loop Control

The performance of certain nonlinear stochastic systems is deemed acceptable if,
during a specified time interval, the systems have sufficiently low probabilities of
escape from a region of phase space associated with a potential well. An open-loop
control method for reducing these probabilities was proposed in [13]. The method
is applicable to stochastic systems defined in Sections 2.1 and 2.3. The Melnikov
relative scale factors, defined in Section 2.2, are system properties containing
information on the frequencies of the random forcing spectral components that are
most effective in inducing escapes. An ideal open-loop control force applied to the
system would be equal to the negative of a fraction of the exciting force from which
the ineffective components have been filtered out. Limitations inherent in any
practical control system make it impossible to achieve such an ideal control.
Nevertheless, numerical simulations summarized in this section show that,
substantial advantages can be achieved in some cases by designing control systems
that take into account the information contained in the Melnikov scale factors.

4.1 NUMERICAL SIMULATIONS

4.1.1 Dynamical System and Excitation

To illustrate the application of Melnikov-based open-loop control we assume that
our system is described by Eq. 1 in which f(z) =x-2 (ie., Eq. 1 is the Duffing-
Holmes equation), and that the spectral density of the forcing G(1) is

| 0.039904n(w) +0.12829 0.04<w< 0.4
2m¥(w)=4 0.05755in(w)+0.14493. 0.4<w< 1.2
-0.38301( In(w)]?+1.061924n(w)-0.02941  1.2<w=<I5.4

(Fig. 1). A rescaled version of this spectrum approximates low-frequency
fluctuations of the horizontal wind speed [3]. For our system the Melnikov relative
scale factor is S(w) = (Z)I’waech(frw/Z) (Fig. 2a), and K=4/3 {1]. The spectral
density of the Melnikov process for y=1 (see Eq. 3), is shown in Fig. 2b.

4.1.2 Types of Open-loop Control
One possible type of open-loop control force has the expression -ev,G(t-t,) and
secks to counteract the excitation by applying a control force proportional and of
opposite sign to vG(z). We refer to this as type (a) control. The smaller the lag ¢,
the more effective the control.

A more efficient open-loop control force is one in which the information
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provided by the Melnikov relative scale factor S(w) is utilized as follows. Figures 1
and 2 show that, owing to their suppression by $%(w), spectral components with
frequencies O<w=w,, where w;<0.3, say, and frequencies w>w, where w,=2.5, say,
contribute little to the spectral density of the Melnikov process. We refer to these
components as ineffective. Our objective is to increase the system’s mean exit time

o~ and as indicated earlier to accomplish this we must increase the mean zero
upcrossmg time of the system’s Melnikov process, r,,, that is, we must reduce the
spectral density of the controlled system’s Melnikov process. We can do so -- more
effectively than by applying a control force of type (a) -- by passing the signal
-7,G(t-1,) through an ideal filter that suppresses the ineffective components. We
refer to this control force as type (b).

We now consider a third type of control force, obtained by passing the signal
-e-y,_.G(t-to) through a realistic, practical filter, the imp'ulse response of which is
shown in Fig. 3 (a=0.1, b=2.25). This control force is referred to as type (c).

The type (c) control force can be improved upon by passing the signal -¢y,/G(t-2,)
through the filter of case (c), and then suppressing from the output all ineffective
Fourier components while leaving the other components unchanged. We refer to
this force as type (d).

4.1.3 Simulation Results

In all the simulations we assumed ¢,=0.1, and v,=0.5, v4=0.5, ¢=0.1, §=0.45.
Control force (a) was chosen so that it has the same average power as force (b);
this yielded +,=0.195. A similar criterion applied to the forces (c), (d) resulted in
v,=0.167. (To within a constant the average power is the variance of the control
force.) Simulation results are summarized in Fig. 4. For example, Fig. 4 shows that,
given the external excitation o=e¢-y=0.15, the escape rate reduction due to the use
of a control force type (b) is about 20 times larger than that due to a control force
type (a) having the same average power; and control force type (d) is almost five
times more effective than control force type (c) with the same power. Note that the
effectiveness of the control force increases as o decreases.

The simulation results show that the information inherent in the Melnikov scale
factors can be utilized to obtain relatively effective open-loop control systems aimed
at reducing escape rates. The extent to which this is the case depends upon the
spectral density of the excitation, the system characteristics as reflected by the
Melnikov relative scale factor, the lag time 7, and the properties of the filter being
used.

5. Snap-through of Buckled Column with Continuous Mass Distribution, Excited
by Distributed Stochastic Load

' We now illustrate the application of the Melnikov approach to a spatially-extended
stochastic dynamical system. We obtain a stochastic counterpart of the Melnikov
necessary condition for chaos --and snap-through-- derived by Holmes and Marsden
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(1981) [10] for the harmonic loading case. As in Section 3, our approach can yield
a lower bound for the probability that snap-through cannot occur during a specified
time interval. For excitations with finite-tailed marginal distribution, a simple
criterion can be obtained that guarantees the non-occurrence of snap-through.

Assume that: (a) the mechanical properties of the column are uniform over its
length, (b) the material is linearly elastic, (c) following the initial, static
deformation of the column due to buckling the distance between the column
supports is fixed, and (d) the column deformations are sufficiently small that, in the
Taylor expansion of the projection of the elemental deformed column length on the
line joining the column supports, terms of power higher than two can be neglected.
The equation of motion of the column is then [10, 14]

1
Zy + 2 + (T - ecJ” 2%(5,0dg)z, = ARG - p} (4a)

R(y1) = v(y)cos(wgt) + p()G(t) (4b)

where z(y,t) =Z(Y,7)/A , Z=deflection at time r, Y=coordinate along column length
£, y=Y/4, A=Z (2/2) is the static deflection of the column Z,(Y) at midlength, ¢ and
r=dimensionless and dimensional time, respectively, I‘=Po£2/EI, E=Young’s
modulus, /=moment of inertia of column cross-section with respect to weak axis,

£
P,=P_+[EA/28][ (dZ /dY)%dY, (4c)
o

Pc,=k1rZEI/£2 is Euler’s critical buckling load, k=coefficient dependent upon the
boundary conditions (for columns hinged at both ends k=1), A=cross-sectional
area, £ =1402A4/1 ¢ ﬁ=c22/[mEI]’ 2 c=viscous damping coefficient, m=column mass
per unmit length, f=w,;r is the nondimensional time, w12= (EI/2*m), eYy) =
fV EmIEI),  f(Y) =amplitude of harmonic force per unit length,
- G(t)=nondimensional nonperiodic function, ¢ p(y)=s5(Y) £4m/(EIA), s(Y)=measure
of nonperiodic force per unit length. Both ends of the column are assumed to be
hinged, i.e., the boundary conditions are z(0,¢t) = z(1,¢) = z}y(o,t) =z,(1t) = 0. The
initial deflection Z(Y,0)=Z (Y). For our boundary conditions Z (Y)=Asin(xY/R).
It can be easily verified that T' = x?+x%¢/2 '
The eigenvalues of the linearized, unforced equation are [10]

\=xaj(T-n5)12 j=1,2. (5a)
From the expression of T" given earlier it follows that '>x?. Since we assume the

deflections are small, x*<T'<4x% Therefore the solution z=0 has one positive and
one negative eigenvalue and the system with €=0 and £>0 has two nontrivial
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buckled equilibrium states. The system also has pure imaginary eigenvalues
A=xxn(T-a’n?)12 n=23,. (5b)

The expansion of z(y,¢) in the eigenfunctions of the linearized problem

z(yt)=2 aj(t)"'i" G=y),
j=1

used with the Galerkin method, yields

di+e ﬁdj+()'1r)2{(i1r)2-[l‘-(£1l2/2) = kzakZ]}aj= e[24cos(w ) +$iG()]  (6)
k=12..

1 1
where ¢;=[ v()sinGiy)dy, ;= p(y)sinGiy)dy.
0o I ¢ )

The unperturbed counterpart of Eq. 4a has homoclinic orbit coordinates [11]
z,(0nt)=(2) Psin(ny)sech[tn(T-x2) 7]
2,(nt)=-(2)"2x(T-x%) Zsin(my)sech[tx(T-x%) 2 Jtanh ftn(T-x2) 7).
The Melnikov function.for the harmonically excited system can be written as

o ]
M@ =] [ [R0:6)2,0,6-t)-B2,%0,0-1)]dyd8 Q)

-0 0

where R(y,2) is given by Eq. 4b.

We now consider Eq. 6 and let p(y)=0. If the non-resonance condition wozﬂ-x-z
holds, Eq. 6 has unique solutions of O(¢); otherwise the linearized counterparts of
Egs. 6 would have solutions of O(I). This would violate a basic assumption of
Melnikov theory [10]. If p(y)»0, for excitations G(z) with continuous spectral density
it can be shown that the solutions of the linearized counterparts of the Galerkin
equations are of O(¢)!? [15]. For sufficiently small e those solutions will be as
small as desired, and non-resonance conditions associated with G(t) are not
required for the assumptions of Melnikov theory to be satisfied. '

For the particular case of dichotomous coin-toss square wave noise, following
steps similar to those of [5], it can be shown that Eq. 7 yields the following
criterion guaranteeing the non-occurrence of snap-through
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po<2.584¢'2p ®

The validity of this criterion was verified by numerical simulations via the system’s
Galerkin equations. For additional details, see [6,16].

6. Acknowledgments

Partial support for E.S. by the Office of Naval Research, Ocean Engineering
Division (Contract No. N00014-94-0028) is acknowledged with thanks. Dr. T. Swean
served as project monitor. M.F. served as NIST Guest Researcher on leave from the
Institute of Physics, Cracow Pedagogical University, Cracow, Poland.

7. References

1. Frey, M. and Simiu E., "Noise-induced chaos and phase space flux,” Physica D 63, 321-340, 1993.

2. Hsieh,, S.R,, Troesch, A.W., and Shaw, S.W,, "A nonlinear probabilistic method for predicting vessel
capsizing in random beam seas,” Proc. Royal Soc. London A, 446, pp- 195-211, 1994,

3. Simiu, E., "Melnikov Process for Stochastically Perturbed Slowly Varying Oscillator: Application to
a Model of Wind-driven Coastal Currents," J. Appl. Mech. (in press).

4. Simiu, E. and Frey, M., "Melnikov Processes and Noise-induced Exits from a Well," J. Eng Mech., Feb.
1996 (in press).

5. Simiu, E., and Hagwood, C., "Exits in Second-Order Nonlinear Systems Driven by Dichotomous
Noise," Proc., 2nd Int. Conf. Comp. Stoch. Mech., (P. Spanos, ed.), pp. 395-401, Balkema, 1995.

6. Franaszek, M., and Simiu, E., "Noise-induced Snap-through of Buckled Column With Continuously
Distributed Mass: A Chaotic Dynamics Approach,” submitted to Frit. J. Non-linear Mech.

7. Shinozuka, M., "Simulation of Multivariate and Multidimensional Random Processes, J. Acoust. Soc.
Amer., 49, 347-357, 1971.

8. Wiggins, S. (1990). Introduction to Applied Nonlinear Dynamical Systems and Chaos, New York:
Springer-Verlag.

9. Moon, F.C., Chaotic Vibrations, New York: John Wiley and Sons, 1987.

10. Holmes, P. and Marsden, J., "A Partial Differential Equation with Infinitely Many Periodic Orbits:
Chaotic Oscillations of a Forced Beam," Arch. Rat. Mech. Analys., 76 135-166, 1985.

11. Allen, J.S., Samelson, R.M. and Newberger, P.A., "Chaos in a Model! of Forced Quai-geostrophic
Flow Over Topography: an Application of Melnikov's Method," J. Fluid Mech., 226, 511-547, 1991.

12. Wiggins, S. and Holmes, P., "Homoclinic Orbits in Slowly Varying Oscillators,” SIAM J. Math. Anal.
18 612-629; Errata: 19 1254-1255, 1987.

13. E. Simiu and M. Franaszek, "Melnikov-based Open-loop Control of Escape for a Class of Nonlinear
Systems,” Proc., Symp. on Vibr. Contr. Stoch. Dynam. Syst., ASME, (L. Bergman, ed.), Sept. 1995.

14. Tseng, W.Y. and Dugundji, J., "Nonlinear Vibrations of a Buckled Beam Under Harmonic Excitation,"
J. Appl. Mech., 467476, 1971.

15. Meirovich, L., Analytical Methods in Vibration, Elsevier, New York, 1964.

16. Sivathanu, Y., Hagwood, C., and Simiu, E., "Exits in multistable systems excited by coin-toss square
wave dichotomous noise: a chaotic dynamics approach,” Phys. Rev. E (to be published).



INVESTIGATION OF NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS 435

1
2r¥(0)

0 10 ' 20
(2]
Fig. 1. Spectral density of uncontrolled system’s excitation G(t)
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Fig. 2. (a) Melnikov relative scale factor;
(b) spectral density of Melnikov process.
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Fig. 3. Impulse response function of filter with initial response and recoil
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Fig. 4 (a) Escape rate n,, for uncontrolled oscillator; (b) ratio ngn, between
escape rates for controlled and uncontrolled oscillator.



