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Abstract

In recent years fire sensors have evolved from
threshold devices that sense a single fire
signature to multi-mode, multi-criteria sensors
that can employ algorithms for decision making.
However, these algorithms have so far been
based on simple, signal cross-correlation
techniques or have employed simple truth tables
in an effort to exclude sources of false
activations while not rejecting real events. At
NIST's Building and Fire Research Laboratory,
new research has been initiated to apply our
experience with physically based computer
models of fire growth and spread in enclosed
spaces to the interpretation of signals from fire
sensors. Here, data from fire sensors are
compared in real time to signals that would be
expected from a fire within the protected space.
The sensor data is used to adjust the simulation
so that it matches reality. Signals that are
inconsistent with the physical laws of fire growth
can be questioned and when signals track with
projections the system can provide detailed
information on current conditions within the
space as well as an ability to project future
conditions. This latter ability is of considerable
interest to fire brigades who could be warned of
conditions that may threaten their safety or that
of occupants. While in its early stages, the
research results are promising.

Background and Current
Approaches :

Automatic fire detectors are about a hundred
years old, and are a crucial component in
addressing the life safety goals for the built

environment. However, most experts agree that
the greatest shortcoming of fire detectors is a
high rate of nuisance alarms that limit their
credibility with the public. Various schemes
have evolved to address this problem; methods to
discriminate against conditions that mimic the
fire signatures upon which the detectors depend.
This paper will discuss the most common of
these approaches and will present a new
approach under development at the National
Institute of Standards and Technology (NIST)
Building and Fire Research Laboratory (BFRL).

Nuisance Alarms

Like the “Cry Wolf” story, excessive nuisance
alarms limit the credibility of fire alarm systems.
Ahrens! reports that 69% of people surveyed
said that a fire alarm does NOT indicate a fire,
but rather some other abnormal condition. Of
course, this results in people not starting
evacuation until some other fire queue appears,
increasing the risk of death or injury.

There are several studies in the literature that
quantify nuisance alarm rates in (commercial)
fire alarm systems. In the early 1970's Fry?
reported data from the U.K. where most systems
were connected to fire brigades and reports on
every alarm were made. ‘He found nuisance
alarm ratios (the ratio of nuisance alarms to real
fires detected) for smoke detectors of 14:1. Ina
1980 survey of health care facilities in the U.S,,
Bukowski and Istvan® reported nuisance alarm
ratios for smoke detectors also at-14:1. Ina
paper presented at AUBE '95, an officer with the
Swiss fire service, Steck* reported data from
Bern that 77% of alarms received from smoke
detectors were false. This translates into a
nuisance alarm ratio of about 14:3.

What is striking about these three studies is that
they represent three generations of development
of smoke detector technology. Fry's data is for

detectors in use in the late 1960's, characterized
by incandescent lamps and 90 degree scattering
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optics within highly restrictive chambers, single
chamber ionization detectors, and no signal
processing beyond alarm at a fixed threshold.
The Bukowski and Istvan data is for detectors of
the late 1970's that were likely to use LED's and
forward scattering optics in chambers designed
for much easier smoke entry or dual chamber
ionization sensors that were more stable for
variations in ambient conditions. The Steck data
was for detectors of the 1990's that utilize drift
compensation and possibly even early decision
algorithms to make the systems “smart.” Yet the
evolution of this technology has had little effect
on the observed rate of nuisance alarms.

The Search for Intelligence

For much of their history fire detectors have
been threshold devices - alarm decisions are
made when the signal exceeds some fixed
threshold level generally referred to as the
device's sensitivity. In the language of modern
digital electronics this means that the detector is
operating on a single bit of information. Some
thermal detectors operate on the rate-of-rise
principle (alarm when the rate of temperature
rise exceeds a fixed value). Even where the
thermal detector has dual elements (fixed
temperature and rate-of-rise) they indicate an
alarm when either element exceeds its threshold,
so they are also one bit devices.

One thermal detector, the rate compensation
device, operates such that a rapid increase in
temperature causes it to decrease the fixed
temperature value at which it activates. This
could be considered a two-bit criterion since the
conditions interact. One light scattering type
smoke detector from the 1970's incorporated a
circuit that increased the sensitivity (decreased
the alarm threshold) if the rate of rise of the
smoke signal exceeded a threshold value. While
this was primarily done to compensate for an
alarm photocell with an excessively long time
constant, it represented a two-bit alarm
operation.
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Another approach to system intelligence was
time of day adjustments. Since most nuisance
alarms derive from human activities, some
systems in the 1970's were given the ability to
increase their sensitivity at times when the
facility was unoccupied. This was typically done
by building in time of day/day of week calendars
by which adjustments were automatically made.
However, since adjusting sensitivity can
represent a compromise of early warning of fires,
this approach is less than satisfying.

Time delays have been used in detectors to
eliminate nuisance alarms to transient
phenomena. Here, detectors begin the delay
period when the alarm threshold is exceeded and
will only alarm if the signal persists for the
duration of the delay. A variation on this theme
is the alarm verification circuit that resets the
smoke detector to determine if it will alarm a
second time, after some power down/power up
delay. Like the time of day adjustment, the
introduction of delays can compromise the early
warning aspects of the system response to real
fires.

Multiple Sensors

Early attempts at real increases in the intelligence
used in alarm decisions involved pattern
recognition. In theory, if one could determine a
unique pattern in the signal from real fire sources
it would be possible to differentiate these from
nuisance sources. Signal characteristics
examined ranged from simple (temporal
variations or rate of change)® to complex
(particle size distribution)® but the general
conclusion was that none were sufficiently
unique to allow systems to reject nuisance
signals without significant risk of also rejecting
some actual fires.

The first successes in increased intelligence
required the combination of different sensors
such as thermal and smoke, ionization and
scattering, smoke and gas, in detectors



sometimes called multi-mode sensors. Early
devices simply combined sensors in an AND
configuration. Later more sophisticated signal
processing techniques such as signal
cross-correlation were applied to produce
significant improvements in performance. For
example, Qualey’ et al describe the development
of a cross correlation algorithm for a
thermal/smoke combination intended to reduce
nuisance alarms without reducing detection
performance.

This success can be explained by the prior
analogy to digital electronics. It was now
possible to base alarm decisions on multiple bits
of information. The more bits available on
which to base an alarm decision, the better that
decision can be made and the lower is the rate of
both false positives (nuisance alarms) and false
negatives (unwanted fires not detected).

Fuzzy Logic and Neural Networks

A limitation of these early multi sensor
approaches was that they could only be
combined in AND or OR configurations through
typical digital circuits. Digital electronics is 1's
and 0's -- on or off, true or false. The
development of fuzzy logic in the 1980's
changed that. Fuzzy logic can deal with a range
-- bigger, smaller, longer, higher. This allowed
multi sensors to utilize multiple criteria for
example more smoke required less heat to signal
an unwanted fire.

Fuzzy logic was an advance, but as the number
of sensor inputs increased it became very
difficult to think through the logic of their
interaction. Neural networks were the next
advance where the system is "trained" in how to
categorize various patterns of signals. Neural
networks are capable of integrating hundreds of
sensors and making decisions on large amounts
of data (bits of information. Milke® describes
work to develop a neural network for residential
fire detection.
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The underlying problem with signal cross
correlation, fuzzy logic, and neural networks is
that they represent an empirical fit to data. The
correlations, logic tables, or training process are
developed by exposing the sensors to fires and
nuisance sources and determining the
coefTicients or settings that alarm to all fires and
ignore most nuisance sources. Since it is
impossible to include all fires and nuisance
sources, and because there is no standard set of
nuisance sources, the applicability of this
approach is somewhat limited to highly
controlled applications.

Neural networks can learn “on the job,” so when
exposed to a pattern that they have not seen
before they might assume a fire to be
conservative. Later if this was determined to be
a nuisance source the system training could be
altered and it would no longer signal fire to this
pattern. The fear is that a real fire could look
sufficiently like a prior nuisance source that the
system would ignore it. What is needed is a
system that knows enough about fire itself to
decide on signal patterns that it has never
encountered before.

The NIST Approach

The field of fire science has made great strides in
the past two decades, and the increased
understanding of fire has been incorporated into
computer fire models of ever increasing
sophistication. These model are based on the
physics and chemistry of fires and as such are
valid over a broad range of conditions. Thus,
these models represent a method of assessing the
validity of an alarm decision against hundreds or
even thousands of bits of data. The technology
that is beginning to enable such to be done is the
increase in processing power and speed of the
modern microprocessor and the simultaneous
decrease in cost that allows their incorporation
into systems.




As sensors become smaller and less expensive,
buildings will incorporate more and more such
sensors to regulate many aspects of the building
such as comfort levels, energy usage, and
security. While many of these sensors' primary
function will not be fire protection, their
response to a fire is predictable. Using the
information from all sensors and an
understanding of the physics of fires, the heat
release rate and other information on the fire
might be deciphered. Further, by examination of
data from a series of independent sensors for
consistency, a confidence level can be
established for the alarm decision.

A simple example will illustrate what we mean.
If in a single room, a smoke detector gives a
large signal but temperature sensors that might
be part of the environmental controls do not
record any noticeable rise, it is possible that the
smoke detector is faulty or a smoldering
condition is present. Similarly, if the energy
management system records a large electrical
fault just before a smoke detector signal, the
chances that the fault has initiated a fire are
high..

The difference between this approach and
previous methods of alarm discrimination is
significant in two ways. First, it incorporates all
available information to determine what is
happening. The realization is that even in the
very early stages of a fire, fire is a global
phenomena. It has impact throughout a building
and as a fire grows that distant information can
be used to establish size, rate of increase and
other information that can be helpful in fighting
the fire. Second, unlike prior methods of
reducing false alarms, this does not simply
address the decision to alarm but can also be
used to assess level of threat and support a
tailored response.

Adaptive Modeling
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A major part of the NIST approach is adaptive
modeling. In this context, adaptive modeling is
using the comparison of sensor data with model
predictions to determine model inputs
appropriate to better match the sensor data over
sometime period. Of particular interest is the
heat release rate (HRR) input since it is the
driving force for most other phenomena. In
general this is a complex optimization problem
with a goal to minimize the difference between
the building sensor data and model predictions.
In general, this requires two techniques: 1) a
method to quantify the differences between
model predictions and measured data, and 2)
techniques to determine appropriate model inputs
to minimize these differences.

The first tool needed is a quantification of the
error between the building sensor data and the
model] predictions. This is provided through
functional analysis and is discussed in the paper
by Peacock et. al’. The framework of functional
analysis allows us to treat time series as if they
were vectors and defines appropriate operations
on the vectors. Initially, consider a single
experimental measure and a model prediction,
say the temperature at time £, Let E be the
experimentally measured value and m be the
value calculated by a model. One measure of the
error is the relative difference between the two
numbers calculated by

If instead of being two scalar values £ and m
where two dimensional vectors we can still
define a relative difference. Figure 1 shows the
difference between E and m. If we call the
length of a vector x the norm and write it as ||x||
then we can define the relative difference
between the two vectors as




E |

The relative difference we will use is directly
analogous to the relative difference shown
graphically in Figure 1

Figure 1

Figure 2 shows the upper layer temperature
histories for two CFAST predictions. One is
called the experiment the other that has small
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differences in the HRR is the model. In the
present framework the two time temperature
curves are treated as vectors which allows us to
find the relative difference between the two and
the lengths of those vectors. The relative
difference between the two curves is 0.0857.
This means that the length of the difference

between the two curves is 8.57% the length of

the experimental curve. This metric will allow
the determination of the best fit between model
and experiment as well as determining which
sensor readings are causing the most error.

It is clear that a general method of solving this
problem does not meet constraints of reaching a
solution in real time. In some cases an enormous
number iterations would have to be made before
the best fit is established. However if the
problem is simplified using knowledge of the
physics of a zone fire the problem becomes
solvable.

For a simple example consider a single well
ventilated room. We can pick a HRR curve that
we wish to match using the upper layer
temperature of the compartment. A simple
procedure gets very close to the actual
temperature curve with three model runs is as
follows.

Taking a HRR curve of thé form

at’ + bt? + ot (3)

The values that will be used are 4.6436E-06 for
a, 1.2533E-02 for b, and 9.5818E-01 for ¢. This
gives an "experimental" HRR curve to attempt to
match. A first guess will be to model the
experiment as a medium t-squared fire. Figure 3
shows a comparison of the upper layer
temperatures for both the "experiment" and the
medium t-squared fire.

To correct the medium t-squared fire HRR to
better predictthe upper layer temperature of the
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experimental fire, the work of McCaffery,
Quintiere, and Harkleroad'® can be used. They
found a correlation between upper layer
temperature and HRR using the form.

AT, = cg? @)

Where AT, is the difference in the upper layer
over ambient, 4 is the HRR, and ¢ is the
correction due to heat lost to the walls and
through the vents. While McCaffery, Quintiere
and Harkleroad give the method for calculation
of ¢, for our purposes it is only important that it
is independent of HRR and thus constant for a
particular building. So using the above
correlation gives two equations with four
variables.
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Where AT, is the upper layer temperature for
the “experiment”, 4T, is the upper layer
temperature for the model prediction, ¢, and ¢,
are the HRR for the “experiment” and the model
respectively. Since the upper layer temperatures
for the “experiment” and the model as well as

the HRR for the model are all known,we can
solve for the HRR of the "experiment" with the
equation

32
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Using the above equation we can generate a new

HRR curve from the medium t-squared case.

Using the new HRR curve we can make a second

model run to calculate a new upper layer
temperature to compare to the ‘measured’ upper
layer temperature. If the results are not close
enough we can continue repeat the process.

Figure 4 shows the “experimental” upper layer
temperature with the first three iterations. The

relative errors for upper layer temperature for the

medium t-squared fire compared to the
experiment is approximately 0.134. The first
iteration reduces the relative error to 0.029 and
the final iteration has a relative error of about
0.009. Figure 5 shows the true HRR used in the
“experiment” along with the medium t-squared
HRR and the two iterations. Here the relative
difference go from 0.338 for the medium
t-squared fire to 0.043 for the first iteration to
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finally 0.01 for the last iteration.
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Threat Assessment

The purpose of the adaptive model is to obtain
the key characteristics of the fire, primarily the
heat release rate (HRR). HRR is widely
recognized as the key indicator of the level of
threat represented by a fire to occupants,
contents, and structure''. If the threat posed by a
fire can be assessed, it is possible to determine
the most appropriate response to that threat.

Fire brigades in the U.S. report ever increasing
budgetary pressures. Resources are becoming
scarce and more efficient use of these scarce
resources are becoming crucial. If a system can
report to the fire brigade at dispatch, that the fire
has a HRR that is relatively low and is growing
slowly, a limited response might be mounted.
Alternatively, if the HRR is high and rapidly
growing toward flashover, additional units might
be dispatched earlier. Such a system could
provide a significant improvement in the
efficiency of fire brigade operations and improve
safety of fire fighters by assuring sufficient
people to address the specific situation.

Decision Algorithms
Another important purpose of incorporating the
model with sensor information is to provide an
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underlying knowledge of fire that can be used to
make better alarm decisions. Here the sensor
signals can be evaluated as to whether they are
consistent with the physical laws of fire
phenomena so that alarm decisions do not
require prior experience as do the correlational
approaches discussed previously.

Work on multi-mode sensors by Milke ® and by
Gottuk and Williams'? have shown that simple
consistency criteria such as looking for a
simultaneous rise in both smoke and CO or CO,
can substantially improve nuisance alarm
discrimination, but does not completely eliminate
the problem. The embedded model can provide
opportunities for far more detailed consistency
tests.

For example, soot yield fractions for specific
fuels are relatively constant under fully ventilated
conditions. Thus there should be a constant
relation between the soot production rate and the
HRR while the oxygen concentrations are above
about 12% or while the CO/CQ, ratio is low.
Where smoke, gas, and thermal sensor signals
are processed through the adaptive model these
criteria can be applied to discriminate against
non-fire sources that do not demonstrate this
phenomenological consistency.

In more sensor rich environments it should be
possible to use information from a range of
building systems to make decigions. The
classical fire signatures of heat, particulates, and
gas species could be augmented by pressures,
flows, and other conditions produced in spaces
containing fire. The more parameters observed
that are consistent with the occurrence of fire, the
higher the confidence that a fire condition exists.
The assignment of a confidence level (low,
moderate, or high) to an alarm could be useful
information where uncertainties are of concern.

Concluding Remarks



Clearly, the reliability and accuracy of alarm
decisions can be improved by increasing the
information basis for these decisions. Current
correlational methods provide improvements in
system performance but may not be able to
discriminate against nuisance signals not
previously encountered. Modern predictive fire
models may be able to impart to systems a
sufficient understanding of fire phenomenology
that they will be able to make correct
interpretation of conditions not previously
encountered. Several, major steps will need to
be taken for the embedding of an adaptive model
into a fire alarm system can be accomplished.
NIST is working with a consortium of industry
and users toward a proof of concept
demonstration within the next year. If this is
successful, it should open up an entire new line
of research in signal processing and
interpretation.
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