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Abstract

A limitation of traditional zone-type compartment fire modeling is the inadequacy of
two-layer quasi-steady-buoyant-plume analyses to simulate the fire-generated environment in
room configurations with large height-to-span ratios, e.g., elevator shafts and ventilation shafts.
Model equations to remove this limitation are developed. These simulate time-dependent flow
in a long, ventilated, vertical shaft with an arbitrary vertical density distribution, including one
or more intervals along the shaft length where the vertical distribution of the averaged
cross-section density may be unstably stratified, i.e., density increasing with increasing elev-
ation. The model equations are partially verified by favorable comparisons between solutions
and previously published data from unsteady experiments in long vertical tubes involving
initially unstable configurations: saltwater over freshwater and heavy gas over light gas.
Published by Elsevier Science Ltd.

Notation

C, Specific heat at constant pressure
cgot,Cror  Concentrations of top, bottom fluids
Characteristic span of a room or section of a shaft, e.g., diameter
Eddy diffusivity
Acceleration of gravity
Thermal conductivity
Constant, Eq. (11)
Kgr Egs. (13) and (14)
Characteristic length of the fluid mixing process
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Characteristic height of the compartment space, e.g., length of shaft
Rate of mass added to the shaft per unit volume

Rate of heat transferred to the gas in the shaft per unit volume
Volume flow rate

Time

t when zpront = L

Temperature in the shaft averaged across the section
Temperature of gas flowing through a vent and into the shaft
Time-averaged component of T

Fluctuating component of T

Flow velocity in the z direction averaged across a section
Time-averaged component of V,

Fluctuating component of V,

Characteristic velocity of the turbulent fluctuations
Coordinate in upward direction

z of diffusion front
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Eq. (23)

PTor — PBOT

Eq. (17)

Eq. (17)

{ at the diffusion front

Eq. (18)

1 at { = {rronT

Eq. (17)

density averaged across the section

p of ambient, gas flowing through a vent and into the shaft
Time-averaged component of p

Fluctuating component of p

(Prop + pBoOT)/2

p of fluid in top, bottom of the vessels; initial p at top, bottom of shaft
Egs. (17) and (26)

Eq. (23)

Egs. (23) and (24)

Dummy variable, Eq. (24)

Eq. (29)

1. Introduction

1.1. A limitation of the two-layer zone-type modeling approach for shaft-like ‘rooms’

The traditional, zone-type, compartment-fire-modeling strategy, which uses the
concepts of one-to-two uniform layers per room, room-to-room mass exchanges by
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vent flows, and layer-to-layer mass exchange by quasi-steady buoyant plumes, has
proven to be very robust. However, these basic concepts are inadequate for long,
vertical shaft-like ‘rooms’.

Let L and d, be the characteristic height and horizontal span, respectively, of a room
configuration. Then, for rooms with L/d > 1 (shafts or ducts) it is not reasonable to
expect a traditional, two-layer, zone-type, fire modeling approach to lead to a success-
ful simulation of fire environments. For such room configurations, some of the basic
modeling assumptions become invalid. Thus, (1) as the plume rises and spreads, its
volume eventually becomes significant and it starts to fill a large fraction of the section
of the shaft/duct, (2) it is not reasonable to expect that characteristic times of mixing in
the shaft will generally be small compared to charactgtistic times of interest, and (3)
there is no basis for a uniform, two-layer approximation to the density/temperature
distribution.

An illustration of a generic problematic facility and room configuration is presented
in Fig. 1. In the facility shown, traditional modeling concepts would typically be
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Fig. 1. Sketch of a facility where traditional, two-layer, zone-type, modeling concepts are not unformly
applicable.
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applicable in the small-L/d rooms of fire origin, the upper floors, etc., but they would
not be applicable in the large-L/d shaft.

1.2. A strategy for modeling flow through shafi-like spaces in zone-type compartment fire
models; objective of this work

For the traditional two-layer, etc., zone-type modeling approach to be val
large-L/d spaces in a multi-room facility need to be treated as a special class of room
configuration. Fire-generated environments there need to be simulated with a method
of analysis that (1) uses a valid intra-room fire dynamics modeling approach and (2)
can be implemented in the compartment fire modél to study fire scenarios in facilities
which include other ‘standard’, i.e., small-to-moderate-L/d, room elements. The pur-
pose of this paper is to develop a framework for such an analysis.

Once a method of analyzing large-L/d spaces is developed and verified, it could be
incorporated into an existing multi-room fire model. The revised model would then be
capable of describing smoke movement through shaft-like spaces that may be in-
cluded in the design of a particular facility of interest. The strategy for carrying out
simulations with the revised fire model would involve categorizing each room of
a modeled facility as either a small-to-moderate-L/d space or a large-L/d space, where
results of future research are expected to lead to appropriate rules for such categor-
ization. Then, when carrying out a simulation, the fire model would invoke the
traditional, two-layer, isolated-plume, etc. model equations for the small-to-moder-
ate-L/d spaces and the new model equations for large-L/d spaces.

2. Combined buoyancy- and ventilation-driven flow of a perfect gas through a long
vertical shaft

Consider flow of a perfect gas through a vertical shaft of length L. Let the section of
the shaft have a characteristic dimension, d, and assume that the shaft is long in the
sense that L/d > 1. p and T, the density and temperature of the gas averaged across
the section, vary along the length. In general, the shaft is ventilated; inflow or outflow
of the gas can occur at vents, in the walls of the shaft, or at its ends. Inflowing gas has
specified density and temperature, pyent and Tygnr, respectively, which can vary
along the shaft. Outflowing gas is at density and temperature, p and T, respectively.
The local rate of mass addition due to ventilation is myenr (rate of mass added to the
shaft per unit volume. Heat is transferred between the gas and the shaft surface at the
rate giir (rate of heat transferred to the gas in the shaft per unit volume).

Assume that the only possible significant component of flow velocity is along the
axis of the shaft in the vertical z direction and let its average across a section be V.
Then, conservation of mass and energy, and the equation of state leads to

dp/ot + 0(V,p)/0z = miyenr (1)
pC, 0T/t + V,0T/dz) = —0(k0T[02)/0z + C,(Tyent — T)rvent + dhir ()
pT = pamsT ams = constant 3)
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where C, is the specific heat at constant pressure, k is the thermal conductivity, and
pamp and Taug are the density and temperature at some ambient reference state.

Note that the formulation of Eq. (3) uses the uniformly valid assumption that
variations in pressure throughout the length of the shaft are negligible compared to
the characteristic pressure of the ambient reference state. At a point in the analysis
where momentum considerations are required, for example in the computation of
pressure differences across vents for the purpose of estimating vent flow rates,
estimates of the relatively-small shaft pressure variations (e.g., the contribution of
hydrostatic pressure variation) would be important and they must be estimated
properly. P

Using Egs. (1) and (3) in Eq. (2) leads to the following simplified alternative to
Eq. (2)

oV,/0z = [ —0(koT/oz)/0z + CpTVENTm'\;’ENT + f)ﬁ'T]/(PAMBTAMBCp) (4)

3. Turbulent fluctuations in the shaft flow
3.1. The turbulence equations

Egs. (1), (3), and (4) are now modified to account for the effect of possible turbulent
fluctuations in the shaft flow. Time-averaged (‘barred’) and fluctuating (‘primed’)
components of the variables are introduced:

p=pg+p, T=T+T, V,=V,+ V.. (5

Reynolds averaging, neglect of the generally insignificant effect of heat conduction
through the gas, along the length of the shaft, as derived from the time-averaged
temperature distribution, and the assumption that time-averaged values of p and
T satisfy the equation of state lead to the following modified equation set:

0p/ot + V,0p/0z + O(V,p")/0z = myenr(1 — p/pvent) — (9/pams) it /(T amsC,) (6)
ov,/oz = (C,TventVent + Gut)/(0ame T amsC)) (7)

pT = pamsT ams = constant (8)
Turbulent fluctuations leading to significant values of the term Vg’ in Eq. (6) will
occur along the length of a vertical shaft where there are buoyancy-generated
instabilities in the vertical density distribution, i.e., where, locally, the density 1s
increasing with elevation, dp/dz > 0. Indeed, such instabilities are the driving force for
the turbulent-like mixing phenomenon which is of particular interest here. Also, shaft
flow scenarios of present interest are such that V, is small enough as never to lead to
turbulent fluctuation enhancements that would significantly affect the value of

V.p’. For example, at elevations along the shaft where the gas is stably stratified, i.e,
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where 9p/0z < 0, there will be no buoyancy-driven turbulence and it is reasonable to

assume that d(V.p')/0z in Eq. (6) can be neglected completely.

Solutions to Eqgs. (6)—~(8) with appropriate initial and boundary conditions would
generally provide a description of the fire environment that develops in ventilated,
shaft-like, room configurations. However, to actually implement this equation set it is

necessary to develop supplementary model equations to represent V,p’ of Eq. (6) and
the source terms, mygnr and §iir, of Egs. (6) and (7). The focus of the remainder of the

present work is on obtaining a general representation for Vip'.

3.2. Experiments in shafts with unstable density configurations: A qualitative result

During experiments in vertical tubes of diameter d, involving initially unstable
configurations of saltwater over freshwater and prior to any end effects, Cannon and
Zukoski [1] have observed fluid mixing by buoyancy-generated instabilities. This
involved overturning and fluctuating eddies of characteristic dimension d. Also, as
observed in similar unstable systems by Cannon and Zukoski [1] (heavy gas over
light gas), Baird and Rice [2] (rising bubble columns), and Gardner [3] (salt-
water/freshwater systems and experiments on water rising through more dense carbon
tetrachloride), the propagation of buoyancy-driven turbulent fluctations through the
buoyantly unstable column behaves phenomenologically as a diffusion-like process.

This is represented by the d(V;p')/0z term in Eq. (6).

3.3 A representation for V p'

3.3.1. Shaft flow systems involving negligible V,

A general representation for V p' in Eq. (6) will now be obtained from a study of the
above experiments, where compressibility and, therefore, V, were negligible.

Consider shaft flow systems of Egs. (6)—(8) with negligible V, and negligible mass
addition or heat transfer along the length of the shaft. For such systems, Eq. (6)
becomes

op/ot + d(V,p')/oz =0 9
Defining D as the eddy diffusivity for buoyancy-driven turbulence, Eq. (9), with
Vip' = Ddpldz (10)

has been used in each of the above-referenced systems. It is also used by Cannon and
Znkoski [1] in the modeling of a perfect gas air system, i.e. low-temperature over
high-temperature air, with non-zero ¢yt. In Eq. (10), D is expected to be an increasing
function of dg/0z for dp/dz > 0, and to be zero for dp/dz < 0 (i.e., buoyancy-driven
turbulent diffusion is suppressed at elevations where the fluid column is stably

stratified).
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Cannon and Zukoski [ 1] expect D to be proportional to w’, a characteristic velocity
of the turbulent fluctuations, and to satisfy

D ~w'l = [(g/p)2p/0z]"1* P

where [ is a characteristic length of the fluid mixing process. Here, I is taken to be the
characteristic dimension of the observed buoyancy-driven eddies, namely, d.

D= {Kdz [(g/p)dp/oz]""* if 8p/éz >0

0 if 85/0z <0 (1

where K is a constant and where a version of Eq. (‘lv‘ﬁ;-is also found in Refs. [2, 3].
¥

3.3.2. A determination of K; a steady-state experiment

To determine K, Gardner [3] considered the particular problem of quasi-steady
turbulent diffusion in a long vertical shaft connecting two relatively large vessels of
incompressible fluids, with density of the fluid in the top and bottom vessels, prop and
PeoT < Prop, respectively, where Ap = prop — ppot is such that Ap/(prop + por) < 1.
To insure that V, = 0, at least one of the vessels is fully enclosed. This problem was
studied experimentally by Mercer and Thompson [4] with saltwater/freshwater
systems and circular shafts of diameter, d.

For the above class of problem, g & pave = (Pror + Psor)/2 and

D ~ Kd*[(gAp/pave)derop/dz] —Ddcgor/dz = Dderop/dz (12)

where Q is the volume flow rate of the fluid in the lower vessel diffusing up through the
shaft and into the top vessel and where cyop, cgor are the concentrations in the shaft of
the top and bottom fluids, respectively.

With quasi-steady systems of saltwater over freshwater, Mercer and Thompson [4]
determined Q of freshwater from the lower vessel by measuring salt concentrations
and the rates of mass decrease of the salt water in a top vessel. Using their vertical
shaft results in Egs. (12), Gardner [3] determined

K = Kg =0.56 (13)

In contrast to this, Baird and Rice [2] analyzed the literature on rising bubble
columns and related systems where gas flow rates are large enough for the bubble
wakes to interact strongly and to generate turbulence in the opposing fluid motion.
For such systems they determined the ‘order-of-magnitude estimate’

4. Unsteady experiments to verify Eqs. (9)-(11) and the value of X
4.1. Description of the two-phase experiments

The unsteady experiments of Cannon and Zukoski [1] included the configuration
of Fig. 2 involving a tube of length L, closed at the upper end, z = L, and inserted into
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e

t=0
O<t<t privaL

Fig. 2. Sketch of the simulated experiments of Cannon and Zukoski [1].

a relatively large vessel of density pgor. The tube was initially filled with fluid of
density prop > pror- The experiments were initiated by allowing the fluid in the tube
to mix with the fluid in the lower vessel. The mixing involves two phases, Phases I and
I1. Phase I begins when the experiment is initiated. A diffusion front at z = zgront(t),
Zrront(0) = 0, rises and in 0 < z < zpponr(t) there is mixing due to non-zero 0p/0z.
Phase I is completed and Phase I1 is initiated at ¢ = tsgpivarL, When zggont = L, i€, at
the time of arrival at the top of the tube of the diffusion front, when the effects of the
diffusive mixing begin to modify the density at the upper end of the tube. During the
remainder of Phase II, for t > trronT, the unstable density distribution drives turbu-
lent-like mixing eddies through the length of the tube. The distribution eventually
relaxes to the uniform state, p = pgor-

Data from both Phases I and II of the Cannon and Zukoski experiments [1] can be
used to verify the model Egs. (9)—(11) and the value of K. The next section addresses
the Phase I phenomena.

4.2. The initial value problem for the diffusion front: Phase I

4.2.1. Problem formulation and similarity
From Egs. (9)-(11), the initial value problem for Phase I is

00 0 1 00\*?
5;=5z[(1+89)1/2(5‘5> ] "
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a0 o0
0 =0,1>0;¢) =0; B—C(G =1)= é‘g(f = TrronT> ¢ = {FronT; 8) = 0, (16)
H = _(‘E___BEO_T)__- {=z/d; t©=K[ed/d]'?t; &= Ap/psor (17

(Pror — PBOT) ’

Note that Egs. (15)—(17) specify g(z = 0) = ppor. However, as discussed by Cannon

and Zukoski [1], p at the base of the tube will always be somewhat greater than pgor,

i.e., 8( = 0; = > 0) = 6(r) where § presumably satisfies 0 < 6 < 1. Thus, the indicated

boundary condition, 8({ = 0; t > 0) = 0, of Eq. (16) is only approximately correct. In

particular, the solution to Egs. (15)~(17) can be expected’to provide a good simulation

of experimental values only for moderate-to-large values of { and {gront-
Introducing the similarity variable #, it can be shown that

0=0(ns wheren=/{/*° (18)

and that the problem of Egs. (15)~(17) can be reduced to

o sd 1 ANG I
T T 2dnla+edP\dy) | TS ©

dg do
&(9 =1)= d*n(’? — #irront) = 05 HERONT = 1FRONT(E)

(19)
6(n=0)=0;

where rront 1S the smallest value of # satisfying the above condition.
Once Egs. (19) are solved, the position of the front, #eront(€), can be determined
from

{rront(?; €) = zeront(t; €)/d = Heront(€) [K (eg/d) 21?7 (20)

4.2.2 Solution for small &: verification with saltwater[freshwater experiments

For the saltwater/freshwater experiments of Cannon and Zukoski [1], £ always
satisfies ¢ < 0.2. Therefore, the ¢ = 0 solution of Egs. (15)—(17) should provide a good
simulation. This solution is found to be

4 2 -
8 \MrroONT YFRONT 3 \WrroNT HFRONT
(21)

NeroNT = NrronT(€ = 0) = 153/5/81/5 = 3.3499...

{rront(6 0 < 8 € 1) = zpront(5 0 < e < 1)/d = (15338 %)[K (eg/d)' *1]*"°  (22)

Eq. (22) is plotted in Fig. 3 for the K’s of Egs. (13) and (14). (The K = 0.438 piot will
be explained below in the discussion of Phase IL.)
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d=0.076m, LUd = 19.7
30 | d=0.038m, Ud=15.1\ y
d = 0.095m, L/d = 15.3
‘%_ 20| §4-0.181m, Lid = 15.6 N2
-
) P
T
N 10 |
Il
[
z
Qe d=0.181m, Ud=7.6
35 d.= 0.095m, Ud = 7.8
P -
3 7
2 . 1 i 1 —_
10 20 100 200
1/2
[(9/d)(Ap/pgor)] "t

Fig. 3. Position of the diffusion front in Phase I: small-¢ solution of Eq. (22) for different values of K; and
values measured in the saltwater/freshwater experiments of Cannon and Zukoski [ 1].

The saltwater/freshwater experiments of Cannon and Zukoski [1] cover the d, L/d
range 0.030 m < d <0.181 m, 7.6 < L/d < 40.3. For many, but not all of these experi-
ments they tabulate (Table 6-2 of [1]) and/or plot (Figure 6.13 of [1]) tarrivar- These
data are included in Fig. 3. In the figure, note that when K is taken to be Kg = 0.56 the
larger values of the {rront data are well-predicted by Eq. (22). (Recall that this value of
K was also deduced from experiments in a saltwater/freshwater system.) It is also
noteworthy that tsrryvay. data for the largest L/d experiments L/d = 29.3 and 40.3, are
not reported in [ 1] and, therefore, are not included in Fig. 3. However, data from these
experiments up to {pront = 25 are reported. For times prior to tsrrrvar, the K = 0.56
plot of Fig. 3 continues to predict well this data. Also, because of the aforementioned
approximate nature of the # = 0 boundary condition of Egs. (19), and because the
characteristic d-dimension of the turbulent-like eddies are associated with { intervals
of the order of 1, small-to-moderate values of {gront are not expected to be well-
simulated by the Eq. (22) solution.

4.2.3. Solution for moderate-to-large &; verification with heavy-gas/light-gas experiments

Simulations of the Cannon and Zukoski [1] heavy-gas/light-gas experiments re-
quire solutions to Eqs. (19) with moderate-to-large values of €. To study these, it is
convenient to solve an alternative set of equations for 0, ¥, and ¢:

d¢ 4 ) £ ¢*
an = (1—5)”"5“2“ e @(1 + 50)

do
d—l//=9; —=¢, 0<0<1 whered(n=0=yn=0=0 (23)
dy dny
and where I'(e) = ¢(n = 0) = d0/dn(n = 0) is determined such that

0=1;, ¢ =d0/dy =0 at some minimum # = HrronT(€).
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Fig. 4. Phase I solution of Egs. (23) for 6(n/1gonts & including moderate-to-large &.

Solutions for y will be used below in the Phase II analysis:

n
Y(n; ) =f 0(w; e)dw (24)
0

Numerical integration of Egs. (23) was carried out. This yielded 0(y; €), I'(g),
nrront(€), and ¥ (n; €) for 0 < & < 40. Results for 0(y; ¢), including the 8(n; & = 0) result
of Eq. (21) are plotted in Fig. 4. As can be seen, 0(n/neronT; €) is relatively insensitive to
differences in ¢. The reader is referred to Fig. 4b—d of References [5] for plots of I'(e),
Nrront(€), and Y(y; ¢), respectively.

Cannon and Zukoski [1] carry out heavy-gas/light-gas experiments with
d=10152m, L/d =12, ¢ = 0.22, 0.38, and 4.0. Fig. 6.14 of [ 1] presents Phase II data
on 0({ = L/d, © > tagrivaL; & L/d). However, Phase I data for these experiments are
not provided. Also, note that estimates of tarrivar by extrapolation of the Phase IT
data to § = 1 are subject to significant error because increases in ¢ lead to decreases in
tarrivaL [€.8. Earrivar 1S estimated from Eq. (26) to be of the order of 5 s when ¢ = 4.0],
and because of the ‘slow response time of the system used to measure the density of the
gas mixture [17.

4.3. Relaxation of the diffusion front: Phase Il

4.3.1. The initial value problem for Phase Il
Subsequent to ¢t = tagrivaL, 0 is no longer characterized by the similarity variable.
Rather, it must be determined from a solution of Eq. (15) subject to
a6
0 = 0,7 > TagrivaL: &) = O_(C = L/d, t > Tagrivar; &) =0
¢ (25)

0, 1 = Tagrivar; &) = Z(( &) = On = C/Ti,RSRIVAL; €)

TARRIVAL = K[gg/d]”ztARRlVAL = [(L/d)/f?FRONT(S)]S/Z (26)
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4.3.2. An approximation solution

Partial verification of Eqs. (9)—(11) during Phase II can be obtained by an integral-
type approximate solution to Egs. (15) and (25). Toward this end, Eq. (15) is first
integrated in { in the interval 0 < { < L/d. Using the boundary conditions of Egs. (25),
this leads to

d L/d dg 3/2

— 0(:,‘6;8(1}:—(—— ) 27

T [L (€, 1 e)dl T 27

Now choose the following approximate soluti,(;g form, which satisfies exactly Egs.

(25) “

0 = 0((, © = tarrivaL; &) T(7; & L/d); T(t = Tagmivar; & L/d) = 1 (28)
Using Eq. (28) in Eq. (27) eventually leads to

T(T, &, L/d) = {[Q(E)/(L/d)slz] (‘C - TARRIVAL) + 1} -2 (29)

Q(e) = [n2kont(&) T2 (€)/21/¢ [Nrront(e); €]
where Q(¢) is plotted in Fig. 5.
4.3.3. Solution for small ¢; saltwater/freshwater experiments
Eqgs. (21), (22), and (29) lead to
Qe = 0) = (15¥2/21%)/11 = 1.8672... (30)

Using Eqgs. (28)—(30), the Phase II solution at z = L for ¢ » 0 and L/d = 15.3 is plotted
in Fig. 6. This solution would be used to simulate the saltwater/freshwater experi-
ments of Cannon and Zukoski [1]. Phase II data from these are presented in Fig. 6.9

1.867...

15

1072 10" 10° 10"
e

Fig. 5. Plot of Q(¢) of Eq. (29) from Phase II solutions of Egs. (27) and (28).
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(o) Reduced from data of Figure 6.9
';Q 0.8 of Cannon and Zukoski [1] using

1 ’ K = 0.438 and 0.56:

g d = 0.089m, L/d = 15.3, € = 0.050
o 06+ L]

1 D

© K=0.56
o -

3 K =0.438 O b,

I y
v 02} - U
@ TaravaL(€ = 0) = 44.58

0 1 1 1
0 200 400 600 800

T - TARRIVAL

Fig. 6. Plots for Phase II: Egs. (28)—(29) at z = L for & = 0; slatwater/freshwater data of Cannon and
Zukoski [1] using K = 0.56 and least-squares-fit value K = 0.438.

of [1] for d = 0.089 m, L/d = 15.3, ¢ = 0.050. Reducing these data for plotting in Fig.
6 requires K. Two values were used, and corresponding reduced data sets were
obtained and plotted. The first is K = K; = 0.56. The second is that value of K which
provides the least-squares fit between the data and the theoretical solution. The latter
value was found to be K = 0.438, and, as seen in the figure, this provides an excellent
match between theory and experiment during Phase IIL.

Using the ‘best-fitt K = 0.438, a plot of the corresponding, theoretical, Phase
I-solution has also been included in Fig. 3. As can be seen, this value of K and the
corresponding solution provides a somewhat better match to the Phase I data than
does that of the K = 0.56 solution.

4.3.4. Solutions for moderate ¢: heavy-gas/light-gas experiments

Using Egs. (28)-(29), the Phase II solutions at z = L for ¢ = 0.22, 0.38, and 4.0 are
plotted in Fig. 7. These approximate solutions are to be compared to the heavy-
gas/light-gas data of Fig. 6.14 of Cannon and Zukoski [1]. Again, reduction of the
data requires K. This is chosen to be the previously determined ‘best-fit’ value,
K = 0.438. As can be seen, the comparison between theory and experiment is good,
expecially for ¢ = 0.22 and 0.38.

5. Summary, conclusions, and recommendations

A limitation of zone-type compartment fire models is the lack of a satisfactory
means of simulating time-dependent fire-generated environments in ventilated
shaft-like spaces with large height-to-span (L/d) ratios. For such configurations, the
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t"‘l Reduced from data of Figure 6.14

X} of Cannon and Zukoski [1] using

o087 K =0.438: d=0.152m, Lid = 15
I

°

d 06t

%)

[y

g 0.4 0.38

).

(¢

78
0.2 M ppawac(e = 0.22) = 26.24
TarrivaL(€ = 0.38) = 27.51
TARFIIVAL(F = 4.00)}: 47.29 ‘
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Fig. 7. Plots for Phase II: Eqgs. (28)—(29) at z = L for £ = 0.22, 0.38, and 4.0; heavy-gas/light-gas data of
Cannon and Zukoski [1] using ¢ = 0.22, 0.38, and 4.0 using K = 0.438.

traditional two-layer zone-model-type description of a room fire environment is not
valid. Experiments reported in the literature suggest that the environment be modeled
as a time- and elevation-dependent density distribution, where intervals of instability
(i.e., density increasing with elevation) are removed by the action of overturning and
fluctuating turbulent-like mixing eddies of characteristic dimension, d, and where the
mixing phenomenon has the features of a diffusion-like process.

Consistent with the above ideas, a general set of model equations, Egs. (6)—(8), (10)
and (11), was developed to simulate combined buoyancy-and ventilation-driven flow
through long vertical shafts. Required to implement this equation set was a universal
constant K, the coefficient of a turbulent diffusivity term that leads to modifications in
density distribution in regions where the unstable density distribution prevails.

Solutions were obtained for a special class of problem that isolates K and the
turbulent diffusivity term and that involves no net ventilation flow and no wall-to-gas
heat transfer. The result, K = 0.44, was then obtained by using the solutions to
correlate data from unsteady (Fig. 2) type saltwater/freshwater experiments of Can-
non and Zukoski [1]. With this value, addition data from [1] for both salt-
water/freshwater and heavy-gas/light-gas experiments were shown to be well-
simulated by the new model equation set.

Based on the above, it is recommended that the model equation set, with K = 0.44,
be used in room fire models to describe the development of fire environments in
ventilated, shaft-like, room configurations. This model formulation will require fur-
ther development of the heat transfer term of Egs. (6) and (7), i.e., a verified method of
simulating ¢gr. Also, the model equations will be subject to verification with data
from experiments on hot-air/cold-air systems, including fire-driven smoke flows,
which involve gas-to-surface heat transfer exchanges.
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