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Introduction

The most common type of models utilized to study building fires are referred to as zone
models. The motivation for using such models in preference to a complete implementation of the
Navier Stokes equation is the great difficulty in obtaining solutions of the latter in realistic fire
scenarios. One uses only a few elements, or zones, per compartment, and thus can apply the
technique to many compartments. A more complete description of zone models is given
elsewhere?3. This type of model works well in many cases. However, for long rooms or tall
shafts, the basic tenet of the finite element concept as applied to fires is violated. The idea is
that within an element, or zone, the gases are uniformly mixed, and there is no bulk velocity of
the gas. To simulate smoke movement in large buildings, it is important to predict movement of
the smoke front(nose) in the corridor or shaft. Although the ideas which we will discuss are also
applicable to tall shafts, there will be differences in both the equations, and their implementation.
This paper concentrates on the flow along a horizontal corridor.

Benjamin* developed the treatment of steady gravity fronts for two fluids at constant density.
Zukoski et. al.>® have studied smoke spread by using salt water analogue experiments. These
are also treatments of the flow of gas at a constant density. The latter also performed
experiments to consider the effect of heat loss on the velocity of the gas. Heskestad’ studied full
scale experiment in a corridor off of a burn room, but the boundary condition of the inflow into
the corridor is uncertain. Jones and Quintiere® developed an analysis to treat the smoke filling in
a corridor by two-zone model. But their approach does not incorporate the transient problem of
the movement of the smoke front(nose), and cannot predict the arrival of the front and the far
end of a corridor.

The hybrid model is a new approach to considering a tru.asient smoke flow in a corridor, and
is intermediate between a zone model and field model. Since the intent of this hybrid model is to
augment the classical zone model formulation, we derive the necessary equations in that same
context. First we derive the equation necessary to model the finite velocity of the smoke layer.
We discuss the various approximations which can be made and how they effect the agreement
between experiment and theory. In particular, we discuss the effect of the pressure term by
comparing the predictions when the pressure gradient is ignored to that when it is included. At
present we do not consider the effect of heat transfer from the gas layer to the boundaries.

Hybrid Model

The hybrid model considers two zones, the upper layer (called a 'smoke layer’) and a lower,
cooler, layer (called "air layer’). However, the important difference from the classical zone model
is that all quantities in each layer depend upon the horizontal coordinate in the corridor direction.
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This requires consideration of the horizontal momentum balance. In effect, we have subdivided
each zone in a manner similar to a field model, but only in one direction.

If we assume that there is no mass transfer vertically across zones, and that the gas layers are
uniform across the width of the corridor, then the mass, momentum and energy equations can be
integrated over the horizontal (y-direction) and vertical (z-direction) of each zone at any along
the corridor. Each conservation equation (for mass, momentum and energy) can be written in a
form similar to that of mass, which is
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The set is closed with the equation of state

P = pRT 2)

The limits on the integral over the width (y) are from 0 to B since we have assumed uniformity
over the width and the horizontal velocity in this direction is assumed to vanish. Eventually this
restriction must be lifted, as when we wish to consider openings in the middle of the corridor.
However, for the present, this approximatio:: will suffice. The integral over height is from h, to
h, since we need one of these for each layer, in this case two. For the upper layer, h;=0, h,=h,
p=p, u=u, v=0, and w=w,. For the lower layer, h;=h, h,=H, p=p,, u=u, v=0, and w=w_. h is
the height of interface from floor and H the height of ceiling. This area of integration is
dA=dxdy.

Simplifying Assumptions

We now consider this as a two dimensional problem, in the height and length only. We can
simplify the problem somewhat based on the use of these equations which will be in the context
of a zone model. They are as follows:

a) Uniform velocity distribution in both the height and width in each zone,

b) Hydraulic Pressure distribution in the vertical,

c¢) No entrainment along the boundary between the two layers,

d) Lower Layer temperature is the same as reference,

e) Ignore the effects of viscosity,

f) Consider the cases of the floor (reference) pressure to be either constant, or included by
substituting the pressure gradient term into the momentum equation.

Basic Relations

The vertical velocity of the moving interface is

_oh_ 3k 3)

for the upper and lower elements, respectively. The chain rule for derivatives of integrals of the
variables is

By expanding the integral of the derivative of the pressure term using the chain rule, and
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evaluating it assuming hydrostatic equilibrium in the vertical, we have the following exact solution
for the pressure gradient from the original momentum equation:

oP
de = (H-h—L - (pa—p‘)g(H—h)?—}1 for the smoke layer
ox ox ox
hy (5)
oP )
th for the air layer

The relation between the total pressure, P, and the relative pressure from a reference point, Py,
is p;=P¢P,. Then we have the relation of a derivative for pressure as follows:

OF;_ %y (6)
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Hybrid Model with no heat transfer

Using the assumptions and basic relations, we can obtain predictive equations for the
horizontal momentum and vertical interface height for incompressible flow and no heat transfer.
From mass conservaiion in the upper layer, the equation for the change of interface height, h, can
be written as

Ou
L %—(H—h) =
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Given conservation of total mass in the two layers, we have

XH-h)u, ohu,
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Therefore the relation of mass conservation on arbitrary vertical plane is
(H-h)u, + hu, = V). (9)

From momentum and mass conservation of smoke, the equation of change of velocity in the
upper layer is
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We have a similarly equation for the lower layer.
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There are two possible approximations which can be made in order to solve eqs (10). The
first is to ignore fluctuations in the floor or reference pressure, P, because the effect of the
change of pressure is smaller in comparing another term in building fires. When we ignore the

effect of pressure in egs (10) and ?, only eq (10" is used and eq ? is unnecessary. The equation
for the velocity becomes

My _PaPu Ok,
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We can describe u, explicitly as a function of u, from eq (9),

u (H-hy)-(H-hju,
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(12)

where ug is the inflow velocity and h, the interface height from floor at boundary x=0. We have
two unknown variables, h and u,. Therefore we can solve this system by using eq. (7) and (11),
and calculate u, explicitly by eq (12) under the boundary condition, h=h, and u;=u,, at x=0.

In the second case we maintain the fluctuations in the reference pressure. For the hybrid
model with no heat transfer, the unknown variables are h, u,, u, and P, and the known quantities
are p,, p,. We can simplify the system by eliminating the gradient P;. When we eliminate the term
dP/ax by substituting eq ? into eq (10), the equation for the velocity of the upper layer becomes
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u, is the same as before, so we use eq (12) again. In this case, eq (7) and (13) are solved with
the same boundary conditions as when the pressure term is ignored.

A Simple Model with Heat Transfer

The effect of heat transfer is very important for smoke movement in a corridor. At
present we are not able to include the heat loss mechanism in the hybrid model. In
order to estimate its effect, we have developed a simple model. Usually a zone model

assumes the following relation between the velocity and the pressure difference across an
opening,

pjff2 = AP 14)

and a uniform density in a zone. When we consider the hydrostatic pressure distribution
in the vertical direction at the front of the corridor plume to be the same as at the
opening, we have a following relation at the nose of the smoke flow:

AP = Apgz (15)
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where Ap=p,-p,.
From eq (14) and (15) we can obtain an equation for the velocity of the smoke at
any height above the interface. It is
u, = 28pgz/ p,)m, (16)

and the volumetric flow rate at the nose of the jet, Q,, is

<
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For the boundary condition that the flow into the system is a constant Q,, Q; equals
the inflow rate on the boundary at x=0. From this we can obtain the depth, h;, and the
averaged velocity, (U, Of smoke front(nose).
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In order to treat the effect of heat loss, we assume that the smoke temperature can
be averaged over the length of the corridor, the heat loss to wall and ceiling is treated
by:

q = «(T,-T,) (20)

and the temperature of the wall and ceiling are constant in space and time for the early
transient conditions.

Under these assumptions, we obtain mass and energy equation for the smoke layer.
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Mass conservation of smoke layer can be written as

LZY a
and energy conservation as
av,
(CppsT)E = C,pyQpT, 44, (22)

where A, is the surface area of the wall that the smoke touches. Subscript s refers to the
smoke layer and o to the boundary at the inlet.

From eqs (21) and (22), we obtain an equation of the change in the average
temperature of the smoke layer,

drT, 23)
(Cop V)~ =C,poQuTy-T)-Aa(T, T,).

Experiment

We have run a series of experiments to test the validity of the models which we have
developed. The experiments of smoke flow in a corridor were done at the Building
Research Institute (Japan). Figure 1 shows the plan and cross section of the facility. The
length of corridor is about 65 m, the width is 1.5 m and the height of ceiling is 2 m. We
used only the first 40 m of the corridor because the width changes to 5 m at that
location. To study the effects of a soffit (smoke barrier) on the smoke movement, a soffit
is set at 23 m from the smoke inlet. Thermocouples are used for detecting the arrival of
the smoke layer. Fifteen experiments were done for the full scale study. Table 1 shows
the experimental conditions.

Figure 2 shows the location of the smoke front. This illustrates the drop in the
velocity due mostly to heat loss. There is also some effect of the downstream soffit (at
23 m) in constraining smoke movement on both sides of the barrier. However, this effect
is not as pronounced as the heat loss mechanism. As the soffit is lowered, the smoke
velocity becomes smaller. The depth beyond the soffit is more shallow, and the smoke
layer depth on the upstream side of the soffit is deeper. A comparison of all
experiments show that the smoke spread is faster for high flow and high temperature,
and the effect of heat loss is most important in these cases.

Figure 3 shows the horizontal distribution of the smoke temperature in experiment
(5-a). Each point along the horizontal axis represents the maximum temperature on that
particular thermocouple tree. Although this also shows the location of the smoke front
by measuring the temperature, primarily it illustrates the important point that the
maximum temperature is decreasing with distance from the source. This is the effect of
heat loss to the surfaces. This effect is not mimicked by the hybrid model, as will be
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seen.
Comparison between the Computer Model and Full Scale Experiment

We compare the results of the full scale experiments with three versions of the
model. This elucidates the importance of each effect. Figure 4 shows the comparison
between one of the experiments, 2a, and results of the hybrid model and the simple heat
loss model.

For the hybrid model, we divided the 40[m] corridor into 200 cells. As discussed
earlier, in order for this particular solver to work stably with these equations, we need to
include a numerical viscosity term. In this case, we can used a constant v, of a 0.1 for
our system.

m

Up to about 10 seconds, the hybrid model shows a good agreement for the location
of smoke front. After this time, the speed is decreasing in the experiment whereas it is
constant in the model. This is due entirely to the fact that there is no heat loss and the
gas density for the model is constant for all time. The spread speed of the case when the
pressure gradient is ignored is faster than that when it is included. The depth of the
smoke layer of the former is less than the latter. These show the effect of the pressure
term, and the effect is fairly important.

The system of egs (19) and (23) gives us the smoke spread speed and the average
temperature. For simplicity, we can calculate eq (31) by the explicit method. Figure 4
shows the location of smoke front for the experimental results and the calculation results
for heat transfer coefficients 17.4 and 23.3 [W/m’]. At an early stage the experiment,
smoke spread is faster than the predictions of the simple model, but after about 20
seconds the agreement is good for the heat transfer coefficient 17.4.

Conclusions

We have developed a simplified field model to compute the movement of smoke in a
corridor. The model is suitable for inclusion in the zone model CFAST. This work has
shown that there is reasonably good agreement between the theory (computer model)
and experiment even with no heat transfer. The importance of various effects, including
heat transfer, has been elucidated. The theory shows a good agreement with the
experimental data for a 40[m] full scale corridor up to the point where heat loss becomes
significant. The simple model with heat transfer with a constant heat transfer coefficient
shows a good agreement with the experiment, but in early time the prediction is smaller
than the results of experiment. However, this is not a suitable substitution for the correct
calculation, in that we need actual time temperature histories alon~ the corridor to
incorporate the effect of sidewall openings, and so on.
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width of corridor [m]

constant-pressure specific heat [kl/kg/K]
gravitational acceleration [m%/s]

height of interface or depth of layer [m]

height of ceiling [m]

length [m]

pressure [N/m?]

heat transfer rate [kJ/m’)]

flow rate of smoke [m?/s]

time [s]

temperature [K]

,v,w velocity of x-)y-,z-direction [m/s]

volume of smoke layer or zone [m’]

direction of flow movement

horizontal diagonal direction of x

vertical direction

heat . ansfer coefficient combined convection and radiation| kW/m’K]
thermal conductivity of wall or ceiling [kW/mK]
density [kg/m’]

Voum NUmerical viscosity (cm?s)
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Table 1 Conditions of the Full Scale (Full Scale)

Exp. Soffit Inlet Air Inlet Smoke Corridor | Outside
No. | Height [m] | Rate [m%/s] Temp. [°C] Temp. [°C] | Temp. [°C]
1-a 0.0 0.248 48.0 23.6 28.0
1-b 0.5 0.257 50.1 243 26.5
1-c 1.0 0.246 51.1 24.5 26.6
2-a 0.0 0.233 64.8 23.7 28.2
2-b 0.5 0.238 64.9 243 28.0
2-c 1.0 0.245 67.4 23.8 26.6
3-a 0.0 0.401 43.7 245 28.1
3-b 0.5 0.402 42.7 243 28.1
3-c 1.0 0.375 423 229 26.3
4-a 0.0 0.398 56.3 23.7 30.0
4-b 0.5 0.383 56.1 24.1 27.5
4-c 1.0 0.381 57.3 23.1 31.8
5-a 0.0 0.360 68.1 22.8 28.4
5-b 0.5 0.393 68.5 24.1 26.6
5-c 1.0 0.395 69.7 24.6 273
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