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1. INTRODUCTION AND PRELIMINARIES

The problem of planning paths in a network structure is important for
many applications. Interest in path planning is strong in transportation,
telecommunications, computer design, and fire hazard analysis. Such a
problem is sometimes called a routing problem, or a shortest path problem.
One of the earliest solutions to the problem was given by Bellman [1].
Under the assumptions of constant travel times on each link, dynamic
programming was applied to compute the path of minimum travel time
through the network, from any node to a given destination node. Bellman
applied the functional equations approach to devise an iterative algorithm
which converges to the solution in at most N — 1 steps for a network with
N nodes.

Interest in the problem arose recently from fire hazard analysis [12]. In
particular, it is desired to construct realistic models of the egress of humans
from a residential building which is involved in fire. To add realism to the
models, it was suggested to consider dynamic networks (costs on links are
functions of time) and multi-objective behavior of humans. It seems clear
that a human, taking a quick look at a scene in a burning building, will not
consider only the time required to travel along a path, but also whether the
path is cluttered with obstructions, whether smoke is present, whether fire
is present, the distance of the path, the sound of someone calling, and so
on. Human integration and automatic consideration of trade-offs are
evident in decisions that they make. Although it is not evident that the
complete data needed to solve a complex model such as will be proposed
is actually available to humans in egress situations, the models are viewed as
idealizations to use for standards or benchmarks. Once the model solutions
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are known, it is unlikely that humans will be able to do real-time path
planning which is as good as these solutions. Hence, they are considered as
lower bounds on what can be expected in real egress scenarios. If these
lower bound or ideal values represent unsatisfactory outcomes, then
decision makers should be made aware of the potential hazards and take
appropriate remedial actions.

Work on dynamic programming for path planning in networks with
dynamic cost functions has its roots in the paper of Cooke and Halsey [5].
Travel times on links were considered as general functions of time, and a
grid of discrete values of time was superimposed. The functions were to be
evaluated at the arrival time at a node. This type of evaluation is now
known as the “frozen link” model of cost evaluation for dynamic networks
[14]. This dynamic cost approach considers only travel times, and indeed,
cannot comprehend other types of costs such as distances, etc. It will be
shown in this paper how to modify the dynamic programming approach to
include other types of cost functions in a multiple objective dynamic
programming approach to path planning in networks.

Other related research on dynamic programming con51der1ng time
dependent parameters includes Sebastian [16] and Li and Haimes [13]
and the recent analysis of Orda and Rom [14]. Sebastian and Li and
Haimes are concerned with discrete dynamical systems and their control
under time varying constraints and parameters. The state equations they
consider are replaced by the network structure in path planning. Hence, the
results do not transfer easily to path planning in networks. Orda and
Rom [14] are more concerned with computational complexity of path
planning and other alternative algorithms under time varying costs. Their
focus is restricted to the construction of a single path from one origin to
a single destination. Hence the complexity results they obtain must be
scaled up accordingly when computing all paths under the time varying
assumption. Two separate objectives are considered, time and distance, but
only one of these objective functions is present in any one model. Bertsekas
and Gallager [2] ask a question (in the exercises) about how to handle a
path planning problem in which one cost on one link increases at a given
time. They suggest that there is a simple modification to an existing
algorithm to handle such a situation. Very recent work by Kaufman and
Smith [11] and Evans er a/. [8] suggest that there are economical com-
putational strategies available in the case of specially structured dynamic
programming problems. For path planning, there are similar observations
about structure and how to compute more effectively. Algorithms to
effectively compute time dependent path planning solutions with multiple
objectives will be introduced in this paper, under some assumptions about
the time varying cost structure which are motivated by the applications.
These assumptions are similar to those make by Kaufman and Smith for
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the single objective case. It is interesting to note that these assumptions
arose independently and simultaneously from two separate applications,
transportation planning in congested road networks and fire hazard
analysis. It is quite likely that the assumptions are widely applicable in
many diverse settings.

A new development in dynamic programming theory was presented by
Ibaraki [10], who introduced the concept of congener relaxation and
related technique that he called successive sublimation dynamic program-
ming. The original dynamic programming problem is relaxed and
subsequent sublimations of the relaxation are examined until one of them
is congener to the original problem, which guarantees availability of its
solution. Relationships of this technique to our results are yet unknown.

Multiple objective dynamic programming developed concurrently to
dynamic programming with time varying costs, but more research exists on
the latter topic. Initially, Brown and Strauch [3] considered multiple
objective functions with a latticial order. Daellenbach and De Kluyver [7],
seemed to be unaware of Brown and Strauch, and they showed how to
compute the set of nondominated paths in a network under the ordering
of the nonnegative orthant. The theory behind the computation was not
included in paper [7]. Multiple objective analysis of discrete dynamical
systems is considered by Perevozchikov [15], while papers [6, 9] consider
vector routing problems in networks with constant costs on the links.
Carraway and Morin [4] consider a generalization of dynamic program-
ming, but their work does not handle the time dependent cost structure of
interest. Finally, Li and Haimes [13] consider the discrete dynamical
systems control problem with multiple objectives and time dependent
constraints. Again, the network structure precludes such work from
application to the path planning problem of this paper.

The above discussion of progress to date in dynamic programming with
time varying cost structure and multiple objective functions demonstrates
that many related papers exist, but that evidently none will handle the
object of interest: path planning in networks which comprehends multiple
time varying objective functions. From this brief introduction to the
problem and the existing literature, we now proceed to the formal
framework for our research.

The mathematical framework we consider is a general network, not
assumed to be acyclic. It consists of a set of nodes {1,2,.., N} and a set
of links which indicate connections between nodes, i.e., {{i,, i), (3, i), . }.
The links’ directions are indicated by the order of the indices. So, (3, 4) is
the link from node 3 to node 4, while (4, 3) is the link from node 4 to
node 3. A path from node i, to node i, is a sequence of links P=
{(ig, iy), (iy, i3)s s (i, 1, £,)} in which the initial node of each arc is the

same as the terminal node of the preceding arc in the sequence and i, ..., i,



292 KOSTREVA AND WIECEK

are all distinct nodes. Let 7 be the set of all feasible paths in the network
which have the form

{(ilaiZ)’ (i23i3)7 (i31i4)’ eey (iS—l’iS)}v Where lsll’lssN

Each link carries one or more attributes (i.e., time to travel, distance to
travel, etc.) which we think of as cost functions. The cost (vector) of a link
(i, j) applies to all paths which include link (i, j). The cost functions
(c;: R* - R™*) are assumed to be positive vector valued functions of
time, and are not assumed to be continuous. Let [¢;(¢)], be the time to
travel from node 7 to node j, given that travel starts at time ¢. The cost to
traverse a path p in /7 is defined to be

[e(p))= ) [ey(0)]

(i,j)ep

A path in 17 is a nondominated path if there is no other path p’ in /7
with [c(p )] < [c(p)] and [c(p')], < [e(p)], for some re {1, .., m}, where
symbol < in the vector inequality denotes [c(p')],<[c(p)], for
r=1,..,m.

The organization of this paper is as follows. Section 2 includes all the
theoretical results developed in the paper. In two subsections, two different
approaches and algorithms to solving time dependent multiple criteria
routing problems are presented. The first applies backward dynamic
programming and solves the routing problem generating all nondominated
paths leading from every node in the network to the destination node. The
second approach solves the routing problem for the set of feasible paths
which lead from the origin node to all other nodes in the network. The
analysis shows how adoption of forward dynamic programming leads to a
new version of the principle of optimality that can deal with a general class
of dynamic multiple objective networks. The relationship between the
forward and backward case is also explored. Examples that apply the two
algorithms are included in Section 3.

2. MuLTIPLE CRITERIA TIME DEPENDENT DYNAMIC
PROGRAMMING ALGORITHMS

2.1. Backward Dynamic Programming Case

In this section we present an algorithm for computing the set of all non-
dominated paths in the network, as introduced in the previous section. The
algorithm is based on Bellman’s principle of optimality [1]. We generalize
the approach to finding the shortest (fastest) route through a network
developed by Cooke and Halsey [5] to the multiple criteria case.
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Assume a discrete time scale S;={to, to+ 1, to+2, ... 1o+ T}, 1,>0.
Accordingly, assume that all the functions [c,(t)]s, 6, j=1,2, .., N, i#},
k=1,2, .. m, have positive values for re Sy . [c,-j(t)]l is the travel time
from node i to node j, given that the arrival time at node i is ¢ and it is
assumed to be a positive integer. The number 7 is taken to be an upper
bound on the total travel time required to go from any node in the
network to node N. For example, max, ., <n{[cin(?0)],} is an upper
bound. If the nodes are not all connected to node N, then the number T
is only implicitly defined. Since there are only a finite number of paths with
finite cost vectors which are feasible, the value of T exists.

Now we introduce the following sets that are defined for te S; and
i=12,.,N-1:

{E,(t)}—the set of all paths in the network which leave node i at time
te S+ and reach node N;

{Eff(E;(1)) }—the set of all nondominated paths which leave node i at
time € Sy and reach node N;

{[F:(t)]}—the set of vector costs of all nondominated paths in
{Eff(E;(1))};

{E.(t)"}—the set of all paths of at most k links, leaving node / at
time ¢ and reaching node N at or before time 10+ 7, k=2, 3, ...

{[F;(1)*]}—the set of vector costs of all nondominated paths in
{E/(1)**V}. Obviously, {Eff(E,(1))} < {E(n)}.

According to the frozen link model, we also assume that upon the arrival
time at node i the vector cost of link (i, j) for all j such that (i, j) exists,
is an easily computed constant. Thus, the arrival time at node j is
t+ Ley ()],

Let [o0] and {co} denote the vector and the set of m-component
vectors such that each component is equal to infinity, respectively. Let {0}
denote a set containing the zero vector.

Bellman’s principle of optimatlity [1] has been applied to multiple
objective dynamic programming [3, 7, 9]. For completeness we present the
principle of optimatily in the form relevant to the path planning problem
in this paper. Following Cooke and Halsey [5] and Kaufman and
Smith [117], we consider the expanded static multiple objective network in
which the state incorporates the current location in the network (node) at
the current time.

THeOREM 1. (Principle of Optimality for Static Multiple Objective
Networks). A4 nondominated path p, leaving node i at time te Sy and
reaching node N at or before time t,+ T, has the property that for each node



294 KOSTREVA AND WIECEK
J lying on this path, a subpath p,, that leaves node j at time t;€ Sy, t;>t, and
arrives at node N at or before time to+ T, is nondominated.

Proof. By contradiction. Assume to the contrary that p, is dominated
(not nondominated), ie., there exists path p* leaving node j at time ¢, and
arriving at node N at or before time 7, + T, such that

Le(p*)] < [e(py)]

and
[e(p*)], < [c(p,)], forsome ref{l,..m}. (n

Let p, be a subpath that leaves node i at time 1 and arrives at node j at
time ;. Thus we have two paths from node / to node N such that their
total cost is, respectively,

Le(p)]+ [e(p2)]

and

Le(p*)] + Le(p2)].
Applying (1) we get

Le(p*) ]+ [e(p2)]< [e(py)] + [elp2)],

which implies that path p=(p,, p,) consisting of subpath p, and p, is
dominated. :

By the principle of optimality [1] and Theorem 1, we establish that for
teSy,

{[F()]1}=VMIN{[c;()}+ {[F;(t+ [c;()])]}},
i=1,2, ., N—1, (2)

{[Fs1)1}=1{0},

where operation VMIN computes vector costs of nondominated paths in
the set being the algebraic sum of the cost vector [c¢,(7)] and the set of vec-
tor costs of all nondominated paths that leave node j at time 1+ [c,(1)],.
Computing all nondominated paths in {Eff(E;(¢))} requires applying an
iteration scheme on the system of equations above.

We present now Algorithm One which includes the iterative procedure
and finds {Eff(E,(1))}, i=1,2,., N—1, in a finite number of steps.
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ALGORITHM ONE.

Step 1. Establish a limited grid of discrete values of time S;=
{to, to+1,15+2, .., to+ T}. (Choice of T is discussed above). For 1€ Sy
and 4, j=1,2,.., N,i# j, compute [c,(1)]

Step 2. Modify the vectors [c,(1)], t€ Sy as follows:

t if +T
[ey ()] = EC}{(,)] it le,Olistot T sy o L Vi)
L] if 1+ {c; ) >+ 1

(3)

Step 3. Construct an “initial guess” array [{[F;(1)*'1}], i=1,2, ., N.
teSy;, where {[Fy(1)®1}={0}, and {[F.(1)®1}=1[cin(1)] for i=
,2,.,N—1

Step 4. Calculate the arrays [{[F;(1)*']}], i=1,2,.., N, teSy, for
k=1,2,3,.. as follows:

{[F()®]} = VMIN{[c;(D)] +{[F(t+[c,,(z )1)* =111,
i=1,2,.,N—1, 4)
{[Fy(1)*®]} = {0}

The VMIN operation in the equation above will lead to {oo} if [c,(1)] =
[0] for all j or if ¢+ [c;(1)]1 ¢S, Otherwise, if both [c;(¢)]" and
{[F(t+ [c;(1)])* 1} are finite for some j, compute [c,(¢)]’, extract
{[F;(t+ [c;()1)* ]} from the array [{[F,(1)*’]1}] and perform the
VMIN operation (over j) of their algebraic sum.

Step 5. The sequence of sets {[F,(t,)*']}, k=1,2,.. converges to
{[Fi(t,)]}. The set {Eff(E,(t;))} is obtained by keeping track of the
indices of paths’ links that contribute to {[F,(to)*']}.

THEOREM 2. The method of Algorithm One is well-defined.

Proof. We start (step k=0) with all paths and corresponding costs
from node i to node N set equal to the single link costs connecting each
node to N. That is, we start with nondominated paths of one link each.
Each set {[F;(1)®]}+# &, and contains exactly one cost vector. As k
increases, the set {[F;(¢)*’]} accumulates the nondominated cost vectors,
while always dropping dominated cost vectors. Hence, {[F.(r)*’]}
remains nonempty for any k. Therefore the VMIN operation may be
applied for any %.
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THEOREM 3. The iterative step of Eq. (4) computes the set of all vector
costs corresponding to all nondominated paths with at most k links
connecting node i to node N with departure time t.

Proof. The proof is by induction on k. Assume that k =1 and define for
teS;:

VMIN over the vector costs of paths in { E;(7)?},
{[F; ("]} = if {E()¥}#0D,
' {oo} if {E()*}=0,
i=1,2,.,N—1,

{[Fx()V]} = {0}.

If {E (1)} = &, then the one-link path from node i to node N, leaving
at time 7 reaches node N after time 1o+ 7, so that [c,{(r)}]" = [cc]. There
is also no two-link path from node i through node j to node N that reaches
node N by time t,+ 7, so that no one-link path leaving node j at time
t+ [c;(1)]) reaches node N by time t,+ T. Therefore either [c;(1)] =
[oe] or {[F(1+ [c;()]}) ]} = {oo} and {[F.(1)"]} = {oo}.

If {E,(1)®} # (&, then there exists at least one nondominated path of
one or two links leaving node i at time ¢ and reaching node N by time
to+ T. A one-link nondominated path may have been obtained from
initialization and still be nondominated. A two-link nondominated path
leads from node i to node j, and then follows the one-link path from node
J to node N with the arrival time at node j equal to 4+ [c,(7)]) =
t+ [ey(N)]y.

Now assume that the iterative step is valid for k> 1 and we will show
its validity for k + 1. Again define for 1€ §:

VMIN over the vector costs of paths in { E,(¢)** 2},

{[F(n* "]} = if {E()* )+,
{0} i {E(0**"}=g,
i=1,2 ., N-1,

{[Fu(n™ 1]} ={0}.

If {E,(1)**?}=¢, then there is no path of at most k +2 links that
leaves node i at time ¢ and reaches node N by time r,+ T. Therefore
(TR ]} = {oo ).

If {E,(1)*+?'} & ¥, then there exists at least one nondominated path of
at most k + 2 links leaving node i/ at time ¢ and reaching node N by time
to+ T. A nondominated path of at most £ + 1 links leaving node / at time
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¢ and reaching node N by time ¢, + 7 may have been obtained in the kth
or an earlier iteration of the algorithm. In the k+ 1 iteration one may
obtain a nondominated path of at most & + 2 links leading from node { to
node j, and then following a path of at most k+ 1 links from node j to
node N, that has been found in the kth or an earlier iteration on the
algorithm.

THEOREM 4. After a finite number of steps Algorithm One generates all
nondominated paths that leave node i,i=1,2, .., N—1, at time t, and reach
node N.

Proof. By contradiction. Assume that the method generated all non-
dominated paths, that leave node i at time ¢, and reach node N, except one.
Then either the set of nondominated paths is incomplete or it includes at
least one path that is dominated by the missing path. The former implies
that the algorithm missed one nondominated path which contradicts the
fact that each node of the network was visited and all links leading to it
were examined. The latter indicates that the procedure did not identify the
true status of a path, namely dominated. Hence arises a contradiction with
performing the VM IN operation at node i,i=1, 2, ..., N— 1, of the network
and discovering all nondominated paths leaving this node and reaching
node N.

2.2. Forward Dynamic Programming Case

In the dynamic programming literature two problem formulations are
commonly considered. For the multiple objective network there are: (1)
find all nondominated paths from every node in the network to the destina-
tion node, or (2) from the origin node find all nondominated paths to
every node in the network. While the former formulation gave rise to the
development of Algorithm One, the latter will be considered in this section.
The theoretical background of the multiple criteria dynamic network
analysis will now be adapted for the second formulation. We relate the
second formulation to the first as follows: the destination node is still the
main focus. The forward solution is to be obtained with each other node
in the network as the origin, and nondominated paths which reach the
destination node are computed. The extra computations required may be
compensated by other structural simplifications of the forward approach.

In this forward approach, feasible paths are those which start at the
origin node. Assume that time ¢ is a continuous variable, that is, t =0, and
hence allow [c,(¢)], to take any positive value. We normalize so that the
departure time from the origin node is =0. Finally an assumption is
introduced which allows the formulation of the principle of optimality for
dynamic multiple objective networks.
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Assumption 1. For any link (i, j) in the network and all ¢,,¢,20, if
t, <t,, then

(a) t + [Cq(t )]l t2+ [Cu(tz ]1’ and
(b) [e;(1))]),<[ey(13)], forall re {2, .., m}.

We also introduce the following sets defined for j=2,3,.., N, and
vectors defined for r>0and j=2,3,.., N

{D;}—the set of all paths in the network which leave the origin node
at time =0 and lead to node j;

{Eff(D;)}—the set of all nondominated paths which leave the origin
node at time ¢ =0 and lead to node j;

{D!*'}—the set of all paths of at most k links leaving the origin node
at time =0 and leading to node j, k=2,3, ..;

[G(1*)*)]—the vector cost of the nondominated path u in {D{**+"},
where t* is the arrival time of this path at node j;

{[G*} = {[G;(r)®], u=1,.,N;}—the set of vectors costs of
all nondominated paths in {D“‘+ ”} where N, is the number of the
nondominated paths;

[G}(+*)]—the vector cost of the nondominated path u leaving the
origin node at time =0 and arriving at node j at time ¢*;

{[G1}=1{[G,(r)]),u=1,..,N,}—the set of vector costs of all
nondominated paths in {Eﬂ'(DJ }, where N; is the number of the
nondominated paths.

Obviously, {Eff(D,)} < {D,}.

THEOREM 5 (Principle of Optimality for Dynamic Multiple Objective
Networks). Under Assumption 1(a) and (b), a nondominated path p, that
leaves the origin node at time t =0 and arrives at node j at time t;, has the
property that for each node i lying on this path, a subpath p,, that leaves
the origin node at time t=0 and arrives at node i at time t,, LS, s
nondominated.

Proof. By contradiction. Assume to the contrary that p, is dominated
(not nondominated), i.e., there exists path p* that leaves the origin node at
time ¢ and arrives at node i at time * <¢, such that

Le(p*)1 < Lelp)) ],
and (5)

[c(p*)], <[c(p,)], forsome re{l, .., mj}.
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Both paths, p, and p*, leave the origin node at the same time =0 and
lead to node i. Hence there are two paths from node i to node j such that
one of them leaves node / at time 7, and arrives at node j at time ¢,, and
the other leaves node i at time ¢* and arrives at node j at time t*. Let us
call those paths p, and p#, respectively. Thus we have two paths from the
origin node to node j such that their total cost is respectively:

i=j
Le(p)]+[ep)I=Tclp)]+ Y [ew(td)] (6)
(k1) e p
and
I=j
Le(p*)] + [c(p)T=[c(p®) 1+ Y [ew(t)], (7)
tk,leps

=1

where ¢, and ¢} are the arrival times at node k (k=1, .., /= j) on paths p,
and p¥, respectively.
We also have that +* <1,, then by Assumption 1(a)

tF+ Les(tX)] <+ e (t)],

for every link (4, s} in the network. Applying Assumption 1(a) on every link
(k, 1) in path p, and p¥, and substituting arrival times at each node, we
reach node j and get

1=j I=j

tF+ Z Lew(tE)] i <ti+ Z Lew(te) ]y,
(k.l)spz‘ (k,[)epy
k=i k=i

which by definition means
<t (8)

Applying Assumption 1(b) and summing over all links on p, and p¥ we
have

I=j t=j
Z [ckl(t;(k):lr< Z [ckl(tk)]n re {25 "'sm}' (9)
(ke pf e p

Note that inequalities (5), (8), and (9) lead to

Le(p*)]+ [e(p)] < [e(p)] + Le(pa)],

which impliés that path p=(p,, p,) consisting of subpaths p, and p, is
dominated.
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By the principle of optimality [1] and Theorem 5, we establish that for
>0 and ">0:

{[G/(1)], £ =1,., N} = VMIN{[G"(1")] + [c;(t")], n=1,., N},
j=2,3,.. N, (10)
{[G/ ()], £ =1} ={0},

where operation VMIN computes vector costs of nondominated paths in
the set for which each element is a vector sum of the vector cost of the non-
dominated path » leaving the origin node at time 0 and arriving at node
i at time ¢", and the cost vector of link (, /) with the arrival time " at node
i. Computing all nondominated paths in {Eff(D;)} requires again applying
an iteration scheme on the system of equations above.

We now present Algorithm Two which includes the iterative procedure
and finds {Eff(D;)}, j=2,3,.., N, in a finite number of steps. (Assume
without loss of generality that node 1 is the origin node.)

ALGORITHM Two.

Step 1. Construct an “initial guess” vector [{[G!"]}],/=1,2,.., N,
where

{(6{"1}={o},
([G91} =[c,(0)), j=2,3,.,N.

Step 2. Calculate the vectors [{[G!']1}], j=1,2,., N, for k=
1,2, 3, .., as follows:

{[G;(I/)(k)]’ £=1, .., N/} = VM]‘N{ [G:_l(’n)[k~ 1)]
+[c;(t")]),n=1,.,N;}, j=2,3,.. N,
{G1N)™, ¢ =1} ={0}. (11)

The VMIN operation in the equation above will lead to {oo} if
[c;(¢")] = [co] for all nondominated paths leading to node i (n=1, .., N)).
Otherwise, if both [c,(")] and [G7(:")'* "] are finite for some non-
dominated path n, then compute their vectors sum for each such path, and
perform the VMIN operation (over i) on the set just obtained.

Step 3. The sequence of sets {[G!"']}, k=1,2,.., converges to
{[G,1}. The set {Eff(D,)} is obtained by keeping track of paths’ links that
contribute to {[G}*']}.

The proofs of the following theorems are similar to the proofs of
Theorems 2, 3, and 4, and are thus omitted.
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THEOREM 6. The method of Algorithm Two is well defined.

THEOREM 7. The iterative step of Eq. (11) computes the set of all vectors
costs corresponding to all nondominated paths of at most k links connecting
node 1 and node j with departure time t =0.

THEOREM 8. After a finite number of steps Algorithm Two generates all
nondominated paths that leave node | at time t =0 and reach all other nodes
j, for j=2,3, .., N.

CoroLLARY 1. If [c{(t)],, i, j=1,2,.,Nyand i#j,r=12,..m, isa
continuous monotone increasing function on [0, c0), then Algorithm Two
finds all nondominated paths from the origin node to any other node.

Proof. A continuous monotone increasing function satisfies Assump-
tion 1(a) and (b) and thus the Principle of Optimality for Dynamic
Multiple Objective Networks holds, and by Theorem 8 all nondominated
paths from the origin node to any other node are generated.

CoROLLARY 2. If [cy()],, ,j=1,2,.,N,and i#jr=12,.,m, isa
monotone increasing step function on [0, o), then Algorithm Two finds all
nondominated paths from the origin node to any other node.

Proof. Proof follows the proof of Corollary 1 since a monotone
increasing step function satisfies Assumption 1(a) and (b).

CoroLLARY 3. If [c (1)), i j=1,2,.,N,and i#jr=12,..,m isa
continuous monotone increasing function on [0, o), then all nondominated
paths from node i,i=1,2, .., N — 1, starting at time t =0 and leading to the
destination node N may be computed with at most N—1 applications of
Algorithm Two.

CoroLLARY 4. If [c;(1)]),, i, j=12, ., Nyand i#j,r=1,2,.,m isa
monotone increasing step function on [0, 00), then ull nondominated paths
from node i,i=1,2,..,N-1, starting at time t=0 and leading to the
destination node N may be computed with at most N—1 applications of
Algorithm Two.

As it was mentioned above, computing all nondominated paths from any
node to the destination node is the main interest. Corollaries 3 and 4, that
result immediately from Corollaries ! and 2 and thus are presented without
proofs, show that the forward approach can be applied to solving that
problem. Although such a method becomes more complex computationally
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(at most (N—1) Algorithm Two solutions), it is competitive with
Algorithm One, which requires storing and computing a large amount of
data for the expanded static multiple objective network.

3. EXAMPLES

The algorithms presented in the previous section are now applied to
solve two dynamic routing problems. The notation in each of the
subsections below agrees with symbols previously used in Sections 2.1
and 2.2, respectively.

3.1. Backward Dynamic Programming Case

We will use Algorithm One to solve a dynamic routing problem with
two criteria (m=2) for the network dipicted in Fig. 1. The example is
related to a somewhat simpler example in Kaufman and Smith [11].
Remarks there indicate that a naive approach will fail on their example.
Similarly, one needs the expanded static network to solve the network.

A grid of discrete values of time S, = {1, 2, .., 20} for 7, = 1 is established,
and vectors [c;(1)] for teS,, are modified according to Step 2 of the
algorithm, which results in the expanded static network. An initial guess
array [{[F.(1)®]}], i=1,..,4,1€S,,, is constructed, and the arrays
[{[F;(1)"]}] and [{[F.(1)*]}] are calculated as Step 4 of the algorithm
indicates. Figure 2 shows the initial array and the two subsequent arrays
calculated in Step 4 of the algorithm (each array has 20 rows and 4
columns that are shown in Fig. 2 in a truncated form). [{[F;(10)*']}] is
given by the first row of array [ {[F,(s)'*¥]}] and contains vector costs of
all nondominated paths that leave node i, (i=1, .., 4), at time f,=1 and
reach node 4.

The sets {Eff(£,(1,))} of all nondominated paths that leave node i,
i=1,2 3, at time t,=1 are given as

{(1,2),(2,3), 3, 4)},
{(2,3), (3, 4)},
{3, 4)},

FiG. 1. Two-criteria dynamic network.
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FiG. 2. Algorithm One, Step 4 calculations.

and are obtained by keeping track of the indices of paths’ links that
contribute to [{[F;(t,)?]}]

Observe that because the cost functions are not all monotone increasing
functions of time, it is possible to have total cost behave in a non-
monotonic way. In such a network, one may also experience “passing” by
which one traveling unit overtakes another on a link.

3.2. Forward Dynamic Programming Case

We solve a two-criteria dynamic routing problem presented by the
network in Fig. 3 and apply Algorithm Two. Cost functions here satisfy
Assumption 1. Therefore, a “no-passing” convention is in effect. For
comparison, the cost functions are chosen as a combination of constant
functions and monotone increasing step functions.
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FiG. 3.
paths.

Two-criteria dynamic network with step cost functions and its nondominated

The step cost functions are given as

—g]t<3 j—:]t<3 [180]t<3
cys(t) = :10 , cas{t) = 510~ ) ces(t) = 10 ,
_12]’23 ([ 10]"7? [12]’23
—;]t<5 f—150~t<5
cae(t) = th s cselt) =4 :12:
_12]'25 ([ 12]72°

All the other links of the network have constant vector costs, as Fig. 3

shows. We start with an initial guess vector [{[G!"]}],/=1,2,.
calculate vectors [{[G]}],j=1,2,.

rithm. The vectors [ {[ G“"]}] j=1, 2

Fig. 4.

., 7, and

., 1, according to Step 2 of the algo-

., 1, for k=0,1, .., 4 are shown in

The sequence of sets {[G*']} converges to {[G,]} in the second itera-

tion of the algorithm. The sets {Eff

D))} for j=2,3, .,

7, are obtained by

keeping track of paths’ links that contribute to {[G{*']} and include the

following paths:

{(1L,2)},
{(1,3)},

{(1, 3) (3,4)},
{(1,3). (3, 5)},

)
{13)(
(

6)},

{(1,2), (2, )},

{(1,3),(3,5

), (5,7},

{(1,3), (3,

6), (6, 7)}.
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FiG. 4. Algorithm Two, Step 2 calcuations.

Note that this calculation produces the set of nondominated paths from
node 1 to node 7 (destination node) as well as to all other nodes. A similar
computation is required for nodes 2, 3, 4, 5, and 6 to compute all
nondominated paths from these nodes to the destination node. Applying
Algorithm Two for each of these nodes gives the following nondominated
paths:

{2,N}

{32,217}, {3,6.67} {3567}
{(4,5), (5 7)},

{5, D},

{(6,1)}.

4, CONCLUSIONS

This paper presents for the first time a theoretical and algorithmic
development for the problem of path planning in networks including
multiple time dependent costs on the links. Throughout, the goal is to
compute all nondominated paths in an efficient computational procedure.
Applications abound in fire safety science, general transportation, and
telecommunications.
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Our study has produced two distinct algorithms, each one tailored to a
particular class of cost functions. For general costs functions, we extend the
work of Cooke and Halsey [5] to handle multiple objective functions. We
observe that their paper solved only the minimum travel time path plan-
ning problem, so this paper seems to be the first to handle cost functions
other than travel time. This algorithm should be used only when required
(by cost functions which are not monotone increasing) because it has a
greater overhead and computational cost than the other algorithms.

For monotone increasing cost functions satisfying one additional
assumption, a forward dynamic programming algorithm which generalizes
the paper of Kaufman and Smith [11] is presented. Such an algorithm
seems more computationally effective than the one for general cost
functions and it seems to be independent of the time horizon with repect
to its computational complexity. It has the disadvantage that it must be
applied to each origin node independently in order to get a complete set of
nondominated paths.
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