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Numerical Analysis Support for Compartment Fire 
Modeling and Incorporation of Heat Conduction into a 

Zone Fire Model 

William F. MOSS* 

Abstract 

This report summarizes numerical fire modeling research conducted for 
NIST Grant Number 60NANB8D0857 from August 15, 1988 to March 31, 
1991. The research goal for the first year of the grant was to determine the 
best available numerical technology for use in zone fire modeling. The goal for 
the second year was to incorporate heat conduction into a zone fire model in 
a numerically robust and efficient manner. Three prototype zone fire models 
named MCCFM, CONRAD1 and CONRAD2 were constructed to test the nu- 
merical technology used to realize these goals. These zone fire models and their 
implementations as Fortran codes are presented. The code MCCFM, developed 
during the first year of the grant, demonstrates the advantages of using mass 
as a solution variable instead of density. CONRAD1 and CONRAD2 examine 
two strategies for coupling the heat conduction equation (a one dimensional 
partial differential equation) with the zone fire modeling ordinary differential 
equations. CONRAD1 performs this coupling via the method of lines by using 
standard piecewise cubic Hermite polynomial basis functions to represent the 
unknown temperature profiles in the ceiling, wall, and floor heat conduction 
nodes. CONRAD2 reduces the heat conduction problem to a set of implicitly 
defined functional equations, a strategy never before used in zone fire modeling. 
Both CONRAD1 and CONRAD2 use a differential-algebraic equation solver. 
Supporting numerical results are presented with timings for a Sun Sparcstation 
2. 

1 Introduction 

1.1 Background 

This report summarizes numerical fire modeling research conducted for NIST Grant 
Number 60NANB8D0857 from August 15, 1988 to March 31, 1991. The research 

*Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-1907, U.S.A. 
(bmoss Qmath. clemson . edu) . 
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goal for the first year of the grant was to determine the best available numerical 
technology for use in zone fire modeling. The goal for the second year was to 
incorporate heat conduction into a zone fire model in a numerically robust and 
efficient manner. Three prototype zone fire models named MCCFM, CONRAD1 
and CONRAD2 were constructed to test the numerical technology used to realize 
these goals. These zone fire models and their implementations as Fortran codes are 
presented. 

The code MCCFM, developed during the first year of the grant, demonstrates the 
advantages of using mass as a solution variable instead of density. Some of the tech- 
nology used in MCCFM was later incorporated into the NIST code CCFM.VENTS; 
in particular, the choice of solution variables. Both MCCFM and CCFMYENTS 
use the stiff ordinary differential equation solver DEBDF from DEPAC. 

CONRAD1 and CONRAD2 examine two strategies for coupling the heat con- 
duction equation (a one dimensional partial differential equation) with the zone fire 
modeling ordinary differential equations. CONRAD 1 performs this coupling via 
the method of lines by using standard piecewise, cubic Hermite polynomial basis 
functions to represent the unknown temperature profile in the ceiling, wall, and 
floor heat conduction nodes. CONRAD2 reduces the heat conduction problem to a 
set of implicitly defined functional equations, a strategy never before used in zone 
fire modeling. CONRAD1 and CONRAD2 both use the stiff differential-algebraic 
equation (DAE) solver DASSL. CONRAD1 is viewed as a benchmark code and has 
been used to verify the correctness of the approach in CONRAD2. Some of the 
technology in CONRAD2 is currently being incorporated in the NIST code CFAST; 
in particular, the differential-algebraic equation solver DASSL and the strategy for 
incorporating heat conduction. Supporting numerical results are presented. All 
timing are for a Sun Sparcstation 2 using Sun Fortran 1.4. 

The basic premise of a zone fire model is that an enclosure can be divided into a 
number of regions or zones each with approximately uniform conditions. The zones 
interact by exchanging mass and energy. Mass and energy conservation along with 
expressions relating mass, energy, density, volume, temperature, and pressure can be 
used to show that many formulations exist for tracking conditions in zones. These 
formulations are equivalent in the sense that one formulation may be converted to 
another using physical laws such as the ideal gas law or definitions of such quantities 
as density or internal energy. Computationdy, zone fire modeling is challenging due 
to the numerical characteristics of the basic conservation equations used to  simulate 
mass and energy exchange between various zones (see [l]). 

1.2 Overview 

Section 2, presents the zone fire model code MCCFM. The basic ordinary differential 
equations solved, the submodels used, and the structure of the code are discussed. 

Section 3 outlines the design of the code CONRAD1. First, heat conduction 
is modeled in the standard way by an initial-boundary value problem for the heat 
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equation, a partial differential equation. Second, the piecewise cubic Hermite poly- 
nomial expansion approach to the methods of lines is used to convert an initial- 
boundary value for a partial differential equation into a differential-algebraic equa- 
tion system. The spatial mesh used in this process is graded (not uniform) and is 
dependent on the length of time the code will be run. Finally, the structure of the 
code is discussed. 

Section 4 outlines the design of the code CONRAD2. It provides the details of 
how the heat conduction problem is converted into a system of functional equations. 
Again, graded spatial meshes are used in heat conduction nodes. 

Section 5 is a condensation of the lab notes for the second year of the grant. 
What was tried, what worked, and what did not work is pointed out. 

Finally, Section 6 outlines future projects to further improve the modeling of 
heat transfer in zone fire models. 

2 MCCFM: A Zone Fire Model 
In this section we examine the basic equations of the zone fire model MCCFM, 
briefly discuss submodels for fire and for natural and forced transfer of mass and 
energy through vents, and describe the code MCCFM. MCCFM was developed as a 
part of the first year of the grant. The project title for this portion of the grant was 
“Numerical Analysis Support for Compartment Fire Modeling Code Development .” 
This grant ran from August 15, 1988 to August 15, 1989. The goal of this project 
was to find the best available numerical methods for zone fire modeling and use 
them in MCCFM. Some of the technology developed for MCCFM was later used 
to improve the NIST code CCFM.VENTS (see [2, 3, 41). In particular, the choice 
of solution variables used in MCCFM was a notable contribution. MCCFM also 
demonstrated how to compute vent flow efficiently. The vent flow equations used 
by MCCFM and CCFM.VENTS are essentially the same. The strategy used to 
compute these equations is different, however. Though MCCFM’s vent algorithm 
was never installed in the final version of CCFM.VENTS, the improvements made 
to the CCFM.VENTS vent algorithm resulted in a 2 to 3 times speed-up. 

2.1 Basic Equations 

The code MCCFM models the transfer of mass and energy as a fire evolves in a 
multiple room building. As illustrated in Figure 1 each room in a zone fire model is 
usually divided into two control volumes, an upper layer of hot gases and smoke and 
a lower layer of air. The gas in each layer has attributes of mass, energy (enthalpy), 
density, temperature, and volume denoted respectively by mi, qi, p;, Ti, and fi 
where i = L for the lower layer and i = U for the upper layer. Enthalpy is a 
composite term which is the sum of the internal energy of the gas and any work 
done by expansion of the gas. The upper and lower layer gases are considered ideal 
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Components of mass and 
enthalpy entering or leaving a 1-m 
zone 

Figure 1: Two Layer Zone Model Configuration 

so that their pressures, densities, and temperatures are related by the ideal gas law. 
Strictly, speaking both the upper and lower layers should have different pressures. 
It is a simplifying assumption of most zone fire models that these pressures are 
treated as the same. This common pressure is denoted by P, no layer distinguishing 
subscript being required. Figure 1 illustrates the sources of energy for a two layer 
zone model. 

Although vertical pressure variation is ignored when using the ideal gas law, it 
is not ignored when modeling the flow of mass and energy through a vent. The 
term vent is used here for any opening such as a door, window, slit, hole, or crack 
that will allow gas to pass from one room to another. Unless a room is completely 
sealed off from the outside, the room pressure will be close to 1 atmosphere which is 
about lo5 Pascals (Pa). A pressure drop across a vent as low as .1 Pa can result in 
considerable mass and energy transfer. For the purposes of vent flow calculations, 
a vertically dependent hydrostatic pressure is used. The common layer pressure P 
is treated as the pressure at the floor, and the pressure at height h above the floor 
is computed as P - pLgh if h 5 Y ,  where Y is the height above the floor of the 
interface between the upper and lower layers. If h > Y ,  then the pressure at height 
h is computed as P - p L g Y  - pug(h - Y ) .  Since room floors may have different 
elevations, P is further decomposed as P = Pbtum - p-bi~tg~floor + AP where 
Pd&- is the ambient pressure at the datum level, pmbimt is the ambient density, 
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T 
i Lower Layer 

Y fioor 

1, datum elevation 

Figure 2: Two Room Example 

yfloor is the height of the floor above the datum level, and AP is called the pressure 
offset. In MCCFM the term ambient refers to the conditions outside the building. 
These conditions are taken to be uniform around the building. Unlike the NIST code 
CCFM.VENTS, MCCFM does not attempt to model outside pressure differentials 
caused by winds. Consequently, before the fire starts A P  = 0. Figure 2 illustrates 
the variation of pressure with elevation. 

The code MCCFM solves an initial value problem for a set of ordinary differential 
equations (ODE’s). There are four ODE’s for each room which track the pressure 
offset, AP,  the upper layer height above the floor, Y ,  the lower layer mass, mL, 
and the upper layer mass, mu. At any time t after the fire starts, all physical 
variables can be derived from these four “solution” variables. The four ODE’s are 
derived from conservation of energy and mass in each of the two layers. The choice 
of solution variables and the derivation of the ODE’s was carefully discussed in 
[I, 21. In these reports, it was pointed out that this particular choice of solution 
variables has certain advantages over the other possible choices. An early version of 
CCFM.VENTS (CCFM.HOLE [5 ] )  used densities instead of masses for two of the 
solution variables. This code had a difficult time starting because at the time the 
fire starts, the upper layer density is indeterminate; it is the ratio of the upper layer 
mass to upper layer volume and both are zero. On the other hand, at the time the 
fire starts, upper layer mass is well defined and is zero. Early in the development 

5 



of MCCFM, the layer masses were chosen as solution variables and somewhat later 
this choice was adopted for use in CCFM.VENTS. This change of solution variables 
made a marked improvement in the performance of CCFMYENTS. 

The evolution of the solution variables is driven by all sources of mass and 
energy (enthalpy) such as fires, natural vents, forced vents, radiation, convection, 
and conduction. In what follows, let the rate at which mass is added to the upper 
and lower layers be denoted by mu and m ~ ,  and let the rate at which energy is 
added to the upper and lower layers be denoted by tju and t j ~ .  The four basic 
ODE’S solved for each room are 

- -  dAP 7 - 1  
dt - - (&J+QL)  V 

where V denotes room volume, YH denotes the distance from the floor to the ceiling, 
and 7 denotes the ratio of specific heat at constant pressure to the specific heat at 
constant volume. MCCFM uses a value of 7 = 1.4 which corresponds to air. When 
not indeterminate, layer densities can be computed from the definition of density as 

PU = (YH - Y ) A  
mL 

PL = - Y A  ’ 
where A denotes the area of the room floor, and in turn, layer temperatures can be 
computed from the ided gas law as 

where R denotes the universal gas constant. 

2.2 Submodels, Sources of Mass and Energy 

The in and Q source terms in equations (1) -(4) are derived from submodels for fires, 
natural vents, and forced vents. These submodels are essentially the same as those 
used in CCFM.VENTS (see [2]). 

The submodel for a fire is based on the observation that rising hot gases from 
a fire carry with them some of the cooler surrounding gas. This process is referred 
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to as entrainment. A fraction of the energy released by the fire is considered to  be 
lost due to radiation and conduction of heat through ceilings, walls, and floors. In 
MCCFM this energy is removed from the system. This is a serious defect in the 
model because radiative heating of room ceilings, walls, and floors was found to be 
significant during the development of the codes CONRAD1 and CONRAD2 (see 
Sections 3 and 4). 

The submodel for a natural vent is based on Bernoulli’s law for flow through an 
orifice. Suppose the vent connects rooms 1 and 2, and that room 1 is at the higher 
pressure (source room). Then 

where rjZvent is the rate at which mass is being lost from room 1 and added to room 
2, Cvent denotes the vent coefficient, Avent denotes the area of the vent, p1 denotes 
the density of the gas in room 1, and APvent = PI - P2 denotes the pressure drop 
across the vent. Equation ( 5 )  is only valid if the density, p1, and the pressure drop, 
APVent, are constant over the vertical extent of the vent. As mentioned above, 
pressure is treated as a piecewise linear function of elevation above the floor in the 
vent calculation. If a layer interface falls between the top and bottom of the vent, a 
further complication arises from the fact that a jump or discontinuity occurs in the 
density as the layer interface is crossed. The vent submodel divides the vent into 
a number of horizontal “slabs” of gas and then treats each slab using equation ( 5 ) .  
In each slab p1 is constant and pressure is a linear function of elevation above the 
floor. The value of d G  for the slab flow calculation is given by 

which takes into account the vertical variation in pressure (see [Z]). 
The layer in each room can be above the vent, above or below the layer in 

the adjoining room or below the vent. Figure 3 illustrates one of the ten cases to 
be considered when computing vent flow. The number of slabs for each case vary 
from one to three. Each slab can have one or two flows depending on whether the 
slab contains a neutral p1ane.l The mass flow through the vent is then computed 
using equations ( 5 )  and (6) using values of p1, A h o t  and AfiOt according to which 
case the layer heights satisfy. The speed of this method for computing vent flow is 
then achieved by noting that during a fire simulation the vent algorithm may be 
invoked many times but usually subsequent invocations use the same case. Unneeded 
computations can be avoided by recording the case that was used last and then trying 
it first on the next invocation of the vent algorithm. 

The vent submodel has the following input-output description. The vent is 
assumed to connect rooms 1 and 2. 

‘elevation where the pressure drop across the vent is zero 
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I 

Room2 
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1) I '  
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RoCnn 

ceiling 

h y a  intofect 

Inputs: 

0 pressure offsets for rooms 1 and 2, 

0 distance from the datum to the layer interface in rooms 1 and 2, 

0 distance from the datum to the ceiling in rooms 1 and 2, 

0 distance from the datum to the floor in rooms 1 and 2, 

0 density of the layers in rooms 1 and 2, 

0 temperatures of the layers in rooms 1 and 2, 

0 distance from the datum to the top of the vent, 

0 distance from the datum to the bottom of the vent, 

0 area of the vent. 

o u t  puts: 

0 mass flow rates into the layers in rooms 1 and 2, 

0 energy flow rates into the layers in rooms 1 and 2. 
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The submodel for a forced vent in MCCFM is a simplified version of that found 
in CCFM.VENTS. It is assumed that a fan is being used to move mass through the 
vent and that the supply (or exhaust) rate of the fan is not influenced by the pressure 
drop across the fan. The input-output description of the forced vent submodel is 
similar to that of the vent submodel except that the volume flow rate generated by 
the fan is added to this description, while the offset pressures and distances from 
datum to floor are removed. 

2.3 Code Structure 

MCCFM assumes that a fire starts in one or more rooms at time t = 0. The initial 
values for the solution variables are AP = 0, Y = YH, mu = 0, and m L  = P-bimtV. 
These initial values, together with the system of ODE’s described above, form an 
initial value problem. The number of ODE’s in this system is four times the number 
of rooms. MCCFM solves this initial value problem and returns approximate values 
for the solution variables and related quantities at the final time, t h d ,  and every 

As was pointed out in [l], this system of ODE’s is stiff. In general, a system is 
stiff if the phenomenon being modeled possesses multiple time scales that vary by 
several orders of magnitude. Physically, the system described here is stiff because 
the offset pressure AP adjusts to changing conditions much faster than does layer 
interface height or layer masses. Before about 1970, software for solving stiff systems 
was not generally available. Beginning with the work of Gear [6], the numerical 
solution of stiff systems has been an active area of research by numerical analysts. 
In [l] the package DEPAC was discussed. DEPAC contains three ODE solvers, one 
of which, called DEBDF, is suitable for solving stiff systems to moderate accuracy. 
DEBDF is a variable order, variable stepsize, backward differentiation formula code. 
One feature that distinguishes this code from its competitors is that it allows the 
specification of an absolute and relative error tolerance for each solution variable. 
Consequently, all variables do not have to be computed to the same accuracy. Early 
in the development of MCCFM, the decision was made to use DEBDF, since it had 
been determined that a stiff solver was required. 

The simulation time interval [0, tfinal] for MCCFM can be broken into two types of 
subintervals, stiff transient and stiff. In the stiff transient subintervals, the pressure 
offset rapidly rises to a quasi-steady state value; that is, in a fraction of a second, 
typically, the pressure offset rises to a certain value (quasi-steady state) and from 
that point on the pressure changes slowly with time until another stiff transient 
occurs. The simulation begins with a stiff transient. Each time a layer interface 
passes a vent top (or bottom) or the fire output takes a jump, a new stiff transient 
begins. Nonstiff solvers can generally integrate over the stiff transient subintervals. 
Outside of these very short time intervals, a stiff solver is required. Since there is a 
large overhead associated with switching solvers, it is more efficient to use the stiff 
solver throughout the computation. DEBDF must work especially hard to  integrate 

tprint seconds. 

9 



over the initial stiff transient. To decrease the time required to integrate the initial 
stiff transient, MCCFM changes the initial value of A P  from 0 to an approximate 
quasi-steady state value, AP,, in those cases when the initial stiff transient is over 
quickly. Here AP, is computed from a lumped one room model. This lumped 
model has a single fire which is the sum of all the fires in the full model. It has a 
single vent to the outside which has an area equal to the total area of vents to the 
outside in the full model. The density and temperature of the vented gas is taken 
to be ambient. Bernoulli's law is used to model the vent. The solution for A P  in 
this lumped model is derived in [l]. From this solution the duration of the initial 
stiff transient and AP, can be found. 

MCCFM allows the user to name his output file interactively, but otherwise 
it runs in run in batch mode. The user specifies his problem in a data file. The 
following is a sample data file for a two room case. The units used here are time in 
seconds, pressure in Pascals, distance in meters, mass in kilograms, energy rates in 
watts, and temperatures in degrees Kelvin. 

Input: 

'RELATIVE ERROR TOLERANCES FOR P , Y , WU, WL ' 
1.D-6 l.D-6 1.D-6 1.D-6 
'ABSOLUTE ERROR TOLEWINCES FOR P, Y ,  WU, WL ' 
l.D-6 1.D-6 l.D-6 1.D-6 
"UZ4B&R OF ROOMS' 
2 
'D1STAICE:FIRE TO FLOOR,CEILING TO FLOOR,DATUH TO FLO0R;FLOOR AREA,FIRE UATTAGE' 
0. 3. 0. 6. 0.1D+7 
0. 3. 0. 6. O.DO 
"UMBER OF VENTS' 
2 
'AREA,DISTANCE:DATUH TO TOP,DATW TO BOTTOH,ROOM BUWBERS ON EACH SIDE' 
1.0 1.0 0.0 1 -1 
1.0 1.0 0.0 1 2 
"UMBER OF FORCED VENTS' 
0 
'AREA,DISTANCE:DATUW TO TOP,DATUH TO BOTTOH,FLOU RATE,ROOH W E R S  
'TFINAL, TPRIIVT' 
300. 30. 
'IF .TRUE. THE JACOBIAN AID ITS EIGENVALUES UILL BE PRINTED' 
. FALSE. 

ON EACH SIDE' 

'IF LOGPRT IS .TRUE. PIASS AND ENERGY RATES THROUGH THE VEXTS UILL BE PRINTED' . FALSE. 
' 1 FOR DEBDF INTERMEDIATE HODE, ELSE 0 ' 
1 

MCCFM has the option to print the mass and energy rates through each vent 
and the eigenvalues of the Jacobian matrix computed by the ODE solver DEBDF. 
These features were helpful in an early stage of development for debugging the vent 
algorithm and for understanding the nature of the stiffness exhibited by the system 
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of ODE’S. 
Physical constants such as specific heats and the universal gas constant are stored 

in a block data subprogram. Before calling the ODE solver, the program unit MAIN 
in MCCFM reads the data file, and then sets solution variable tolerances, computes 
AP,, computes solution variable normalizations, sets initial values for the solution 
variables, and writes out a summary of the configuration. In MCCFM the solution 
variables are nondimensionalized by dividing by the normalizations. The pressure 
offset, AP,  is normalized by AP-, the upper layer height, Y ,  is normalized by the 
height of the ceiling above the floor, YH, and the upper and lower layer masses, mu 
and r n ~ ,  are normalized by the initial mass of air in the room. Next, MAIN calls 
the ODE solver once for each time at which output is requested. 

The output corresponding to the sample data file above follows. 

output: 

SOLVER = DEBDF 

G = 9.8 CP = 1000.0 R = 285.7 GAMMA = 1.4 
PDATUM = 101325.0 
AMBIENT DENSITY = 1.20000 AMBIENT TEMP = 295.53 
LAMDAR = .35 LAMIAT = .60 
TFINAL = 300.00 TPRINT = 30.00 
PRESSURE TRANS TIME = 1.0399791766053D-03 
IGNORING INITIAL PRESSURE TRANSIENT 

ROOH DELTA YH FH AREA QDTFIR 
1 0.00000 3.00000 0.00000 6.00000 O.lOD+07 
2 0.00000 3.00000 0.00000 6.00000 O.OOD+OO 

VENT AVENT HVTOP HVBOT FROM TO 
1 1.00000 1.00000 0.00000 1 -1 
2 1.00000 1.00000 0.00000 1 2 

FVENT VDOT HFVTOP HFVBOT FROM TO 

RELERR = 

ABSERR = 
0.1OOOD-05 0.1000D-05 0.1000D-05 0.1000D-05 

0.1000D-05 0.1000D-05 0.1000D-05 0.1OOOD-05 

T I E  TO FIRST CALL OF DEBDF = 1.9999999552965D-02 

ROOH TIME PRESSURE LAYER HASSU HASSL RHOU RHOL TEMPU TEMPL 
1 30.00 0.2112E+00 0.64 3.73 4.64 0.2641 1.2000 1342.70 295.54 
2 30.00 0.9763E+00 1.01 4.61 7.28 0.3860 1.2000 918.84 295.54 

FLAG IDID = -1 
ROOM TIME PRESSURE LAYER HASSU HASSL RHOU M O L  TEMPU TEMPL 
1 60.00 -0.7432E+00 0.59 2.75 3.66 0.1903 1.0261 1863.72 345.62 
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2 60.00 

ROOM TIWE 
1 90.00 
2 90.00 

ROOH TIME 
1 120.00 
2 120.00 

ROOH TIHE 
1 150.00 
2 150.00 

ROOH TIHE 
1 180.00 
2 180.00 

ROOH TIME 
1 210.00 
2 210.00 

ROOH TIME 
1 240.00 
2 240.00 

ROOH TIME 
1 270.00 
2 270.00 

ROOH TIWE 
1 300.00 
2 300.00 

CALL 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

ITERS 
420 
193 
19 
20 
35 
14 
8 
18 
6 
12 

-0.4392EWO 0.51 

PRESSURE LAYER 
-0.8216E+O0 0.60 
-0.658lE+OO 0.54 

PRESSURE LAYER 
-0.7693EMO 0.60 
-0.7080E+O0 0.56 

PRESSURE LAYER 
-0.6903€+00 0.59 
-0.6991E+OO 0.57 

PRESSURE LAYER 
-0.6084E+00 0.59 
-0.6696E+O0 0.58 

PRESSURE LAYER 
-0.5367E+00 0.58 
-0.6214E+00 0.58 

PRESSURE LAYER 
-0.4733E+00 0.58 
-0.5648E+00 0.58 

PRESSURE LAYER 
-0.4173S+OO 0.57 
-0.5078E+00 0.58 

PRESSURE LAYER 
-0.3689E+00 0.57 
-0.4549E+00 0.57 

4.96 

HASSU 
2.62 
4.42 

HASSU 
2.61 
4.00 

HASSU 
2.62 
3.70 

HASSU 
2.63 
3.48 

MASSU 
2.64 
3.33 

HASSU 
2.65 
3.22 

HASSU 
2.66 
3.13 

HASSU 
2.67 
3.07 

TIME TO FIIISH = 

TIHE 
0.580 
0.350 
0.030 
0.030 
0.100 
0 020 
0.010 
0.050 
0.000 
0.020 

ACCUn TIHE 
0.580 
0.930 
0.960 
0.990 
1.090 
1.110 
1.120 
1.170 
1.170 
1.190 

1.2799999620765 

3.49 0.3316 1.1452 1069.57 309.67 

HASSL RHOU RIIOL TEHPU TEHPL 
3.65 0.1819 1.0094 1949.20 351.34 
3.50 0.2998 1.0704 1182.98 331.30 

HASSL RHOU M O L  TEHPU TEHPL 
3.68 0.1810 1.0255 1959.82 345.82 
3.54 0.2739 1.0479 1294.89 338.43 

HASSL RHOU M O L  TEHPU TEHPL 
3.72 0.1810 1.0479 1959.29 338.41 
3.60 0.2542 1.0449 1395.31 339.39 

HASSL RHOU RHOL TplpU TEWL 
3.76 0.1814 1.0706 1954.49 331.24 
3.64 0.2397 1.0492 1479.39 338.01 

HASSL RHOU RHOL TEHPU TEWPL 
3.80 0.1819 1.0901 1949.22 325.33 
3.68 0.2291 1.0603 1547.69 334.46 

HASSL RHOU RHOL TEMPU TEHPL 
3.83 0.1824 1.1069 1944.02 320.38 
3.72 0.2212 1.0747 1603.05 329.99 

HASSL RHOU RHOL T m U  TEHPL 
3.86 0.1829 1.1216 1939.00 316.20 
3.76 0.2152 1.0895 1648.00 325.49 

HASSL RHOU M O L  TEHPU TEHPL 
3.88 0.1833 1.1343 1934.42 312.66 
3.80 0.2105 1.1036 1684.63 321.33 

The system of ODE'S can be written in the standard form 
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Read data file 
Set tolerances 
Compute quasi-steady pressure 
Compute normalizations 
Set initial values for solution variables 
Write out confguration 

1 
Set t = O  

While (t < f e d  do 

Compute the solution variables 
Compute and print the physical variables 
t = t + tpna 

Figure 4: MCCFM Structure 

where y and F are N-vector functions with N equal to four times the number of 
rooms. The components of y are the normalized solution variables for each room. 
The function F in equation (7) is defined in the subroutine F. Subroutine F begins 
with a loop which, for each room, computes values of all the variables using the 
current values of the normalized solution variables. Next, subroutine F executes 
a loop which, for each vent, computes the mass and energy transfer rates for the 
adjoining rooms. This is followed by a similar loop over the forced vents. Subroutine 
F ends with a loop which, for each room, computes the right hand sides €or the four 
ODE’S associated with the room. Inside the vent loop is a call to a subroutine 
VENT and inside the forced vent loop is a call to a subroutine FVENT. Coded in 
subroutines VENT and FVENT are the natural and forced vent submodels (see [2]). 
Figure 4 illustrates the structure of MCCMF. 

3 CONRADl: Adding Conduction and Radiation to 
MCCFM 

In this section we examine the zone fire modeling code CONRAD1 which is MCCFM 
with the addition of two new submodels, one for energy transfer by heat conduction 
in ceilings, walls, and floors, and one for energy transfer by radiation. The codes 
CONRAD1 and CONRAD2 were developed as part of the second year of the grant. 
CONRAD2 is described in the next section. The goal for the second year of the grant 
was to incorporate into MCCFM the best available numerical methods for modeling 
heat conduction. Some of the technology used in CONRAD1 and CONRAD2 will 
likely be included in future updates of the NIST zone fire modeling code CFAST 
(see [71). 
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CONRAD1 is a benchmark code which attempts to model heat conduction as 
accurately as possible. CONRAD2 trades off accuracy for speed; that is, it produces 
output that is nearly as accurate as that of CONRAD1, but its execution time is 
much faster. The goal of this project was to put the best available numerical meth- 
ods into CONRAD1 and then to invent new methods for CONRAD2. CONRAD1 
was constructed for comparison purposes; that is, it has been used to establish 
the accuracy of CONRAD2. CONRAD1 and CONRAD2 use the same radiation 
submodel. 

CONRAD1 divides the interior surfaces of a room into four heat conduction 
nodes a ceiling node, an upper wall node, a lower wall node, and a floor node. The 
wall nodes join at the interface between the upper and lower layers. Consequently, 
the areas of the waU nodes are functions of time. Heat conduction through these 
nodes is taken to be one dimensional in the direction perpendicular to the node 
surfaces. Each node has an interior surface and an exterior surface. It is a sim- 
plifying assumption of CONRAD1 and CONRAD2 that the exterior node surfaces 
transfer heat to ambient. The temperature profile through a node is modeled using 
the one dimensional heat equation. Initially, the temperature profile in each node is 
taken to be constant at the ambient temperature. The boundary conditions specify 
the interior and exterior heat fluxes. These boundary conditions are of the form 
heat flux in equals heat flux out and are completely general. Any available model 
for heat flux at the interior and exterior node surfaces can be used. The approach 
used here has been to consider these fluxes as the sum of a convective term and 
a radiative term. In the early stages of the development of CONRAD1, radiative 
heat flux was modeled using a simple temperature to the fourth power model. This 
radiation model was later replaced by a four wall model due to Dr. Glenn Forney 
documented in [8]. The convection model used here is a simple flux proportion to 
temperature difference model. The proportionality constant is taken to be indepen- 
dent of temperature. Again, it should be emphasized that any available models for 
convection and radiation can be substituted here. 

For each conduction node there is an initial-boundary value problem for the 
heat equation which is coupled with the the ODE’S of MCCFM. For the ceiling 
conduction node, the equations are 

- au 
at 
- -  

u(2,O) = 
d U  

-Az(O,t)  = 
d U  

- H s ( W , t )  = 

( Z , t ) ,  O < Z < W , t > O  
H a2u 

cpp ax2 
-- 

where u(x,t) denotes the temperature at a distance z into the ceiling at time t and 
T-t, denotes the ambient temperature. The term Srd denotes the radiation flux 
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t Fe, convect t Fe,raci 

t Fi, convect t Fi, rad 

Energy Rate Terms 
Upper Layer: 

-AFi, comect 4- Qradiative absorption 

A = Ceiling Area, F = Heat Flux 

Figure 5: Ceiling and Upper Layer Heat Transfer 

into the interior ceiling surface and Tu denotes the temperature of the upper layer. 
The remaining symbols in these formulas are physical constants: H ,  C, and p denote 
the thermal conductivity, the specific heat, and the density of the ceiling material; H; 
and He denote the convective heat transfer coefficients for the interior and exterior 
ceiling surfaces; ce denotes the effective emittance of the exterior ceiling surface; 
and o denotes the Stefan-Boltzmann constant. The four basic ODE’s of MCCFM, 
equations (1)-(4), are coupled to the above initial-boundary value problem by the 
presence of the variable Tu in the convective term of the boundary condition (10) and 
through the radiation term Sr4 in equation (10). In addition, the energy transfer 
rate &J now must have a term -AH;(Tj(t)  - u(0,t))  to account for the transfer of 
energy to the interior ceiling surface via convection and a term to account for the 
transfer of energy to the upper layer gas due to absorption of radiant energy. These 
heat transfer terms are illustrated in Figure 5. 

For each room the four basic equations of MCCFM together with the equa- 
tions for the four heat conduction nodes yields a system of four ODE’s, each with 
an initial condition, plus four partial differential equations (PDE’s), each’ with an 
initial condition and two boundary conditions. The method of lines (MOL) was 
chosen to convert the PDE’s into ODE’s. The result is an initial value problem 
for a differential-algebraic equation (DAE) system. If each heat conduction node 
generates K ODE’s via the method of lines, then the total number of DAE’s to 
be solved is 4 + 4(K + 2) times the number of rooms since each conduction node 
contributes K ODE’s and 2 boundary conditions (algebraic equations). 

For a parabolic equation such as the heat equation, the standard MOL approach 
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is to discretize the spatial variable either by replacing the spatial derivatives by 
finite difference approximations, or by expanding the unknown function as a linear 
combination of spatial basis functions with time dependent coefficients and deriving 
the ODE’S via collocation. CONRAD1 uses the second approach and CONRAD2, 
the first. The MOL generally produces a stiff system. Although this method was 
proposed many years before, it was not until the advent of stiff ODE solvers in the 
1970’s that implementation of this method was practical. We quote the authors of 
[9] on the advantages of the MOL. 

“There are two important advantages to the MOL approach. First, it 
is computationally efficient. The ODE software takes on the burden of 
time discretization and of choosing the time steps in a way that maintains 
accuracy and stability in the evolving solution. Most production ODE 
software is written to be robust and computationally efficient. Also, the 
person using a MOL approach has only to be concerned with discretizing 
spatial derivatives, thus reducing the work required to write a computer 
program.’’ 

3.1 MOL, the Piecewise Cubic Hermite Collocation Approach 

It is a well-known result in approximation theory that a function possessing four con- 
tinuous derivatives on a closed, finite interval can be approximated to fourth order 
accuracy using piecewise cubic Hermite interpolation. This method of interpolation 
matches the function and its first derivative at a set of breakpoints. Between the 
breakpoints, the function is approximated by a cubic polynomial. The resulting 
approximation has a continuous first derivative (see [lo]). CONRAD1 expands the 
temperature profile through a conduction node in the form (illustrated again with 
the ceiling node) 

nr 

i=l 
u(x, t )  = C[. i ( t )4i (X)  + bi(t)+i(X)] 

where 4; and ?,b; denote the standard basis functions for piecewise cubic Hermite 
interpolation with breakpoints 0 = x1 < . . . < xnt = W .  Next, 2nx - 2 ODE’s for 
the 2nx unknown coefficients, ai(t), b;(t), i = 1,. . . , n,, can be derived by requiring 
that the heat equation be satisfied at the following two Gaussian points in each 
subinterval: 

The boundary conditions (10) and (11) provide two additional algebraic equations. 
When the boundary conditions can be easily differentiated with respect to time, they 
can be converted into ODE’s. This discretization method leads to 272, differential 
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equations where n, is the number of breakpoints. These equations have the form 

where A and B are 2nx x 2nx matrices and A is nonsingular. For n, = 4, the vectors 
y and F have the form 

Y' , F =  

and the matrices A and B have the form 

A =  

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

+3(P3) 

+3(P4) 

?b3(P5) 

"3 (P6 ) 

0 
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and 

B =  

In the earliest stage of CONRAD1 development, the radiation terms in equations 
(10) and (11) were either missing or the radiation term in (10) was similar to that 
in (11). Consequently, these equations could be differentiated with respect to time 
analyticdy. The required expression for 2’6 was obtained by differentiating the 
ideal gas law and substituting equations (1)-(3). The ODE solver DDRIV2, due to 
Kahanner [lo], was used to solve the full set of ODE’s. The number of ODE’s in the 
fd system was 4 + 872, times the number of rooms in case each conduction node 
used n, breakpoints. The solver DEBDF used in MCCFM was no longer applicable 
because DEBDF only handles systems of the form yt = F(t ,  y), while this system has 
the form A(t ,  y(t))yt = F(t ,  9). DDRIV2 handled this stiff system without difficulty. 

When the radiation submodel of Dr. Glenn Forney [8] was incorporated, the 
analytic differentiation of the boundary conditions was no longer possible because 
the radiation term, Srd, in boundary condition (10) is an implicitly defined, com- 
plex, nonlinear function of the variables P, Y, mu, and mL and the interior surface 
temperatures of the four conduction nodes. Now there was no choice but to leave 
the boundary conditions as algebraic equations. The resulting DAE system consists 
of 2n, - 2 ODE’s and two algebraic equations for each conduction node. The full 
set of equations consists of 872, - 4 ODE’s plus eight algebraic equations per room 
in case all four conduction nodes use n, breakpoints. 

The DAE solver DASSL by Dr. Linda Petzold [9, 111 was chosen for use in 
CONRAD1 and CONRAD2. It is the most widely used production code for DAE’s 
at this time. Like DEBDF, DASSL is based on backward differentiation methods. 
It also has a user interface similar to that of DEBDF which includes specification 
of a relative error tolerance for each solution component. 

The following brief description of DASSL is taken from [9]. DASSL is a code for 
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solving systems of DAE’s of the form 

where F, y, and y‘ are N-dimensional vectors. The basic idea for solving DAE 
systems using numerical ODE methods, originating with Gear [12], is to  replace the 
derivative in (14) by a difference approximation, and then to solve the resulting sys- 
tem for the solution at the current time tn+l using Newton’s method. For example, 
replacing the derivative in (14) by the first order backward difference, we obtain the 
implicit Euler formula 

where h,+l = tn+l - tn. This nonlinear system is then usually solved using some 
variant of Newton’s method. The algorithms used in DASSL are an extension of this 
basic idea. Instead of always using the first order formula (17), DASSL approximates 
the derivative using the kth order backward differentiation formula, where k ranges 
from one to five. At every step it chooses the order k and the stepsize &+I, based 
on the behavior of the solution. DASSL can solve index zero and one systems. The 
index of the DAE system (14) is the minimum number of times that all or part of 
this system must be differentiated with respect to t in order to determine y‘ as a 
continuous function of y and t .  

3.2 A Graded Spatial Mesh 
The MOL chooses the time discretization to maintain accuracy and stability, but 
the user must choose the spatial discretization. For a uniform mesh with spacing h, 
piecewise cubic Hermite approximation of the temperature profile is possible with 
accuracy of order h4. During the first seconds of a fire simulation, conduction node 
temperature profiles typically have steep gradients near the interior node surfaces. 
Consequently, uniform meshes are not efficient. Again, quoting from [ll] 

“In many applications, such as combustion modeling, the use of a fixed 
spatial mesh leads either to poor accuracy or to a fine mesh and large 
computational effort. One way to circumvent this difficulty is to let the 
mesh points change with the time t.” 

There was not sufficient time during the development of CONRAD1 and CONRAD2 
to research in depth the topic of moving meshes. It is clear that this is a currently 
active topic of research in several quarters (see [13, 14, 151). What was developed 
for CONRAD1 is a graded mesh scheme with the grading dependent on the final 
simulation time t h d .  This graded mesh is roughly optimized for the case when the 
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Figure 6: Ceiling Temperature Profiles 

fire energy release rate takes a step jump at t = 0 and then is constant thereafter. In 
this case, the steepest temperature gradients occur near the interior surfaces of the 
conduction nodes. As the simulation evolves, these temperatures profiles tend to 
flatten out. Figure 6 shows the ceiling temperature profiles at various times during 
a one room simulation. The room is 3 m long, 2 m wide, 3 m high and contains 
a 1 Mw fire on the floor. It has a single 1 m2 vent to the outside. All conduction 
nodes are made from gypsum and the radiation submodel of Dr. Glenn Forney is 
used. The simulation runs for 2 minutes. 

The general qualitative features of these profiles are exhibited by the semi-infinite 
(0 < 2 < 00) rod solution to the heat equation: 

in case the u(0,t) = ul, a constant, and the initid temperature is T-b. Here 
CY = and erfc denotes the complementary error function. Using this solution 
as a guide, the following graded mesh algorithm was developed to accommodate 
both short times and times near t h d  using It, 2 3 breakpoints. It is impossible 
for a single, fixed mesh to be optimum for all times 0 < t < t m .  If the warning 
message at the beginning of the following algorithm is activated, the user should 
adjust the value of tp&t or thd  as indicated to get the best results. 

Graded mesh algorithm: 
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write ‘For best results tprint > thd /30 ’  

endif 

2 1  = 0 

x2 = xp 

else 

2 2  = x p  

For i = 3 ,  ..., n,-2 

endif 

For a fixed time t > 0, the heat equation solution in (18) flattens out for x > 
X ( t )  = 2afierfc(.05). To resolve the temperature profile at this time, a breakpoint 
should be placed near X ( t ) .  Two of the breakpoints are generated this way. The 
breakpoint 2 2  is the minimum of X(tprint) and 7 with the xb term required to 
provide short time accuracy when tpfint is not sufficiently small. The breakpoint 
xn,,1 is the minimum of X(t,d) and F. By the time X ( t )  has reached the ceiling 
midpoint, y ,  the temperature profile for x > is linear enough so that breakpoints 
at and W suffice. 

3.3 Code Structure 

The program unit MAIN of CONRAD1 begins by reading in a data file with the 
following structure. 

Input: 
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'RELATIVE ERROR TOLERMDCES FOR P, Y, MJ, HL, PODETMP' 
1.D-6 1.D-6 1.D-6 l.D-6 l.D-2 1.D-2 
'ABSOLUTE ERROR TOLERAPCES FOR P, Y, HU, HL, BODEl" ' 
1.D-6 1.D-6 1.D-6 1.D-6 O.DO O.DO 
'HUMBER OF ROOHS' 
2 
'FIRE UATTS,DIH:DA"UH TO FLOOR,XR00H,YROOH,WMOH,GXFIRE,GYFIRE,GZFIRE~ 
' FOLLOW BY RADIATIOP ,BODES, CODES (OilauLL, l=COPCRETE ,2=GYPSUH, 34tAOUOOL) ' 
0.1D+7 0. 3. 2. 3. 1. 1. 0. 
.TRUE. 4 2 2 2 2 
O.DO 0. 3. 2. 3. 1. 1. 0. 
.TRUE. 4 2 2 2 2 
'IUUMBER OF VENTS' 
2 
'AREA, DIS: DATUH 
1.0 1.0 0.0 1 
1.0 1.0 0.0 1 
"UMBER OF FORCED 
0 
'AREA, DIS: DATU?! 
'TFINAL, TPRIIPT' 
300. 30. 
'LOGICAL, TS, TF: 
.FALSE. 0.0 0.5 

t 

TO TOP , D A W  TO 
-1 
2 
VENTS ' 

TO TOP,DATUn TO 

BOTTOH ,ROOH HUMBERS 

VENT,FLOU RATE,ROOH 

ON EACH SIDE' 

BIUMBERS OM EACH SIDE' 

DIAGHOSTICS AT INTEWEDIATE STEPS IN INTERVAL ITS, TF]' 

"UHBER OF BREAKPOINTS NX' 
5 

As was the case with MCCFM, the user's primary means of communication 
with CONRAD1 is through this data file. The code does, however, interactively 
request that the user supply the name for the output file. The user must also 
supply information for each room in the data fde. A logical is used to indicate 
whether the radiation submodel should be used in a room. An integer is used to 
indicate, the number of conduction nodes to'be used in a room. Currently, only two 
values are accepted as input, 0 and 4. The value 0 indicates that the conduction 
submodel should not be used in the room. For each room the supported cases are 
four node conduction plus radiation; four node conduction without radiation; and 
no conduction, no radiation (defaults to MCCFM). This flexibility is provided so 
that a user can activate the conduction and radiation submodels in the room of fire 
origin and possibly in nearby rooms, yet turn them off in rooms that are not close 
to the room of fire origin. 

The user must specify a material code for each conduction node. Currently, 
four values are accepted by the code. The value 0 indicates a null material with 
zero convective heat transfer coefficient and zero emissivity, while values of 1, 2, 
and 3 indicate the materials concrete, gypsum, and kaowool, respectively. Although 
CONRAD1 includes DAE equations for a node consisting of null material, no heat is 
transferred to or from such a node. By using null conduction materials, conduction 
nodes can be inactivated selectively. 

A logical followed by the limits of a time interval are provided to turn on di- 
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agnostic output during the indicated time interval. This is provided primarily for 
debugging purposes and was used in the early stages of development. The same 
number of breakpoints is used for all heat conduction nodes because early numeri- 
cal experiments indicated no special advantage to having greater flexibility. 

After reading the data file, MAIN processes the description of the conduction 
nodes and sets up arrays containing the appropriate physical constants for each 
material. Next, for each different type of material, the breakpoints and collocation 
points are generated and the matrices A and B in (12) and (13) are computed. 
These matrices will later be used to construct the full set of differential equations ' 

for each room. MAIN then continues by computing tolerances, normalizations, 
and initial values for the solution variables in each room. After printing out the 
configuration, MAIN produces output every tpsnt seconds by placing calls to the 
DAE solver DASSL in a loop. The output corresponding to the above data file 
follows. 

output: 

NRMNODE = 0 -- NULL 
NRMNODE = 1 -- CONCRETE 
NRMNODE = 2 -- GYPSUM 
NRMNODE = 3 -- KAOUOOL 
NODE = 1 -- CEILING 
NODE = 2 -- WALL 
NODE = 3 -- LUALL 
NODE = 4 -- FLOOR 
MATERIALS USED 
MT BK H CCP RHOU THUALL EPO EPI CHT HCI HCO 
2 5 0.16 900. 800. 0.0160 0.90 0.90 0.222D-06 30.0 5.0 

ABSORPTION COEFFICIENT FOR UPPER LAYER = 
ABSORPTION COEFFICIENT FOR LOUER LAYER = 

1.0000000000000D-01 
1.0000000000000D-02 

NEQN = 88 

RTOL = 

ATOL = 
0.1000D-05 0.1000D-05 0.1000D-05 0.1000D-05 0.1000D-01 

0.1000D-05 0.1000D-05 0.1000D-05 0.1000D-05 0.0000D+OO 

SOLVER = DASSL 

G = 9.8 CP = 1000.0 R = 285.7 GAPMA = 1.4 
PDATUn = 101325.0 
AMBIENT DENSITY = 1.20000 AMBIENT T W  = 295.53 
LAMDAR = .35 LAMDAT = .60 
TFINAL = 300.00 TPRINT = 30.00 
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PRESSURE TRAMS TIM3 = 1.6899661619836D-03 
IGNORIBG INITIAL PRESSURE TRANSIEIJT 

ROOM FH XROOH YROOH ZROOH GXFIRE GYFIR€ GZFIRE QDTFIR 
1 0.000 3.000 2.000 3.000 1.000 1.000 0.000 O.lOD+O7 
2 0.000 3.000 2.000 3.000 1.000 1.000 0.000 O.OOD+OO 

ROOH RADIATION BODES HATERIALS 
1 T 4 2 2 2 2  
2 T 4 2 2 2 2  

VEMT AVENT HVTOP HVBOT FROH TO 
1 1.00000 1.00000 0.00000 1 -1 
2 1.00000 1.00000 0.00000 1 2 

FICTIOUS LAYER THICKNESS, NORHALIZED = 1.0000000000000D-05 

TIHE TO FIRST CALL OF DASSL = 5.9999998658895D-02 

ROOH TIHE PRESSURE LAYER HASSU HASSL RHOU RHOL TEWPU TEHPL 
1 30.00 -0.3566EMO 0.72 5.69 4.80 0.4155 1.1119 853.55 318.93 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
525.77 531.03 344.74 366.81 
295.64 295.64 295.55 295.56 

ROOM TIHE PRESSURE LAYER HASSU HASSL WOU RHOL TEMPU TEHPL 
2 30.00 0.1465E+00 1.85 5.02 13.29 0.7283 1.1961 486.97 296.50 
INTERIOR NODE TWERATURES, THEN EXTERIOR 
364.84 366.27 297.45 297.50 
295.57 295.57 295.53 295.53 

ROOM TIHE PRESSURE LAYER HASSU HASSL RHOU RHOL TEHPU TEMPL 
1 60.00 -0.682OE+OO 0.73 5.28 4.55 0.3876 1.0391 915.06 341.28 
INTERIOR MODE TEHPERATURES, THEN EXTERIOR 
626.55 632.81 388.97 422.72 
296.09 296.10 295.65 295.71 

ROOH TIHE PRESSURE LAYER HASSU HASSL RHOU M O L  TEMPU TEHPL 
2 60.00 -0.3580E-01 0.74 10.47 5.21 0.7723 1.1719 459.17 302.61 
IBTERIOR NODE TEMPERATURES, THEN EXTERIOR 
377.06 377.89 301.39 302.58 
295.69 295.69 295.54 295.54 

ROOM TIWE PRESSURE LAYER HASSU HASSL RHOU RHOL T m U  TEHPL 
1 90.00 -0.1146E+01 0.72 5.03 4.05 0.3669 0.9407 966.47 377.00 
INTERIOR NODE TEHPERATURES, THEN EXTERIOR 
699.15 705.45 440.18 483.63 
298.54 298.60 296.18 296.50 

ROOH TIHE PRESSURE LAYER HASSU HASSL RHOU RHOL TEHPU TEMPL 
2 90.00 -0.7623E+OO 0.31 13.53 2.08 0.8376 1.1277 423.39 314.46 
IBTERIOR NODE TEMPERATURES, THEN EXTERIOR 
373.10 373.50 307.11 309.50 
296.41 296.43 295.56 295.56 
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ROOM TIME PRESSURE LAYER HASSU KASSL RHOU RHOL TEWU TEMPL 
1 120.00 -0.1396E+Ol 0.74 4.79 3.90 0.3535 0.8761 1003.18 404.77 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
753.67 759.81 489.90 538.72 
305.01 305.21 297.79 298.77 

ROOM TIME PRESSURE LAYER HASSU USSL RHOU RHOL TEMPU T W L  
2 120.00 -O.llSlE+Ol 0.12 14.63 0.82 0.8468 1.1262 418.77 314.88 
INTERIOR NODE TFHPERATURES, THEN EXTERIOR 
372.63 372.85 310.29 313.44 
298.18 298.23 295.64 295.66 

ROOM TIME PRESSURE LAYER HASSU HASSL RHOU RHOL TEWPU TEMPL 
1 150.00 -0.1589E+Ol 0.76 4.61 3.78 0.3434 0.8282 1032.69 428.19 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
797.11 803.04 536.37 587.53 
315.40 315.79 300.90 302.95 

ROOM TIME PRESSURE LAYER MASSU MASSL RHOU RHOL TEWPU TEMPL 
2 150.00 -O.l426E+Ol 0.03 14.92 0.23 0.8383 1.1227 423.02 315.86 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
375.68 375.81 312.37 316.21 
300.67 300.75 295.85 295.90 

ROOM TIME PRESSURE LAYER MASSU HASSL RHOU RHOL TEMPU TEMPL 
1 180.00 -0.1736E+Ol 0.77 4.48 3.67 0.3354 0.7920 1057.34 447.77 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
833.27 838.97 579.57 631.19 
328.71 329.30 305.71 309.17 

ROOM TIME PRESSURE LAYER USSU HASSL RHOU RHOL TEMPU TEMPL 
2 180.00 -0.1527E+Ol 0.01 14.88 0.04 0.8282 1.1097 428.18 319.58 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
379.85 379.93 315.31 319.70 
303.42 303.52 296.20 296.33 

ROOM TIME PRESSURE LAYER MASSU HASSL RHOU RHOL TEWPU TEMPL 
1 210.00 -0.1851E+Ol 0.78 4.38 3.58 0.3287 0.7631 1078.79 464.70 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
864.38 869.86 619.39 670.27 
343.82 344.61 312.20 317.27 

ROOM TIME PRESSURE LAYER HASSU HASSL RHOU RHOL TEMPU TEMPL 
2 210.00 -0.1574E+01 0.00 14.71 0.00 0.8175 1.0980 433.81 322.98 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
384.47 384.52 318.32 323.16 
306.17 306.28 296.69 296.92 

ROOM TIME PRESSURE LAYER HASSU HASSL RHOU RHOL T W U  TEMPL 
1 240.00 -0.1946E+01 0.79 4.29 3.50 0.3230 0.7389 1098.00 479.94 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
891.90 897.17 656.16 705.61 
359.76 360.72 320.20 326.89 

ROOM TIME PRESSURE LAYER MASSU MASSL RHOU RHOL TEWU TEMPL 
2 240.00 -0.161OE+Ol 0.00 14.52 0.00 0.8069 1.1095 439.51 319.64 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
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389.29 389.31 321.37 326.63 
308.86 308.97 297.28 297.64 

ROOM TIME PRESSURE LAYER HASSU HASSL RHOU RHOL TMPU TEWPL 
1 270.00 -0.2028EMl 0.79 4.21 3.42 0.3179 0.7179 1115.57 493.97 
INTERIOR BODE TEHPERATURES, THEN EXTERIOR 
916.74 921.83 690.22 737.92 
375.80 376.89 329.43 337.66 

ROOH TIME PRESSURE LAYER HASSU HASSL RHOU RHOL TEWU TEMPL 
2 270.00 -0.1644EMl 0.00 14.34 0.00 0.7967 1.0741 445.12 330.17 
INTERIOR DIODE TEFPERATWES, THEN EXTERIOR 
394.17 394.18 324.53 330.19 
311.47 311.58 297.95 298.46 

ROOH TIME PRESSURE LAYER HASSU HASSL RHOU MOL TEWPU TEMPL 
1 300.00 -0.2099E+01 0.80 4.14 3.35 0.3133 0.6994 1131.90 507.05 
INTERIOR NODE TEHPERATURES, THEW EXTERIOR 
939.57 944.49 721.95 767.75 
391.43 392.62 339.59 349.18 

ROOM TIHE PRESSURE LAYER HASSU HASSL RHOU RHOL TEHPU TEHPL 
2 300.00 -0.1677EMl 0.00 14.17 0.00 0.7870 1.0626 450.61 333.74 
INTERIOR BODE TEMPERATURES, THEN EXTERIOR 
399.05 399.04 327.70 333.77 
314.02 314.13 298.71 299.38 

CALL ITERS 
1 413 
2 27 
3 49 
4 39 
5 27 
6 24 
7 19 
8 17 
9 35 
10 7 

TIHE ACCUH TIHE 
41.970 41.970 
3.890 45.860 
4.340 50.200 
1.240 51.440 
2.510 53.950 
1.090 55.040 
1.030 56.070 
1.570 57.640 
8.540 66.180 
0.400 66.580 

TIME TO FINISH = 66.740000914782 

Subroutine F in CONRAD1 defines the DAE system in the form of equation 
(14). Each equation in the system is in residual form; that is, its right hand side is 
zero. The organization of this subroutine is the same as that for MCCFM: a loop 
over the rooms to compute current values for all variables in terms of the current 
values for the solution variables, a loop over the vents to accumulate vent mass and 
energy flow rates for each room, a loop over the forced vents to accumulate forced 
vent mass and energy flow rates for each room, and a loop over the rooms to define 
the DAE's for each room. Inside this last loop is a call to subroutine RAD4 which 
contains the radiation submodel. If conduction is turned on in a room, then there 
are 4 + 872, unknowns for this room which are the normalized offset pressure, the 
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normalized layer interface height, the normalized upper layer mass, the normalized 
lower layer mass, and for each of the four conduction nodes the values of temperature 
and temperature gradient at the n, breakpoints. The corresponding DAE equation 
set consists of the following 4 + 8n, equations: 

0 an ODE for normalized offset pressure (MCCFM), 

0 an ODE for normalized layer interface height (MCCFM), 

0 an ODE for normalized upper layer mass (MCCFM), 

0 an ODE for normalized lower layer mass (MCCFM), 

0 an algebraic boundary condition at the interior ceiling node surface, 

0 2n, - 2 ODE’s generated by collocation, 

0 an algebraic boundary condition at the exterior ceiling node surface, 

0 an algebraic boundary condition at the interior upper wall node surface, 

0 272, - 2 ODE’S generated by collocation, 

0 an algebraic boundary condition at the exterior upper wall node surface, 

0 an algebraic boundary condition at the interior lower wall node surface, 

0 272, - 2 ODE’s generated by collocation, 

0 an algebraic boundary condition at the exterior lower wall node surface, 

0 an algebraic boundary condition at the interior floor node surface, 

0 272, - 2 ODE’s generated by collocation, 

0 an algebraic boundary condition at the exterior floor node surface. 

A similar set of equations is generated for each room in which conduction is turned 
on. For rooms in which conduction is turned off, only the first four ODE’s in this 
list apply. If conduction is turned on in all rooms, the total number of equations, 
neqn, in the DAE system is 4+8n, times the number of rooms. The implicit method 
employed by the DAE solver DASSL will solve at each time step a nonlinear system 
of neqn equations in neqn unknowns using a variant of Newton’s methods. The dom- 
inant cost for DASSL is the cost of forming a Jacobian matrix and solving a linear 
system having this Jacobian as its coefficient matrix. The cost of solving the linear 
system is proportional to nzqn. Consequently, the execution time of CONRAD1 is 
heavily influence by the number of rooms that have conduction turned on. Here is 
where an efficient use of breakpoints pays off. Using a large number of equispaced 
breakpoints per node, for example, would make the execution time of CONRAD1 
extremely long. 
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4 CONRADZ: Functional Equations for Conduction 
As mentioned in the previous section, if conduction is turned on in all rooms the 
total number of equations, neqn, in the DAE system of CONRAD1 is 4 + 8n, times 
the number of rooms. CONRAD2 reduces this number to 12 times the number of 
rooms without significant loss of accuracy. This statement is based on experiments 
with three materials: concrete, gypsum, and kaowool. The reduction in execution 
time achieved by CONRAD2 is significant and, as explained in the previous section, 
is due to the fact that the dominant cost in the computation is proportional to n&,. 

The development of a code like CONRAD2 was the goal of the second year of this 
NIST grant; however, it was not clear at the outset that a code with the features 
of CONRAD2 was theoretically possible. Success in creating CONRAD2 can be 
attributed to several factors: methodical numerical experimentation; intuition based 
on the author’s theoretical PDE training; timely discussions with Dr. Glenn Forney, 
the scientific officer for this grant; and luck. There is nothing in the original proposal 
that suggests the final form of CONRAD2; it is totally unlike anything that was 
proposed. 

Roughly, the idea is to take the initial-boundary value problem for the heat 
equation and reduce it to pair of functional equations. To explain further, consider 
the following standard problem. Find the temperature profile u(x, t )  that satisfies 

- -- A d2u(x , t ) ,  0 < z < w, t > 0 dU - -  
at c*p 8x2  

where g ,  fo, and f i  are given continuous functions. The existence and uniqueness 
theory (see [16]) for this problem shows that u(x, t )  is uniquely determined by initial 
temperature profile, g, and the time histories fo(r) and f&) for 0 5 r 5 t ;  that is, 
there is a functional relation of the form 

Also, if 0 < to < t ,  then 

In [16] the Laplace transform is used to construct the functional G. In the special case 
when the initial temperature is constant, say u(x,O) = T a b ,  the functional G can 
be written in terms of convolution integrals; with the spatial variable transformed 
so that W = 1, it follows that 
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where 6 3 ( ~ ,  t )  is a theta function which can be expressed as 

e3(x, t)  = i + 2 e-?r2k2t cos2nkx . 
k=l 

From equation (23) it follows that 

For each heat conduction node in a room, two functional equations are added to the 
system of CONRAD2. For the ceiling, these equations have the form 

The corresponding unknowns are u(0, t )  and u(W, t ) .  
The set of unknowns for CONRAD2 is then constructed as follows. For each 

room in which conduction is turned on there are 12 unknowns: the normalized offset 
pressure, the normalized layer interface height, the normalized upper layer mass, the 
normalized lower layer mass, and for each of the four conductions nodes the tempera- 
tures at the interior and exterior surfaces. The corresponding differential-functional 
equation (DFE) system for each room consists of the following 12 equations. 

0 an ODE for normalized offset pressure, 

0 an ODE for normalized layer interface height, 

0 an ODE for normalized upper layer mass, 

0 an ODE for normalized lower layer mass, 

0 a functional equation for the interior ceiling node surface, 

0 a functional equation for the exterior ceiling node surface, 

0 a functional equation for the interior upper wall node surface, 

0 a functional equation for the exterior upper wall node surface, 

0 a functional equation for the interior lower wall node surface, 
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0 a functional equation for the exterior lower wall node surface, 

0 a functiond equation for the interior floor node surface, 

0 a functional equation for the exterior floor node surface. 

4.1 Solving the Heat Equation 

We now present the methods by which the DFE system of CONRAD2 is solved. 
We have again used the DAE solver DASSL to find an approximate solution to this 
DFE system. Use of a DAE solver in this way appears to be new. 

The main detail of the implementation that needs to be explained is how the first 
terms in equations (25) and (26) are computed. The computation is performed in 
subroutine CNDUCT which is discussed below. Suppose that the DFE system has 
been integrated to time t and that the ceiling temperature profile, u(z,t), 0 5 5 5 
W ,  has been saved. Suppose that for At > 0 values for u(0, t + At) and u(W, t + At) 
are available. To compute the first terms in equations (25) and (26) at time t + At, 
the temperature profile must be advanced to time t + At and its endpoint gradients 
approximated. The theoretical basis for this approach is the property of the heat 
equation given in equation (24). 

The simplest possible methods were used to implement this part of CONRAD2 
because development time was at a premium at this point in the project, and it 
was felt that most of the available time should be spent in testing the DFE solution 
method. As in CONRAD1, we chose to use the MOL to solve the heat equation, 
but for CONRAD2 the second spatial derivative was approximated at each of the 
interior meshpoints by a centered difference formula. Again, a graded mesh with 72, 

breakpoints was used. This implementation of the MOL produces a system of n, - 2 
ODE’s for the 72,-2 unknown temperatures at the interior breakpoints. This system 
of ODE’s was solved by the backward Euler method. Generally, this procedure leads 
to an nonlinear equation implicitly relating the solution at time t to the solution 
at time t + At, but because the heat equation is linear, the equation relating the 
solution at time t + At and the solution at time t is linear. In fact, the solution at 
time t + At can be found by solving a tridiagonal system. The temperature gradient 
at x = 0 and time t + At can be approximated by interpolating the temperature 
values at  x1 = 0, 2 2 ,  and 53 by a quadratic and then evaluating the derivative 
of the quadratic at 2 = 0. A similar procedure can be used to approximate the 
temperature gradient at x = W and time t + At. The only parameter left to choose 
here is the time stepsize At. 

Once the DAE solver DASSL has integrated forward in time to the time t and 
has chosen the stepsize k for its next time step, it predicts values for the solution 
variables at time t+k and then homes in on the true values of these solution variables 
by generating successive Newton iterates; that is, DASSL advances the solution to 
time t + k by solving a nonlinear system of equations. After some experimentation, 
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which will be discussed in the next section, the choice At = k was made. This means 
that the time stepsize for the heat equation solver was chosen to  be the same as 
the time stepsize used by DASSL. The values u(0,t  + k )  and u(W,t + k )  mentioned 
above are generated by DASSL as part of the Newton iteration. 

The graded mesh scheme used here normalizes all conduction node thicknesses 
to one. The xb in the following description is the same as in CONRAD1 except 
that it has been normalized. Twenty percent of the breakpoints are to the right 
of xb.  The breakpoints tend to cluster near 0 and 1 which allows for the accurate 
approximation of temperature profiles which have steep temperatures gradients near 
the node surfaces ( x  = 0 and 2 = 1). 

Graded mesh algorithm: 

nl = int( .2n,) 

, -51 
min[ 2 a G  erfc( .05) 

W xb = 

1 
nZ-nl - l  W =  

For i = 1, . . . , n, - n1 - 1 

x i  = ~ b [ ( i  - 1)wI2 

1 w = -  
711 

For i=  1, ..., nl 

xnz-nl+l  = 1 - (1 - x b ) [ ( i  - 1)U1l2 

The temperature profile in a conduction node at time t + k is found from the 
temperature profile at time t by solving a tridiagonal system as follows. Let u;(t)  
denote the approximate temperature at time t and breakpoint x i ,  let h; = - x i  
denote the breakpoint spacing, and let s = #&. The tridiagonal system that 
must be solved is 

1 0  

b2 a2 c2 

bn, - 1 

Ul(t + k) 
u2(t + k) 

fo(t + k) 

un, -1 ( t  ) 

fl(t + b )  

7 
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where for i = 1,. . .,n2 - 1 

-s 
c; = 

hi(hi-1 + hi) 

The gradients at time t + k at the points x = 0 and x = W are estimated from 
quadratics passing through the first three and last three temperature values. Using 
standard divided difference notation, first terms in equations (25) and (26) at time 
t + At are computed respectively by 

4.2 Code Structure 

The organization of CONRAD2 is only a slight variation of that of CONRADl. In 
this section we will simply point out the differences. 

In program unit MAIN the breakpoints for each type of material are computed 
and stored for later use. The DFE system in residual form is again defined in 
subroutine F. The final loop of subroutine F computes the DFE’s for each room. 
Just before this final loop, the tridiagonal heat conduction matrices for each material 
are computed and factored. These matrices are dependent on the current time 
stepsize IC mentioned in the previous section and thus cannot be computed outside of 
subroutine F. It should be noted that it is only necessary to compute the breakpoints 
and heat conduction matrices for each different material and not for each heat 
conduction node. Inside the final loop of subroutine F, the gradients discussed 
in the previous section, are computed for each of the conduction nodes in a room. 
This computation requires the solution of a tridiagonal system of linear equations for 
each conduction node. Because factorizations were computed before the final loop, 
all that is required at this point is forward substitution, backward substitution, 
and gradient estimation using divided differences. Figure 7 shows the details of 
subroutine F in CONRAD2 in a block format. 

In their default configurations each conduction node in CONRAD1 contributes 
10 equations to its DAE system, while in CONRAD2 each conduction node only 
contributes 2 functional equations. Consequently, the execution time for CONRAD2 
is much less than that for CONRAD1 especially in multiple room simulations. On 
the other hand, CONRAD1 must store 5 temperatures and 5 temperature gradients 
for each conduction node, while CONRAD2 must store 20 temperatures, so the 
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Input: time t, solution variable vector y, solution variable rate vector yp I 
For each mom, compute all variables f'rom the current values of the solution variables 

For each vent, compute mass and energy rates into connected rooms 

For each forced vent, compute mass and energy rates into connected rooms 

Define and factor the heat conduction matrix for each type of material 

For each room 
compute convective heat transfer 
compute radiative heat transfer 
update the temperature profile in each conduction node 
compute equation residuals 

~ ~ ~- 

Output: equation residual vector fdelta 

Figure 7: Subroutine F Details 

memory requirements for CONRAD2 are greater. In Section 6, we discuss methods 
for reducing this memory requirement. 

A sample two room input data file and the corresponding output follow. 

Input: 

'RELATIVE ERROR TOLERANCES FOR P, Y, W U ,  ML, NODETEMP' 
l.D-6 1.D-6 l.D-6 1.D-6 1.D-2 
'ABSOLUTE ERROR TOLERANCES FOR P, Y,  MU, ML, NODETPTP' 
l.D-6 l.D-6 1.D-6 1.D-6 O.DO 
'NUMBER OF ROOMS' 
2 
'FIRE UATTS,DIM:DATUM TO FLOOR,XROOM,YROO~,ZROOH,GXFIRE,GYFIRE,GZFIRE~ 
'FOLLOUED BY RADIATION,NODES,CODES(O=NULL,l=CONCRETE,2=GYPSUn,3=KAOUOOL)' 
O.lD+7 0. 3. 2. 3. 1. I .  0 .  
.TRUE. 4 2 2 2 2 
O.DO 0. 3. 2. 3. 1. 1. 0. 
.TRUE. 4 2 2 2 2 
"UMBER OF VENTS ' 
2 
'AREA, DIS: DATUM TO TOP,DATUM TO BOTTOM,ROOM NUMBERS ON EACH SIDE' 
1.0 1.0 0.0 1 -1 
1.0 1.0 0.0 1 2 
"UMBER OF FORCED VENTS' 
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0 
' A m ,  DIS: DATUM TO TOP,DATUEI TO VEET,FLOU RATE,ROOW: FUWBERS ON EACH SIDE' 
'TFINAL, TPRIMT' 
300. 30. 
'LOGICAL, TS, TF: DIAGNOSTICS AT INTEWEDIATE STEPS IN INTERVAL ITS, TFI ' 
.FALSE. 0.0 0.5 
'NUHBER OF BREAKPOINTS I X '  
20 

output: 

NFWODE = 0 -- HULL 
NRMNODE 1 -- CONCRETE 
HRMNODE = 2 -- GYPSUn 
NRMNODE = 3 0- KAOYOOL 

NODE = 1 -- CEILING 
NODE = 2 -- WALL 
NODE = 3 -- LYALL 
NODE = 4 -- FLOOR 
MATERIALS USED 
MT BK H CCP RHOU THUALL EPO EPI CHT HCI HCO 
2 20 0.16 900. 800. 0.0160 0.90 0.90 0.222D-06 30.0 5 .0  

ABSORPTION COEFFICIENT FOR UPPER LAYER = 
ABSORPTION COEFFICIENT FOR LOUER WYER = 

1.OOOOOOOOOOOOOD-01 
1.OOOOOOOOOOOOOD-02 

NEQN = 24 

RTOL = 

ATOL = 
0.1OOOD-05 0.1000D-05 0.1000D-05 0.100OD-05 0.1000D-01 

0.1OOOD-05 0.1000D-05 0.1000D-05 0.1OOOD-05 0.0000D+00 

SOLVER = DASSL 

G = 9.8 CP = 1000.0 R = 285.7 G A W U  = 1.4 
PDATUM = 101325.0 
AMBIENT DENSITY = 1.20000 AMBIENT TMP = 295.53 
LAHDAR = .35 LAEZDAT = .60 
TFINAL = 300.00 TPRINT = 30.00 
PRESSURE TRANS TIHE = 1.6899661619836D-03 
IGNORIlG INITIAL PRESSURE TRANSIENT 

ROOH FH XROOM YROOH ZROOM GXFIRE GYFIRE GZFIRE 
1 0.000 3.000 2.000 3.000 1.000 1.000 0.000 
2 0.000 3.000 2.000 3.000 1.000 1.000 0.000 

QDTFIR 
O.lOD+07 
0. ooD+oo 

ROOM RADIATION NODES HATERIALS 
1 T 4 2 2 2 2  
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2 T 4 2 2 2 2  

VENT AVENT HVTOP HVBOT FROM TO 
1 1.00000 1.00000 0.00000 1 -1 
2 1.00000 1.00000 0.00000 1 2 

FICTIOUS LAYER THICKNESS, NOMALIZED - 1.0000000000000D-05 

TI= TO FIRST CALL OF DASSL = 3.0000001192093D-02 

ROOM TIME PRESSURE LAYER HASSU HASSL RHOU RHOL TEMPU TEWPL 
1 30.00 -0.3552EM0 0.72 5.69 4.80 0.4157 1.1123 853.15 318.82 
INTERIOR NODE TEXPERATURES, THEN EXTERIOR 
525.09 530.34 344.50 366.49 
295.54 295.54 295.53 295.53 

ROOM TIME PRESSURE LAYER HASSU MASSL RHOU RHOL TEHPU TEMPL 
2 30.00 0.1462E+00 1.85 5.02 13.28 0.7288 1.1961 486.62 296.49 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
364.52 365.94 297.44 297.48 
295.53 295.53 295.53 295.53 

ROOM TIME PRESSURE LAYER HASSU MASSL RHOU RHOL TEMPU TEMPL 
1 60.00 -0.6800E+00 0.73 5.28 4.55 0.3877 1.0397 914.61 341.10 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
625 77 632.03 388.57 422.22 
296.02 296.03 295.62 295.68 

ROOM TIME PRESSURE LAYER HASSU HASSL RHOU RHOL TEMPU TEMPL 
2 60.00 -0.3521E-01 0.74 10.47 5.22 0.7728 1.1721 458.91 302.57 
INTERIOR NODE TENPERATURES, THEN EXTERIOR 
376.75 377.59 301.35 302.53 
295.68 295.68 295.53 295.53 

ROOM TIME PRESSURE LAYER HASSU MASSL RHOU RHOL TEMPU T W L  
1 90.00 -O.l143E+Ol 0.72 5.03 4.05 0.3672 0.9415 965.83 376.67 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
698.07 704.37 439.46 482.77 
298.96 299.03 296.24 296.60 

ROOM TIME PRESSURE LAYER MASSU HASSL RHOU RHOL TEMPU TEXPL 
2 90.00 -0.7599E+00 0.31 13.53 2.09 0.8381 1.1281 423.13 314.37 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
372.77 373.16 307.03 309.41 
296.55 296.57 295.56 295.56 

ROOM TIME PRESSURE LAYER MASSU HASSL RHOU RHOL TEMPU TEMPL 
1 120.00 -0.1392EMl 0.74 4.80 3.90 0.3539 0.8774 1002.20 404.18 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
752.09 758.24 488.68 537.30 
305.84 306.05 297.99 299.05 

ROOM TIME PRESSURE LAYER MASSU HASSL RHOU RHOL TEWPU TEMPL 
2 120.00 -O.l146E+Ol 0.12 14.63 0.83 0.8476 1.1266 418.42 314.79 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
372.23 372.45 310.18 313.30 
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298.39 298.44 295.65 295.67 

ROOM TIME PRESSURE LAYER HASSU HASSL RHOU MOL m u  TEMPL 
1 150.00 -0.1583E+Ol 0.76 4.62 3.79 0.3438 0.8298 1031.51 427.39 
INTERIOR NODE TRIPERATURES, TEEN EXTERIOR 
795.28 801.23 534.65 585.67 
316.39 316.79 301.24 303.40 

ROOM TIME PRESSURE LAYER HASSU HASSL RHOU RHOL TEHPU TEHPL 
2 150.00 -0.1422EMl 0.03 14.93 0.23 0.8392 1.1234 422.59 315.67 
INTERIOR NODE TEMPERATURES, THE3 EXTERIOR 
375.21 375.34 312.21 316.02 
300.84 300.92 295.88 295.93 

ROOH TIME PRESSURE LAYER HASSU HASSL RHOU RHOL TEHPU TEMPL 
1 180.00 -0.1730EW1 0.77 4.49 3.68 0.3358 0.7936 1056.08 446.85 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
831.38 837.09 577.49 629.04 
329.71 330.31 306.14 309.71 

ROOM TIHE PRESSURE LAYER MASSU HASSL RHOU MOL TEMPU TEMPL 
2 180.00 -0.1523E+01 0.01 14.89 0.04 0.8291 1.1103 427.72 319.39 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
379.39 379.47 315.11 319.45 
303.54 303.63 296.24 296.37 

ROOM TIME PRESSURE LAYER HASSU HASSL RHOU RHOL TEHPU TEWPL 
1 210.00 -0.1844E+Ol 0.78 4.38 3.58 0.3291 0.7648 1077.47 463.70 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
862.46 867.95 617.03 667.92 
344.81 345.60 312.72 317.88 

ROOH TIME PRESSURE LAYER HASSU HASSL RHOU RHOL TEHPU TEMPL 
2 210.00 -0.157lE+Ol 0.00 14.73 0.00 0.8184 1.0983 433.34 322.88 
INTERIOR NODE TEMPERATURES, THEN EXTERIOR 
384.03 384.08 318.09 322.89 
306.26 306.36 296.73 296.97 

ROOM TIHE PRESSURE LAYER HASSU HASSL RHOU RHOL TEHPU TEHPL 
1 240.00 -O.l940E+Ol 0.79 4.29 3.50 0.3234 0.7405 1096.68 478.90 
INTERIOR HODE TEMPERATURES, THEN EXTERIOR 
890.00 895.29 653.65 703.19 
360.72 361.69 320.77 327.55 

ROOM TIME PRESSURE LAYER HASSU HASSL RHOU RHOL TEHPU TEMPL 
2 240.00 -O.l607E+Ol 0.00 14.54 0.00 0.8077 1.0976 439.05 323.10 
IBTERIOR NODE TEMPERATURES, THEN EXTERIOR 
388.86 388.89 321.12 326.34 
308.93 309.04 297.31 297.68 

ROOH TIME PRESSURE LAYER HASSU HASSL RHOU MOL TEHPU TEMPL 
1 270.00 -0.2022EM1 0.79 4.21 3.43 0.3182 0.7194 1114.32 492.95 
IITERIOR NODE TEWPERATURES, THEN EXTERIOR 
914.99 920.09 687.76 735.59 
376.76 377.86 330.00 338.30 

ROOM TIME PRESSURE LAYER HASSU HASSL RHOU M O L  TEWPU TEHPL 
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2 270.00 -0.1642EMl 0.00 14.35 0.00 0.7975 1.0753 444.68 329.80 
INTERIOR NODE TEXPERATURES, THEN EXTERIOR 
393.76 393.77 324.21 329.84 
311.54 311.65 297.98 298.50 

ROOM TIWE PRESSURE LAYER MASSU MASSL RHOU RHOL TEHPU TENPL 
1 300.00 -0.2094EMl 0.80 4.14 3.36 0.3136 0.7008 1130.72 506.07 
INTERIOR NODE TEHPERATURES, THEN EXTERIOR 
937.94 942.87 719.57 765.54 
392.44 393.65 340.15 349.82 

ROOM TIME PRESSURE LAYER HASSU MASSL RHOU RHOL TEHPU TEHPL 
2 300.00 -0.1675E+Ol 0.00 14.18 0.00 0.7878 1.0637 450.17 333.39 
INTERIOR NODE TEWPERATURES, THEN EXTERIOR 
398.65 398.64 327.39 333.42 
314.10 314.20 298.74 299.41 

CALL ITERS 
1 611 
2 79 
3 168 
4 28 
5 38 
6 83 
7 19 
8 15 
9 60 
10 32 

TIME ACCUH TIME 
13.010 13.010 
1.460 14.470 
1.650 16.120 
0.430 16.550 
0.680 17.230 
0.960 18.190 
0.460 18.650 
0.350 19.000 
3.900 22.900 
0.210 23.110 

TIME TO FINISH = 23.240000229329 

5 Numerical Experiments 

In this section we present an outline of the numerical experiments conducted during 
the development of CONRAD1 and CONRAD2. These numerical experiments were 
conducted on an Apple Macintosh I1 using the Absoft MacFortran 2.4 compiler and 
on a Sun Sparcstation 2 using the Sun Fortran 1.4 compiler. MCCFM, CONRAD1, 
and CONRAD2 were written using Fortran 77 together with two extensions that 
are available in almost all compilers. These extensions are the “IMPLICIT NONE” 
statement that forces the typing of all variables and the “INCLUDE” statement that 
allows various header files to be read in at the beginning of a program unit. CON- 
RAD2 has been ported to and tested on an Apple Macintosh 11, a Sun Sparcstation2, 
an SGI 4D-35, and an IBM Risc 6000 Model 320. MCCFM and CONRAD1 have 
been ported to and tested on an Apple Macintosh I1 and a Sun Sparcstation2. The 
only machine dependent parts of these codes are the default unit number for screen 
output, the timing routines, and the floating point constants. MCCFM, CONRAD1, 
and CONRAD2 are fully documented via comment statements which include port- 
ing instructions. All timings reported in this document are for a Sun Sparcstation 
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2. 
We began the development of CONRAD1 with the construction of a trial MOL 

code to investigate the piecewise cubic Hermite MOL approach to solving the initial- 
value problem (8)-( 11) with the radiation terms set to zero. Numerous possible time 
histories for the upper layer temperature Tu were considered. An application was 
coded for the Apple Macintosh which would produce graphs of the temperature 
profiles at each time step. This was a case of a "picture being worth a thousand 
words" because it was far easier to analyze these graphs than it was to examine 
tabular output. From this experimentation, it became clear that it would be possible 
to approximate the temperature profiles to desired accuracy (relative error of .Ol) 
using only about five well placed breakpoints. It also became clear that even 50 
or more equispaced breakpoints would not do nearly as well. This is due to the 
initially steep temperature gradients near x = 0 in a typical Tu scenario. Based 
on this experimentation, we produced the graded mesh heuristic which appears in 
CONRAD 1. 

Next, we added a single ceiling conduction node to MCCFM by merging the 
trial MOL code with MCCFM. The term Tb was found by differentiating the ideal 
gas law and substituting equations (1)-(3). Once this code was up and working we 
added simple temperature to the fourth power radiation terms to the right hand 
sides of the boundary conditions. Now it was clear that this method of combining 
heat conduction with MCCFM would work; that is the ODE solver could handle 
this stiff problem. Next, we set out to produce the first version of CONRAD1. As 
described in Section 4, the user can "turn on" heat conduction on a room by room 
basis. A room with heat conduction turned on has four heat conduction nodes: 
ceiling, upper wall, lower wall, and floor. As previously noted, the stiff ODE solver 
DEBDF which was used in MCCFM was changed to the solver D D W 2  because of 
the form of the ODE'S. 

Once Dr. Glenn Forney's radiation code became available, a new version of 
CONRAD1 was produced. In addition to incorporating this new radiation model, 
the ODE solver had to be changed once again. As was explained in Section 4, it 
was no longer possible to convert the heat flux boundary conditions into differential 
equations, so they were left as algebraic equations and DDRIV2 was replaced by 
the DAE solver DASSL. This completed the development of CONRAD1. 

The idea underlying CONRAD2 was inspired by a visit by Dr. Glenn Forney 
to Clemson University to discuss this project, and by the author's study of DAE 
solvers. What was needed was some way to convert the heat conduction problem into 
a functional equation that could be defined implicitly in a subroutine. That this was 
theoretically possible was clear from the existence and uniqueness theory for such 
problems. Thus we began the development of subroutine CNDUCT. Since it was 
not clear that this idea would work, we decided to take the simplest approach which 
was to solve the heat equation by the MOL using a central difference approximation 
to the second spatial derivative. Again, we developed a graded mesh heuristic. 
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We found that about 20 well placed breakpoints were all that was required. The 
resulting system of ODE’S was solved by the backward Euler method. We also tried 
the Crank-Nicholson method, but found it to be numerically unstable for nonuniform 
meshes. The backward Euler method is numerically stable independent of the mesh 
spacing, uniform or not. Instabilities usually exhibit themselves as oscillations in 
the temperature profile which are easy to  spot, especially when looking at a graph. 

As was described in Section 4, the temperature profile can be advanced by one 
time step by solving a tridiagonal system’of linear equations. Subroutine CNDUCT 
as currently implemented takes as inputs the temperatures at the conduction node 
surfaces (predicted by DASSL) at the next time and returns as outputs the tem- 
perature gradients at the node surfaces at the next time. Two functional equations 
for each node are then produced by equating the gradients from CNDUCT with 
those required by convection and radiation. This approach works amazingly well 
for reasons that are still not fully understood. 

We experimented with the time stepsize in CNDUCT, trying At = $ and At = 3 
where E is the time stepsize from the ODE solver DASSL; that is, we tried either 
2 or 4 backward Euler steps to integrate from time t to time t + k. We found no 
significant improvement over the results obtained with At = E .  

We tried a second approach which did not work at all. We took the node sur- 
face temperatures predicted by DASSL at the next time and substituted them into 
the heat flux boundary conditions to generate temperature gradients at the next 
time. These gradients were inputs for a subroutine, CNDUCT1, which output the 
temperatures at the node surfaces at the next time. We generated two equations 
by equating the predicted temperatures and the corresponding outputs from CN- 
DUCT1. 

We made use the of the vector relative error feature of DASSL to specify relative 
errors of for pressure offset, layer interface height, and upper and lower layer 
masses. For temperatures we specified a relative error of lo-*. The report [l] 
discusses the requirement for this level of accuracy in the offset pressure, but it 
seemed unreasonable and inefficient to require this much accuracy for temperatures. 
CONRAD1 and CONRAD2 have been compared in a number of cases. The outputs 
from the two room case presented in Sections 3 and 4 are typical. The agreement 
is within the relative error tolerance for these simulations. 

As a further check of CONRAD2, we developed a variant this code which checked 
for energy conservation in the ceiling conduction node; that is, it checked to see if 
the amount of heat being added to the ceiling conduction node was consistent with 
the rise in average temperature. Let Tav denote the average temperature in the 
ceiling conduction node. We computed Tav directly using the trapezoid rule and 
compared this estimate with the value predicted by integrating the ODE 

This ODE is found by integrating the heat equation (19) with respect to the spatial 
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variable over the ceiling node thickness W. Again, the comparison was within the 
error tolerance. 

6 Future Work 

In this section we propose future work to improve CONRAD2. 
Using a DAE solver to solve a DFE system appears to be a new development 

in the application of mathematics. The theoretical basis and the limitations of 
this method need to be explored. This is a mathematical analysis issue, not a 
programming issue. It would be unwise to proceed without doing this first. 

The subroutine CNDUCT in CONRAD2 that solves the heat equation for a 
conduction node can be rewritten and based on the piecewise cubic Hermite expan- 
sion approach to the MOL instead of the current central difference approximation 
approach. This change has several advantages. The order of accuracy of the spatial 
approximation is increased, and consequently, fewer breakpoints and less memory 
is required. The expansion method provides a natural method for interpolating the 
temperature profile between breakpoints, and it provides the gradients at the end- 
points directly without the need for an additional approximation. This expansion 
method should be less sensitive to poorly chosen breakpoint spacing. The resulting 
linear system that must be solved is now pentadiagonal instead of tridiagonal, but 
the size of the system is cut in half. 

The breakpoint heuristic in CONRAD2 can be improved. Because the heat equa- 
tion solver is hidden in subroutine CNDUCT, it is possible to change the breakpoints 
without restarting the DAE solver. The current heuristic is base on the final time 
t h d .  As an alternative, three different sets of breakpoints could be generated based 
on three times < t d d  < t m .  Subroutine CNDUCT could be rewritten to  use 
the set based on tshort for 0 < t 5 &hod, the set based on tmid for tshort < t 5 t d d ,  

and the set based on tfind for t d d  < t 5 t h d .  This would amount to a crude moving 
mesh strategy. When the breakpoints are changed, the current temperatures at the 
new breakpoints must be computed. This is especially easy with the piecewise cubic 
Hermite approach since it provides a natural interpolation formula. 

The variation of wall temperature profile in the vertical direction is clearly not 
correct in CONRAD1 or CONRAD2. These codes predict a steep vertical gradient 
in the wall temperature at the layer interface height. This is incorrect because the 
movement of heat down the wall will not necessarily match the movement of the 
layer interface height. The rate at which heat will be conducted down the wall will 
be different from the rate at which the layer height moves. 

One way to achieve a better vertical approximation would be to divide the wall 
into a number of fixed area nodes. Instead of two wall nodes with variable area, 10 
with fixed areas might be used. Each of these fixed nodes would be handled in the 
same way as the variable area nodes. When the layer interface lies in one of these 
nodes, the temperature used in the convective term of the boundary condition could 
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be based on a weighted (by area) average of Tu and Tr;. A heuristic could also be 
developed so that these node could exchange energy vertically inside the wall. An 
advantage of this approach is that the radiation model could be reworked for fixed 
area nodes. A much more efficient version of the radiation model is possible when 
fixed area nodes are used instead of variable area nodes. 

A 2-D approach to  heat conduction in the walls should be examined. Here 
the entire wall would be treated as a single heat conduction node and the a 2-D 
heat equation would be solved. If the number of vertical breakpoints needed is 
comparable to  the number of fixed area nodes mentioned in the previous paragraph, 
then both methods would have the same computational complexity. An advantage 
of the 2-D approach would be that vertical heat exchange would not have to be 
handled by a heuristic. 

Currently, the exterior surfaces of heat conduction nodes in CONRAD1 and 
CONRAD2 exchange heat to ambient. The model could be improved by allowing 
neighboring rooms to exchange heat via conduction through ceilings, walls, and 
floors. A simple first step would be to implement this for the room(s) of fire origin. 
The biggest problem here is one of user input. The ceilings, walls, and floors (room 
interfaces) would now be treated as vents are in that the user would have to specify 
in the input data file the rooms on each side of these “room interfaces.” 
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A Notation 

Avent area of vent m2 

Gent 

C 

P 

PL density of lower layer 

Pu density of upper layer 

m mass kg 

P absolute pressure Pa 

AP, quasi-steady state pressure 

7 

4 energy transfer rate 

R 

T 

V volume 7n3 

vent coefficient, usually about .68 

specific heat of conduction material 

density of conduction material kg/m3 

ratio of specific heats for air 

universal ideal gas constant -& 
temperature in degrees Kelvin K 
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