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ABSTRACT 

Glass breaking in /ires is an important practical pR)hlem since a window acts as a wall prior to 

breaking and as a veIlt after bt'Caking. This geometric change can have a dramatic effect on the evolu­

tion of a compartment lire. As Emmons explained. windows break in tires due to thermal Slress from 

the differential heating of the central portion and the shaded edge. If the depth of shading around lite 

edge is much greater th.m the glass thickness, one can assume that the edge remains at its initial lem­

perature 1'/. This paper delennines ll1e surface temperature hislory, -r (O.t), of the glass. The tempera­

tut'C at breaking is wilen (1"' (O,t) - Tj )(1 =ablE, where MT and (JI,/E both give the :main at break­

ing in tension. The glass coefficient or linear thennal expansion is a. lhe ghlss modulus is t: and Ob is 

its tcnsile strength. Typical proPClty values suggest the range 50°C -1 oooe for the breaking AT. Here 

the transient, one-dimensional (into the glass "onnal to the pane). in-homogeneous (in-depth radiation 

i1bsorpLion) energy equation is solved using an innovative L,lplace Transform technique suggested by , ~ 

Baum. Two coupled non-linear Volterra equations of the second kind arc obtain~d for the temperatures 

of the two surfaces of the glass. Time varying incident radiative "U~ and the glass temperatures are 

included. These equations are solved numerically by using lhe trapezoidal Iule for numerical integration 

and Ncwton·Raphson's method for detcrmining the mots or lhe non·lineal· equations. Resulls are 
, 

presented for typical values of the gOVCnllng dimensionless pMamctcl's. 
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INTRODUCTION 

Breaking of window glass due to heat from fires is a very commonly observed phenomenon. This 

phenomenon is of great importance as the glass breakage can be a cause of fire spread (if the window 

I I is between two adjoining rooms) or a broken window can act as a vent for the escape of toxic tire 

•	 gases and an inlet for fresh air (if the window opens to the outside). Glass absorbs thennal radiation 

from the fire and also gets heated by convection from the hot air surrounding the fire leading to ther­

mal stresses. The thennal stresses arise due to the temperarure difference between the central portion of 

the window which is exposed to fire products and the insulated or protected edge of the window. 

These stresses lead to cracks and eventually to breakage. In this paper. a thennal analysis of the d~'ect 

of radiation and convection on the glass is carried out by including the exponential decay of thennal 
r \ 

radiation within the glass and heating and/or cooling of the surfaces due to convection and radiation 

heat transfer. 

Emmons (1986) indicated that the process of the initiation and propagation of cracks in glass due 

to the heat is not very well understood. Finnie et al (1985) carried out an analysis which implied that , . 
the only factor governing the breakage is the net temperature difference between the central heated por­

, - tion of the glass and the protected edge. which can be calculated from the glass properties. Since the 

protected edge temperature is not expected to rise much in a fire. the difference between the tempera­

ture of the central portion and the edge can be approximated by the net temperature rise of the heated 

portion. The side exposed to the fire is expected have the highest temperarure and thus a knowledge of 

~ . l' 

the temperature history of only this side is adequate in detennining the time for breakage. 

The problem governing this phenomenon is transient and non-linear due to the radiation boundary
1- .ll 

.. condition. Keski-Rahkonen (1988) linearized the boundary conditions and obtained an exact solution 

L for the temperature field. Recently. Davies (1985) used an integral method for detennining the tem­

perature field in a plate losing heat by combined radiation and convection. In Davies' method. inaccu­
;' 

L 
racies arise due the assumed nature of the temperature profile. For solving the complete non-linear 

Ii 
~ , 

problems the use of a numerical method is essential. Methods such as finite-difference. finite-element 
I ' "'.... 

and boundary element have been used before. However the implementation of these methods leads to 
{
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the inaccuracies arising from the discretization of both the time and space domain. Also the whole 

temperature field has to be evaluated. In the present case, the temperature of interest is only of the 

side exposed to the fire and hence the knowledge of the whole temperature field is irrelevant. 

The thickness of the window is usually an order of magnitude smaller than the other dimensions 

and so in the case discussed, the window has been assumed to be an infinite slab. Thus the equation 

governing the system is a one dimensional inhomogeneous heat equation with non-linear boundary 

conditions. To solve this equation, the method of Laplace transform is utilized. After simplifications. 

only two equations for the temperature of each surface need to be solved. This method is similar to 

Chambres (1959) method which was used to determine the temperature distribution in a semi-intinite 

solid with radiation type boundary conditions. In Chambres methods one non-linear Volterra equation 

of the second kind for the surface temperature needs to be solved. whereas in the present case. a sys­

tern of two coupled non-linear Volterra equations of the second kind for the temperatures of each side 

have to be solved. These equations are solved numerically by using the trapezoidal rule for numerical 

integration and Newton-Raphson's method for determining the roots of the non-linear equations. The 

equations are exact and inaccuracies arise only due to the discretization of the time domain. This 

method is applied to the general case of time varying radiative flux and surrounding temperatures. 

THEORY AND FORMULATION 

Consider an infinite slab of thickness L, initially at a temperature Ti . At time t' = 0 it starts gel­

ting heated on the side x =0 due to radiative flux 10./ (t) and loses or gains heat by combined convec­ " 
tion and radiation on both sides. Suppose the heat transfer coefficients on the two sides are 

represented by hi and h 2, the ambient temperatures are represented by T loo(t') and T :!oo(t'). Let ~ be 

the absorption length and k be the thermal concuctivity of glass. Also let p and Cp be the density and 

specific heat respectively of the glass. Also let c and Coo be the emissivities of the glass and the sur­

roundings. cr is the Stefan-Boltzmann constant. Then the governing equation for this system will be 

aT' a2T' ., ., e-x"13
pC :;- = k--, + 10J (t )-A­p 

or' ax' - tJ 
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i -_ 
where l' (t') is some specified function of time. The initial and boundary conditions for this problem 

[ , are 

at t' = 0, T' =T, (2) 

I _ 
at x' =0, -k ~~ =h 2(T :'00(( )-T' (0,( )) - EaT' 4(0.t' ) (3) 

. 'I 

) 

at x' = L, -k ~~ = hI (T' (L ,f )-T loo(t)) + £aT' 4(L .f) - £ooaT\~(t) (4) 

Nondimensionalization 

This equation is nondimensionalized by using the following dimensionless variables 

x' t'k T'-T R 
x = -; t = ; T = --'. Y= 1:!.- (5) 

L pCpL:' T.' L 

where Tc is the characteristic temperature defined by 

T _ loLc - _ ..... (6)
k , . 

Hence. in the dimensionless form. the governing equation becomes 

l _ 
2 -x "/aT _ aT + j(t)~ (7)

(: at - ax:' ; 

with initial and boundary conditions 

.. at t = 0. T =0 (8 ) 

aT 
(9)at x = 0. - ax = q2(t) 

t .:. 

!'" 1". aT 
at x = 1,-:;- = q j(t) ( \0) 

[ " oX 

where
Ir

i .. 

q 2(1 ) =A + BT (O,t) + CT2(0,t) + DT 3CO,tl + ET 4CO.t) ( III 

~r 
lJ and 

{ ~ 

tJ 
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q[(tJ =F + GT(l,t) - CT 2(l,t) - DT 3(l.t) - ET 4(l.t) (12) 

where 

A = h 2L (T200(t )-T;) caLT, 4 

(13)
kT" kTe 

h 2L 4caT, 3L I 

B =--- + --- ( 14) 
c 

k k
 

6caT T,2L
ec= (15)
k 

4caT '2T,Le
D = ( 16)

k 

E =_caTe 3L 
( 17)

k
 

h[L(T,-T\oo) EooaT [004L caLT; 4
 
([ 8)F = kT kT + kTee e 

h [L 4ecrT; 3L 
G=--+--- ( (9)

k k 

METHOD OF SOLUTION :"j 

We use the method of Laplace transforms to solve this equation. The Laplace transform is taken 

with respect to time and is defined as 

T' =[Te-Pl dt (20) 
l _ 

Substituting the transformed variable into the governing equation and applying the boundary conditions 

leads to the solution 

• e-x1Y• .- .­
~ ..T =Ali -- + B[cosh('ipx) + C[cosh('ip (i-x» (21) 

y .. 
where "Ji 

, t 
t]~
l 
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- - -

i 1 
Al = -1 (22) 

p- Y 

.' -iiI .2'A 1) e -yql
B I = ~ . (23) 

Y-..Jp sinh'ip 

c _ yq;-A 1/ 
(24)

I - y"';p sinh~p 

We need to solve for both the surface temperatures as the temperature on the hotter surface depends on 

the temperature on the other surface and vice versa. Hence. the transformed form of the temperatures 

are 

• AJJ" .-." .".1 .•.• 
T (0) = -- + B 1 + C \cosh'IJp =! 1 q I + J 2 q2 + -13 J (25)

Y Y 

- \1'( .­• A Ie ) ~ •• _. 1 3.­
T (1)= +B1cosh-..Jp +C1=gl qj +/';2 q~ +~g3) (26) 

Y Y 

T ~ Using convolution theorem and after simplifications, the equations to be solved look like 

.i -I 

I I 1 

T(O,t) = [qlC't)! l(t-'t)d't + [q2('t)! ~(t-'t)d't + ~ [J('t)! 3((-'t)d't (27) 

and 

I 1 1
1 . 

T(l,t) = [ql('t)g\(t-'t)d't + [q~('t)g2(t-'t)d't + y[J('t)g3Ct-'t)d't (28) 

." 

where f I, f 2' f 3, g l' g2. g3 are the kernels which depend upon y and are specified in Appendix I. 

l _ The equations to be solved are coupled non-linear Volterra equations of the second kind, The equa­

') tions are non-linear because both ql and q2 are non-linear functions of T] and T 2 respectively. 

Transformation of variable 
. I 
\ - We observe that the integrands are not bounded as /2(£) and g let) at t =0 go to infinity as 

t-li~. So if we now transform the equations using the variable u = \t-'t . the equations become 
u 

~I ~I "I 

n T(O,t) = 2JuF 1(U)ql(t-u 2)du + 2JuF 2(U)q2(t-U 2ldu + ~[ uF 3(u).i(t-u'2)du (29,
U 
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- -

f :' 

" 

and 

'J'I ~ VJI ,) 'JI ,
T (1.t) =2 uG 1(ll)q 1(t-U "')du + 2 uG z(u)q z(t-u -)du + -=- uG 3(u)j (t-u ")du no) 

o 0 Y 0 

where F I(U) =f I(U 2) etc, and the integrands are bounded. 

Numerical procedure 

The numerical procedure chosen was trapezoidal rule with constant time steps (thus variable 0.U) 

for numerical integration and Newton-Raphson's methods for finding roors of the non-linear equations. 

By looking at the equations. it appears that the equations are coupled. However, since f 1(0) and g z( 0) 

are equal to 0, at a particular time step the equations can be solved independently of one another. 

RESULTS 

Figure I shows the comparison with the exact solution of the linear problem (given in Appendix 

II) for the case of no heat loss due to thermal radiation. This figure shows the dimensionless tempera­

ture variation with respect to dimensionless time of the sides exposed and unexposed to incoming radi­

ative flux. The agreement is within 0.5% for a dimensionless time step of 0.002 suggesting that the 

the time step was quite accurate. 

Figures 2(a) and (b) show respectively the variation with respect to time of the dimensionless 

temperature of the side exposed to and the side unexposed to the incoming heat flux. Only the Biot 

numbers were changed. In this case the initial temperature of the material is set equal to the ambient 

temperatures on either sides. Also the incoming radiative flux is assumed to have a constant value. 
l ~ 

The ambient temperatures are assumed to be constant. 

.-\S expected, the temperature of the side exposed to the heat flux increases more rapidly com­

pared to the temperature of the unexposed side. As BiOI numbers increase. heat loss is greater and 

~hence the rate of increase of temperature is lower. , 

i: 
~ -." 

Figure 3 shows the variation of the temperatures for varying dimensionless absorption length forf; u 
~ 

constant value of Biot number. Here also. the input radiative flux function is assumed to be a n 
a 
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constant. Here,	 as y decreases. the temperature of the exposed side increases as small y corresponds to 

r '	 small absorption length, implying that 'most of the radiation gets absorbed within a shon distance. And 

for large values of y, the material behaves more like a transparent medium. For large values of y an 

artificial temperature drop is encountered as the approximation of surface emission but absorption 

within the body breaks down. 

Figure 4 shows the variation of the temperatures of the sides corresponding to varying input radi­

ation flux. holding the other parameters constant. It can be seen here that the rate of increase of the 

temperature of the exposed side varies roughly as the integral with respect to time of the incoming 

radiation function. This is because the rate of increase of temperature is dependent on the rate of 

incoming heat as can be seen in equation (29)for T(O.t ) , 

Table 1 shows the various values used for the calculations. These values represent the typical 

values which might be encountered in the situations of real tires. The time of glass breakage solely 

, , depends upon the net temperature rise of the glass. and it was found that for ordinary plate glass. the 

f -.., value was found to be about 60° C. This value is obtained from Hooke's law and it was verified by 

Finnic et. al. that this value does not depend on the rate of temperature rise. This would imply that 

for a particular value of the radiative flux, a value of the dimensionless critical temperature can be 
, " 

obtained. Hence in the computer program. the computations are stopped as soon as the critical tem­

perature is reached. 
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APPENDIX I 

The Laplace transfonns of the kernels in equations are 

-I 

/ 1* = ..Jp sinh(~p ) (31) 

cosh('.}p ) 
/2* = .- sinhCrp ) 

(2) 

vp 

gl*=-f2* (33) 

g2* =-/1* (34) 

/3* = rfii sinh(~p) + e-11"{ - cosh(VP) (35) 
(p -J,)r!p sinh(..Jp ) 

y­

* _ yfji sinh(..Jp)e-1/1' + cosh(~p)e-liY -I 
g3 - (36)

1 -­
(p - i )yJp sinh(vp ) 

And hence the kernels are 

for short time 

/ let) =- g2(t) =- 2 ~exp[- (2k+l)21 (37) 

..J1tt k=O 4t ~ 

I. 

/2(t) =- g let) = 1 + 2 ~expr- (2k)2l (8) 
, ­

v1tt -J1tt k=1 ~ 4t J 

r ~ 

u 
/3(t) = e i ~ I + 

~ 

iIH··.. 
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'1 , 

., 

r 2k+1 r 'Ill 2k,+1 ~ 00

e-1/YL Ie --Y-erlc (2k+l) Y J - e ( eric I (2k+l) + ~]]k=ol ./­'- '14t ~ v4t 
I • 

1 [ ..Jt ..Jt- - eric (--) - erlc(-)
2 y Y 

l . 
~ 

2k _ 2k-l 
00 -- 2k' / - 2k ' 

__ (39) 
k=1 [ 'J4t y L \4t Y j ~ 

- LeY eric [--= '1t 1- e Y erlcl--= + 21 rl 

g 3(t) = e ~~ e- I',' ­
i
 
~ 

r ~ 

r 

2k+1! 2k+1 r~ I --..-, f (2k+l) "lit'-l -,,- f I (2k+l) 'it 
~ e . er c - - - e . er c . + ­

k=O l L v4t Y J L \'4t Y 
l _ 

1/Y !e- -..it ..Jt+ -- eric (--) - erfc(-) 
:; L Y Y _ 

I ­
~ 

00 _ 2k i- 2k ,,-1,- -11' 'I 2k., t .. ,-k "t+ e (L e . eric! ,_ --, - e ; erlc_ + ~ I~ (40) 

k=1 [ L\4t 'I ~ \4t' j ~ 

and for long time are 

(41)f \(t) = - = -[1+ 2,~~-''''' (-1)']82(t) 
r 

00 

12(t) = -g I(t) = 1 + 2 Le-k~21 (42) 
(~ k=1 

L 

13(t) = _y(e- 1iy _ 1) + ~ ~ (_l)ke-I/Y - 1 -kl..n:", (43)
v ~ eq 
j k=1 _k 21t2 _ -..l.,L y­

1 
~

~ , liy 
I. g3(t) = -y(e-I,y _ I) + 1.. ~ e- - (-1/ -kl..n:~1 (44)
L " 'I ~ e.¥ 

j k=1 _ -..l.-k 21t2 , 
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APPENDIX II 

The exact solution to the linear problem of negligible heat loss due to radiation is 

T = U (x ,r) + v (x ) 

where 

v (x) =px + q 

where 

ABi l + BBi z B - A - ABi I 
p = ,------=-----=---- and q = 

Bi l + Biz +Bi]Bi:. Bi I + Bi:. +Bi IBi:. 

Here 

Tzoc-Tj , T-T locB , 
A = BIZ' B = '-- IIT . 

c T-

where 

hlL h,L 
Bi l = - and Bi, = --­

k ~ Ie 

wherc h I and h z are the heat transfer coefficients. The solution for U (x .r) is given by 

-
oc _;., 2, _;., 2(l-t) 

U = ~ Cne " + fe" W n ('t)d'tl<l>n (x)[ 6 

I 

n=O , 

where the characteristic functions are 

<l>n(X) = AnCOS(Anx) + Bizsin(Anx) 

and the eigenvalues An are obtained from the solutions to 

An 2 - BilBi z 
cotAn = An (Bi I+Bi:.) 

The constants Cn appearing in the equation for U (x ,r) are defined as 

I 

Cn = - .,,~ , JV(X)<l>n(X)dx 
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(46) 

(~7) 

(48) 

(~9) 

(50) 

(51 j 

(52) 

(53 ) 
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r ~ 

l ~ \ 

the weight functions '111" are defined as 

I 

w" (t) = tv:A. fj (t)e -XIYQ>" (x)dx (54) 
y. " ) () 

and nonns N (A,,) are defined as
 

1 r 2 . 21 Bi I ] .
 (55)N(A,,) = - (A" + Bl 2 ) 1 + ~ . 2 + Bl:. 
2 . A" '- + Bl i- , 

r . 

l , 

t " 

, 

~ .J 

, c 

1. _. 

P
L\ 
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thennal conductivity,
 

thennal diffusivity,
 

thickness,
 

penetration depth,
 

temperatures,
 

emissivities,
 

incident flux.
 

r .~ 

Table 1. Glass and Fire Parameters 

k = 0.76W/mK 

a = 3.6 X 10-7 m 2/s 

L =6.25 X 1O-3m 

~ = 10-3 m, 3.13 X 10-3 m, 

T I" =T >. =T, = 293 K 

E = 1.0. E"" = 1.0 

10 = l000W/m 2K 

6.25 X 10-4 m 

\ y 

. :.­

IT 1', 
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FIGURE CAPTIONS 

, 
Figure 1. The	 surface temperatures, T (a,t) and T (l.t) are shown where T = (1"' -Ti)k!I oL and , , 

r" - t = t' aJL 2 for y =0.16 and Bi I =Bi 2 =0.1. The exact linearized results and numerical results are 

indistinguishable. 

Figure 2. The variation of the exposed surface temperature with Biot number for Bi =Bi 1 =Bi ~ is 

shown for y = 0.16 and the other parameters as listed in Table 1. 

,i "' 

Figure 2. The variation of the unexposed surface temperature with Biot number for Bi =Bi 1 = Bi ~ is( '\ 

shown for y =0.16 and the other parameters as listed in Table 1. 

"	 Figure 3. The variation of the exposed surface temperature with depth parameter, y, for Bi 1 =Bi 2 = 0.1 

and other parameters listed in Table 1. 

, ~ 

Figure 4. The effect of different time dependencies of the incident radiative flux on the exposed surface 

temperature for y = 0.16, Bi I =Bi 2 =0.1 and the other parameters as listed in Table 1., . 
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