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The mechanism of particulate coagulation in a turbulent plume is studied by combining the
Morton- Taylor- Turner theory of turbulent buoyant plumes with the present authors' earlier
analysis of coagulation in a homogeneous system. The conservation of fluid mass, particulate
matter, momentum, and energy leads to a set of differential equations for horizontal averages of
hydrodynamic quantities. These relations are combined with the horizontally averaged coagula
tion equation to yield an equation which is transformed to be exactly equivalent to the
problem of coagulation in a homogeneous medium. The effective time scale is a known func
tion of the vertical plume height which is determined by solving the plume hydrodynamic equa
tions. This permits the coagulation process in a homogeneous system to be quantitatively
related to that in a buoyant plume. Sample calculations are performed to illustrate the effects
of the initial number and mass concentrations of the particulate, rate of heat release, initial
plume momentum, and atmospheric stratification on the aging process. Results indicate that
the coagulation process can be "frozen" if the entrainment of uncontaminated air into the
plume sufficiently dilutes the particulate concentration. Calculations of the number flux and
the particle size D32 as a function of plume height are included.

1. INTRODUCTION

Aerosol formation and growth in a
buoyant plume occurs in a number of
combustion processes including fires, the
combustion of coal in power plants, and the
production of carbon black and high purity
silicon. The initial particle formation is a
complex process involving chemical dy
namics, nucleation, condensation, and
coagulation. As the plume rises, further
growth of the particles will occur primarily
as a result of coagulation and condensa
tion. Finally at some height the vapor con
centration is depleted by condensation and
dilution and further growth can only occur
by coagulation.

It is this last stage of particle growth
that is of interest in this paper. The particle
formation processes of nucleation and con
densation are assumed to be complete. The

. problem of interest is the calculation of
the dependence of the size distribution of
an aerosol on the plume height allowing

for coagulation and air entrainment in the
rising plume.

In order to proceed, it is necessary to
combine a tractable model of the buoyant
plume hydrodynamics with the Smoluchow
ski equation which describes the particulate
coagulation. Since most plumes of practical
interest are turbulent, it is not" possible to
proceed from first principles. The most
useful model for the present study is that
due to Morton et ai. (1). They assumed
that the mean velocity and temperature pro
files across the plume were Gaussian func
tions of a suitably normalized radial posi
tion in the plume. They further postulated
a relation between the rate at which mass
was entrained by turbulent mixing into the
plume and the mean vertical momentum
flux. The model was extended by Morton (2)
to consider variations in the character of
the source and the environment. It has

been used subsequently in a variety of
applications. A survey of these results and
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FIG. I. Schematic of buoyant plume showing assumed
mean velocity profile U(r ,z)/v(z) and ambient stratifi
c~tion T(z).

their experimental verification is given in the
recent monograph by Turner (3).

This model has been incorporated into our
analysis in a slightly extended form, to
allow for the presence of particles in the
plume. No assumption is made about the
size distribution, but we do take thecoagula
tion coefficient to be constant. This permits
the size distribution to emerge as a solution
of the Smoluchowski equation, rather than
evolve as a prescribed functional form
with specified parameters determined by
taking moments of the Smoluchowski
equation. A key result of our work is the
demonstration that the problem of coagula
tion in a buoyant plume can be transformed
to that of the well-studied problem of
coagulation in a uniform system such as
a smoke box (4-7).

Delattre and Friedlander (8) have treated
a somewhat similar problem, coagulation
in a turbulent jet. They assume an eddy
diffusion model for the turbulence and
assume that the size distribution remains
self-preserving. The eddy diffusion turbu
lence model, while quite successful in
turbulent jet analyses, has not proved useful
in the study of buoyant plumes. The
assumption of a self-preserving size distri
bution avoids the necessity of solving the
coagulation equation for the size distribu
tion. However, it does so at the expense
of an ability to study the size distribution
in detail.

In the present work, the Smoluchowski
equation is cast into a form consistent
with the Morton- Taylor- Turner model in
Section 2. The plume model is derived in
extended form in Section 3 and the solution
displayed in Section 4. The general solution
of the coagulation equation is obtained in
Section 5 and the correspondence between
the plume solution and the homogeneous
(smoke box) solution is shown in detail.
Finally, numerical solutions illustrating the
effects of the parameters controlling coagu
lation are displayed in Section 6. The num
ber flux and particle size D32 are calculated
for the parameter range appropriate for
aging in a smokestack plume and in a plume
generated by a smoldering source in an
enclosure.

2. THE COAGULATION MODEL

We consider a turbulent, weakly buoyant
plume whose mean (time-averaged) proper
ties depend upon the vertical coordinate z
above the plume source and a radial co
ordinate r measured from the mean plume
centerline. The plume is laden with par
ticulate matter and rises into a particle free
atmosphere at rest. Let the mean particle
distribution over the particle volume size v

. be n(r,z,v), where n(r,z,v)dv represents the
number density of particles with volume be
tween v and v + dv and the mean vertical
component of the fluid velocity be u(r ,z)
(Fig, 1). The Smoluchowski equation gov
erning the evolution of particulate matter
in the plume may then be written in integral
form as

~ {L'" n(r,z,v)u(r,Z)rdr} = r K(r,z,v)rdr,

K(r,z,v) = r { J: n(v - v')n(v')dv'

- 2n(v) L'" n(V')dv'}' [1]

In the definition of the K function, the first
term corresponds to an increase in particles
of size v resulting from collisions of two
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smalIer particles, and the second term cor
responds to a loss resulting from particles
of size v colliding with particles of any other
size. The spatial dependence of n is sup
pressed in the definition of K(r,z,v) in the
interest of clarity. In obtaining Eq. [1], it is
assumed that the contribution of turbulent
fluctuations to the mean vertical flux of par
ticulate matter and to the coagulation rate is
smalI compared with the contributions of
the mean properties. Relative motion be
tween gas and particles is ignored.

The coagulation frequency r has been
taken as constant. The integral formula
tion, based on averages over horizontal
cross sections through the plume, is forced
on us by our inability to make a detailed
description of the turbulent state in the
plume. Instead, we adopt the Morton
Taylor- Turner (1-3) description which has
proved quite successful in the study of the
hydrodynamics of buoyant plumes. Specifi
cally we assumed that u(r,z) and n(r,z,v)

can be represented in the form

u(r,z) = U(z) exp{ -(r/R(z))2},

n(r,z,v) = N(v,z) exp{ -(r/R(Z))2}. [2]

When Eq. [2] is substituted into Eq. [1],
the coagulation equation becomes

a -
- {N(v,z)U(z)R2(z)} = K(v,z),
az

K(v,z) = rR2(Z)U: N(v - v')N(v')dv'

- 2N(v) r' N(V')dV'}, [3]

Again, the dependence of N on z in the
definition of K is understood.

The problem can be formally reduced to
the equation which governs the study of
homogeneous coagulation by the following
transformation. Let ¢(T,V) and T(Z) be de
fined by

¢(T,V) = N(v,z) U(z)R2(z),

dT
- = {R(z)V(Z)}-2. [4]
dz

The coagulation equation now takes the
form

a¢ = r {f ¢(v - v')¢(v')dv'aT 0

- 2¢(v) r' ¢(V')dV'}, [5]

PhysicalIy, the quantity 7T¢dv represents
the mean flux of particulate matter in a size
range dv about v through a cross section
of the plume at a height z, while (R U)2

is proportional to the vertical momentum
flux at that cross section. The homogene
ous form of the coagulation equation has
been the subject of numerous investiga
tions (4- 7). It has been applied to size dis
tributions of the type found experimentalIy
in a smoke box by the authors (9) and
shown to follow the data quite accurately.
The transformation given in Eqs. [4] opens
the possibility of using smoke box data in
a buoyant plume. In order to proceed, how
ever, it is necessary to determine V(z) and
R(z) from a study of hydrodynamics of the
particle-laden plume.

Equation [5] can be generalized to include
the v dependence of r. For simplicity we
take r to be a constant. In a study of smoke
coagulation in a well-mixed chamber (9),
good agreement was obtained with a con
stant r equation.

3. PLUME HYDRODYNAMICS

The Morton- Taylor- Turner model is
based on an integral formulation of the con
servation of mass, momentum, and energy
in a fluid. Density variations 8p about a
mean background level p are assumed to be
a small fraction of p, so that only the weakly
buoyant portion of the plume is considered.
The pressure in the plume is taken to be
hydrostatic, which is consistent with the
horizontal components of the momentum
conservation equation for a long narrow
plume (i.e., one for whichR/z is smalI). The
mean temperature perturbation O(r ,z) from
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[7]

[ 10]

the ambient temperature T(z) is small com
pared with T(z). Moreover, the variation
of T(z) about a reference value To (e.g., the
value at z = 0) is also assumed to be small
compared with To.

Under the above conditions, the con
servation of momentum and energy in the
plume may be expressed in the form

d Ix Ix op
- u2rdr = -g - I'dI',
dz 0 0 p

~ {ep r uordr}

+ (ep~: +g)L"'urdr=o. [6]

Here g is the magnitude of the gravitational
acceleration and e p is the specific heat of the
gas. Since the fluid is actually a gas-particle
mixture, the specific heat should be that of
the mixture. However, since the particulate
mass fraction x(r ,z) is typically quite small,
there is little loss in accuracy in this ap
proximation. The fractional density dif
ference 0pip is given in terms of the temper
ature excess 0(1' ,z) and the particulate mass
fraction x by the expression

o
o pip = - - + x.

To

The first term expresses the decrease in
density with increased temperature based
on the ideal gas equation of state while the
second term takes into account the increase
in density resulting from the presence of the
particulate. The mass fraction x satisfies a
conservation of particulate mass equation
obtained from the coagulation equation, Eq.
[1], in the form

:z (L'" uxrdr) = o. [8]

Finally, effective plume radius R(z) is ob
tained from consideration of the mass en
trained into the plume. Let '1'(1' ,z) be the
stream function, defined so that 27Tp'l' is the
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mean mass flux through a tube of radius
I' at height z in the plume. Mathematically
'I' is the vector potential satisfying the
equation expressing conservation of mass in
the plume,

8W 8W

81' = ru(r ,z), a; - -nv(r ,z). [9]

The quantity w(r,z) is the mean radial com
ponent of velocity. The conservation of
mass can be expressed in integral form as

d (IX ) d'l'
- urdr = - (oo,z).
dz 0 dz

The entrainment hypothesis (1) states that
(d'l'ldz)(oo,z) may be determined from the
expreSSiOn

d'l'(oo,z) = O'R(z) V(z). [11]
dz

Here, V(z) and R(z) are respectively the
mean velocity and radius defined in Eq. [2],
and 0' is an empirically determined entrain
ment constant.

The entrainment hypothesis, together
with the Guassian profile assumption for all
quantities of interest, enables us to obtain a
closed system of equations for the mean
plume variables. Specifically, we define a
mean temperature 8(z) and a particulate
concentration X(z) as follows:

O(r,z) = 8(z) exp{ -(r/R(z»2},

x(r,z) = X(z) exp{ -(r/R(z»)Z}. [12]

(Note that the form for x(r,z) follows from
that for n(r,z,v) in Eq. [2] since x is pro
portional to the first moment of n with re
spect to the size variable v.) Substitution
of forms [2] and [12] into Eqs. [6], [8], and
[10], together with the elimination of
(di.fildz)(oo,z) and oplp through the use of
Eqs. [7] and [11], leads to the desired set
of equations

d
- (R2V) = 20'RV,
dz
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[ 17]

d

dz (R2UX) = 0,

~ (R2U2) = 2gR2( ~ - X)dz To

d
- (R2U8) = -(2g!cp)(1 - !1)UR2. [13]
dz

These equations, which are a slight gen
eralization of those used by Morton et at.,
represent conservation of fluid mass, par
ticulate mass, vertical momentum, and
energy, respectively. The quantity !1 ap
pearing in the last of Eqs. [13] is defined as

dT
!1 = -(cplg) - . [14]

dz

In the atmosphere !1 is the lapse rate; in a
fire situation !1 is a measure of the room

stratification induced by the fire. For an
adiabatic atmosphere, !1 = 1 and the flux
of excess mean energy in the plume (R2U8)
is constant. This possibility arises because
in the absence of any molecular heat
transport dissipative process, or distributed
heat sources and sinks (as opposed to
the source at z = 0), the plume is adiabatic.
If the surroundings are also adiabatic,
there can be no net energy exchange
and the constancy of the energy flux
follows. The lapse rate will be treated as
a prescribed constant, consistent with
the assumption that there are no large varia
tions in ambient properties. The entrain
ment constant Q' will be taken as 0.07, the
value recommended by Turner (3).

Equations [3] and [13], or equivalently,
Eqs. [4], [5], and [13], must be supple
mented by initial conditions which describe
the nature of the source at z = 0 which

generates the plume. Let Ino be the mass
flux released by the source, of which x oln 0

is particulate. It is further assumed that the
size distribution of the particle flux is given
as 7TCPo(V). If Qo and Po are respectively the
flux of heat and momentum released by the
source, then the following conditions hold
at z = o.

cP = CPo(v),

p7TR2U = Ino,

X = 2xo,

cpln08 = 2Qo,

7TpU2R2 = 2po. [15]

We turn in the next section to the solution

of the plume equation [13], subject to initial
conditions given in the last four of Eqs.
[15]. With these solutions in hand, we are
then in a position to return to the main prob
lem in the following section and complete
the study of the coagulation process itself.

4. THE PLUME SOLUTION

It is convenient to introduce nondimen

sional variables by scaling U, 8, R, and X

by the initial conditions. We choose the
following normalization.

z = zot,

R = Q'Z0"Y/(t),

8 = (2Qolcplno)8(t),

U = (4gQozollnoCpTO)1/2(J(t),

Zo = (lno/2p7TQ'2)2/5(lnocpTolgQO)1/5. [16]

The choice of Zo will become clear below.
We also introduce new dependent variables
~, M, p2, and H, which are respectively
proportional to the particulate mass, fluid
mass, momentum, and energy flux in the
plume. They are defined as

X = 2xo~,

(J"y/2 = M,

(J"y/ = P,

(J"y/28 = H.

In terms of these variables, the plume equa
tions (Eqs. [13]) take the form

dM-=2P
dt '

M~ = 1,
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P2d (P2) = M(H - X),
dt

dH

dt
[ 18]

The dimensionless verticol position f can
then be obtained from

2

I(1-X)IKIV(v/KUt = 2 {I + (4KlIv)
WIKIV

To proceed, it is convenient to introduce

[22] the first two moments, <1>0 and <l>I. of the
initial distribution

The equations contain two dimensionless
parameters, X and v2, defined by

X = (xocpmoTo/Qo)'

v2 = (zomog/Qo)(1 - il). [19]

The initial conditions, Eqs. [15], may be re
written in terms of the new variables as

[25]

5. THE SOLUTION OF THE
COAGULATION EQUATION

We wish to solve Eq. [5] for the particle
flux distribution cp(v,z) subject to the initial
condition cp = CPo(v) given in the first ofEqs.
[15]. The particle flux distribution plays the
same role as the number distribution does in
homogeneous coagulation. Similarly, the
total number flux <I>(T) plays the role of the
homogeneous number density. The total
number flux is defined by the relation

Above this height, the fluid spills out of the
plume into the surrounding atmosphere and
the plume ceases to exist as an organized
structure. With these results in hand, we
now return to complete the solution of the
coagulation equation.

x [f((1 - x)/Kiv) - f(y)]}-1/2dy. [23]

The solution thus consists of Eqs. [22] and
[23], and the second of Eqs. [18]. It is ex
pressed parametrically in terms of W. The
source is at W = 1 - x. The buoyancy
force W decreases as the vertical height
increases. At W = 0, the buoyant force
becomes negative, and steadily retards the
plume until the value W/Kiv = -1 is
reached. At this point, the vertical momen
tum p2 vanishes. Thus, the maximum plume
height t max is given by

2

I(1-XJIKIVtmax = (Ki/v) -1 {I + (4K1/v

x [f((1 - x)/Kiv) - f(y)]}-1/2dy. [24]

[21]

W(t) = H - X,

W(O) = 1 - X.

£,(0) = M(O) = H(O) = 1,

P(O) = (mocpTopol27T(X2pgQoz~)1/2 == Po. [20]

Thus, the problem is reduced for it is seen
to depend upon the three dimensionless
parameters X, v2, and Po. Physically, X

measures the relative effectiveness of par
ticulate loading and the heat flux on the
plume buoyancy. The quantity X must be
less than unity if a buoyant plume (as op
posed to a forced jet) is to exist at all. The
quantity v2 measures the importance of
ambient stratification over the length scale
Zo; while Po measures the ratio of initial to
induced plume momentum. The scale Zo is
chosen by the requirement that the nor
malized particle mass fraction £' vary
through the range 0 :S £' :S 1.

The solution procedure is essentially that
due to Morton (2). We introduce a new
buoyancy variable W, defined by

Two integrals can be obtained by eliminat
ing t between the first three of Eqs. [18].
They are

p4 + W2/V2 = ((1 - X)/V)2 + Pt == Kt,

M2 = 1 + (4KlIv){f((1 - x)/Kiv)

- f(W/Kiv)},
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[32]

[33]

mocpTo 1( v )1/270 = 4a2gz~Qo ~ 4Kf

Equations [32] and [23] parametrically de
fine the relation between 7 and t. Since the
integral appearing in Eq. [32] is bounded
as W/Kiv --i> -1, 7 has a finite maximum
value 7max, given by Eq. [32] with W/Kiv

= - 1. Physically, this means that the co
agulation process "freezes," in the sense
that the equivalent homogeneous process
abruptly stops at a fixed point in time. We
now consider this phenomenon in detail.

- fey) + v/4KiJ}-1/2dy,

Here, as in Eq. [16] of Ref. (9), ~o(p) is
the Laplace transform of the initial con
dition.

At this point, however, the analysis di
verges sharply from that appropriate to
homogeneous coagulation. This follows from
the relation between 7 (or A) and the di
mensionless vertical position in the plume
t. Using the definition of 7 in Eq. [4] to
gether with the normalization introduced in
Eqs. [16] and the plume solutions given in
Eqs. [22] and [23], one can write 7 in
the form

6. RESULTS

The problem has now been reduced to
the evaluation of two dimensionless inte
grals, one corresponding to a reduced height,
hr (Eq. [23]), and the other to a reduced
time, T (Eq. [32]):

hr = 2t(v/K1)1/2,

The quantities T and hr are parametrically
related through their dependence on the
quantity W/Kiv. Some care must be taken
in performing the integration in Eq. [32J
because of the singularity of the integrand
at y = ±1 and because of the smallness of

[28]

[30]

cp = (<I>2/<I>I)tfJ(v,A),

v = V(<I>O/<I>I)'

<1>(7)/<1>0 = 1 - A.

<1>0 = LOO (f>o(v)dv,

<1>1 = fa"" vcpo(v)dv. [26]

Integrating Eq. [5] over v, one readily ob
tains the solution for the total number flux
<I>(z) as

Using Eq. [27], we can transform Eq. [5]
into the reduced form used in our previous
study (9) of homogeneous coagulation. Note
that the ratio <1>1/<1>0 defines a natural volume
size scale. Thus, we define new dependent
and independent variables as follows:

This transformation of variables is essen
tially the same as the similarity transforma
tion introduced by Swift and Friedlander
(10) and Wang and Friedlander (11).

Equation [5] then becomes

atfJ(V,A) = r tfJ(v' ,A)tfJ(v - v')dv'. [29]all. 0

Equation [29] is now identical to Eq. [12]
of Ref. (9), with Eqs. [28] replacing Eqs.
[13]-[15] of that work as the definitions of
tfJ, A, and v. The initial conditions may also
be written in the form (compare Eqs. [17]
and [18] of (9))

tfJ(v,O) = tfJo(v),

r tfJo(v)dv = 1,

r vtfJo(v)dv = 1.

Finally, the solution can still be obtained
by Laplace transform techniques as
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where

2

REDUCED HEIGHT. h,

A =1.0

A = 0

A = 0.1

-& 1.0
-&

~'"
'"

0.6

~ co

~'-'=>

~

800°C. The surface gas velocity is assumed
to be zero and the temperature gradient in
the enclosure is taken to be IO°C/m.

The relationship between i and he is
shown in Fig. 2 for both the smokestack
plume and a smoldering smoke-source
pl~me. The curves terminate at the point
where the velocity of the rising plume goes
to zero. One unit of the reduced height he

corresponds to about 100 m for the smoke
stack and to about 8 cm for the smolder
mg source.

An important result of our study is the
calculation of the dependence of the particle
number flux on height. It is convenient to
display the result in terms of the reduced
number flux and the dimensionless plume
parameter A.

<1>/<1>0= 1/(1 + Ai), [34]

A = <l>orTo. [35]

From the plots of i versus he in Fig. 2,
one can readily obtain the curves for the
reduced number flux as a function of the
reduced height. The curves in Fig. 3 cor
respond to the smokestack plume while
those in Fig. 4 correspond to the smolder
ing source. It is seen in both figures that
for values of A greater than 0.1 the particle
number flux is significantly affected by
coagulation.

FIG. 3. The particle number flux is plotted versus
height for various values of the plume parameter A.
The parameters (I - x)lKjv (=0.99765) and v/4K~
(=4.32 x 10-5) were chosen to be representative of a
smokestack-type plume.

FIG. 2. The relationship between coagulation time
and height in the plume for a smokestack-type plume
(v/4K~ = 4.32 x 10-5 and (1 - X)/Kjv = 0.99765) and
for a smolder-generated plume (v/4Kf = 3.03 x 10-6
and (1 - x)lKjv = 1.0).

20

22

2

REDUCED HEIGHT. h,

the quantity v/4K1. The method used is out
lined in the Appendix.

The analysis developed above is now
applied to a smokestack plume and a plume
from a smoldering punk stick. The effluent
of a I-m-radius smokestack is assumed to
be at 4000K with a flow velocity of 15
m/sec. The fraction of fuel converted to
particulate, Xo, is taken to be 2 x 10-3•
These values are estimates for a local coal
power plant. Also, a value of -6.5°C/km
is assumed for the temperature gradient in the
atmosphere with a base temperature of300oK.

The punk (imported from the Orient as
incense sticks) consists of a bamboo stick
core with a square or rectangular cross
section, 1 to 2 mm in width. A finely ground
mixture of cellulosic material, binder, and
oxidant coated the stick to a final diameter
of about 3 mm. The mass flux was found to
be 3.5 x 10-4 g/sec with about 10% of the
fuel appearing as particulate. A heat flux of
1.3 x 106 ergs/sec was obtained on the basis
of an estimated surface temperature of
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0.1 0.2 0.3 0.4 0.5 3.55

REDUCED HEIGHT, h,

NINo

Substituting the appropriate values for a
smokestack plume, one obtains To - 10-8
sec2/cm. Assuming a coagulation frequency
r of 10-9 cm3/sec, one finds that <Po must
be greater than about 1016 particles/see for
coagulation to be significant (A > 0.1).
This flux corresponds to a number concen
tration on the order of 108 particles/cm3•
The corresponding result for the smoldering
case is a number flux -5 x 109 particles/
see and a number concentration ~ 1010

particles/ cm3•

Once the parameter A has been deter
mined, the timelike variable A defined in
Eq. [28] is known. Thus, any moment of
the flux distribution function can be deter
mined in terms of its initial value. These
quantities, together with the reduced fluid
mass flux M, determine the moments of the
particle distribution function N( v,z) (see
Eq. [4]). The first two moments are shown
plotted in Fig. 5 for the two cases considered
when A = 1.0. The ratio of the total par-

2

REDUCED HEIGHT, h,

FIG. 5. The particle mass concentration t; and
reduced number concentration fI/N 0 are plotted versus
height for a smokestack plume and a smoldering
source plume. The plume constant A is 1.0 for these
plots.

-- --

A = 0.1

A = 1.0

>Go 1.0
>Go

~
0.8

'"

~ 0.6'" ~zc 0.4

~
0.2

(V ) 1/2 To
To = -- ------ [36]

4K1 4a2gz5(T - To)v

The shape of the aging curves (Figs. 3 and
4) is controlled by the time versus height
curves (Fig. 2). The heavily laden, slowly
rising smoldering plume produces a very
fast initial growth in T. This is responsible
for the rapid decay in particle flux shown
in Fig. 4. The smokestack plume, on the
other hand, behaves initially like a forced
momentum jet and is very lightly loaded.
The coagulation is both slower and more
uniformly spread over the vertical extent
of the plume than is the case in the smolder
ing plume. In both cases, there is a notice
able tendency for the coagulation process to
freeze due to the dilution produced by the
entrainment of particulate-free air. The
small apparent increase in coagulation im
plied by the decrease in <p/<poat the top of
the plume (see Fig. 3) is an artifact of the
model. It is caused by the large increase
in time T induced by the vanishing of the
vertical velocity at this point. In fact, the
model breaks down here, predicting an in
finitely wide plume at the final height.

The estimation of the plume parameter
A can be useful for determining whether
coagulation will have a significant effect
in a given situation. Assuming Q is given
by lnocp(T - To), one finds

FIG, 4. The particle number flux is plotted versus
height for various values of the plume parameter A.
The parameters (I - X)/K711 (=1.0) and 1I/4Kr (=3.03

x 10-6) were chosen to be representative of a smolder
ing source in an enclosure.
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mined from the general analysis given 10
Sections 2 and 5.

The quantity D32 is defined by

L~D3nDdD
D32 = ---- , [37]

L~D2n DdD

where nDdD is the number concentration
in the particle diameter range D to D + dD.

The quantity D32 when expressed in terms of
the flux variables assumes the form

FIG. 6. The particle size is plotted versus height for
various values of the plume parameter A. The param
eters (I - X)/K~v (=0.99765) and v/4K1 (=4.32
= 10-5) were chosen to be representative of a smoke
stack.

ticle number density to its initial value,
denoted by NINo in the figure, is deter
mined from the relation

The reduced particle mass fraction t; is ob
tained from the second of Eqs. [18]. The
mass fraction, being a conserved quantity,
is determined solely by the hydrodynamics.
Thus, the difference between the t; curves is
solely due to the different mass entrain
ment rates caused by differences in ambient
stratification and initial momentum. The ad
ditional relative discrepancy between the
number density curves may be attributed
to the differing coagulation rates described
above. In the absence of coagulation, the
plots of t; and NINo would be identical.

A final application concerns the mean
particle size. The decrease in number flux
with increased height is accompanied by an
increase in particle size as the particles
coagulate. Because of recent advances in
optical sizing techniques (12), it is perhaps
easiest to follow the coagulation process by
measuring the volume surface mean particle
diameter D32 as a function of plume height.
As an aid to such an experiment, it is shown
below how the quantity D32 can be deter-

D32= (6!7r)l/3(<I>l/<l»1/3 if t/lYJ2/3dYJ rl, [38]

where YJ (=V<I>/<I>l) is closely related to v in
Eq. [28]. Our previous study (Ref. (9))
showed that t/I to a good approximation
depended on only the variable YJ for smoke
aerosols generated both by flaming com
bustion and by smoldering combustion. As
suming this to be strictly true, then the
only term in Eq, [38] depending on plume
height is the number flux <1>.Thus D32 can
be expressed as a function of the initial
values of D32 and <I>and as a function of the
number flux, <I>(z),

D32 = D~2[<I>o/<l>(z)]l/:J. [39]

Once the particle number flux is cal
culated as a function of plume height from
Eqs. [33] and [34], the dependence of
particle size on height is readily obtained
using Eq. [39]. As an example, particle size
is plotted as a function of height in Fig. 6
for the smokestack example. It is seen from
Figs. 4 and 6 for the case A = 1 that as the
particle size has increased by about a factor
of two, the number flux has dropped by
about a factor of nine. This is expected
based on the cube root dependence be
tween particle size and number flux in
Eq. [39].

APPENDIX

The method used for performing the inte
gration in Eq. [32] is outlined below. In
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order to simplify notation, Eq. [32] is
expressed as

T = f' {(1 - y2)

X [f(O') -f(y) + ,B]}-112dy, [AI]

where
a = (1 - X)/KIv,

,B = v/4Kt

s = W/KIv.

The functionf(y) can be expressed in one
of the following forms to a precision of
better than 1%:

f(y) = C/6 - 2114[4/5 - 1/18(1 - y)](1 - Y )514,

f(y) = Y - y3/12 - 3y5/160,

f(y) = -C/6 + 2114[4/5 - 1/18(1 + y)](1 + Y )514,

C = r(1/4)r(1/2)/r(3/4).

0.7 < y < 1,

-0.7 :=; y :=; 0.7,

-I:=;y:=; -0.7,

[A2]

Due to the smallness of the parameter ,B

when the running variable S is near one, the
integral must be resealed to obtain reason
able numerical accuracy. The integral can
be simplified under these circumstances to

T = A-Ul°(5/2)215 r (1 + U512)-l/2du, [A3]6,

where

51.

(J - [1 - Y]l12
- ." 4(2)1/4'

1.= ,B + f(O') - f(1) = ,B - 21144/5(1 - 0')514.

The above expression is valid for A > O.
For A < 0 the corresponding result is
given by

T = (- A)-1110(5/2)215(4/5) r (1 + W2)-315dw,01

where

In the range -0.95 < z < a -0.05, the
integration in Eq. [AI] is performed by
straightforward application of the trape
zoidal rule. For S ~ -1, it is again neces
sary to rescale because of the integrable
singularity which results from the ambient
stratification.

T = (2)1/2 ro [f(O') + f(1)11

The integral in Eq. [23] is evaluated by a
similar method. Again the change of vari
ables identified in case 1 or case 2 is used.
The trapezoidal rule integration may be
applied to S = -1 because there is no
singularity in the integrand of Eq. [23]
ass~-1.
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