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Dipl.-Ing. RainerSiebel
Gerhard-Mercatetniversitt, Duisburg, Germary

Strategiesfor the developmentof detectionalgorithms

1. Intr oduction

Multi-sensor/Multi-criteriabasedfire detectorsrequirefar more complicateddetection
algorithmsascomparedo simplethresholddetectorswhicharestill usedassinglesensor
basedire detectors.Cheapandpowerful microprocessorareavailableto carry out this
task. They maybeimplementedn eachdetectoror alternatvely asa centralprocessing
unitto carryoutthefire or no-firedecisionfor all measuredaluesbeingtransmittedrom
varioussensofgroupsof afire detectionsystem.

A combinationof smolke- andheat-sensoris at presentrequentlyusedin fire detection
systems. The discussionsiot only on this congressshow that a threefoldsensorcom-
bination using smole, heatand a gassensorgfor example CO) might be usedin the
foreseeabléuture.

The adwvantageof sucha threefoldcombinationis obvious for the simplereasonthata
morereliablealarmdecisionis possiblef it is basedntheobsenationof differentphys-
ical phenomenassociateavith a genuinefire.

The combinationof smolke- andheat-sensons advantageous caseof openflamefires
but the heatsensomoesnot helpif theimportantclassof smolderingfiresis considered.
A combinationof smolke-andC O-sensorhowever, would bebeneficialin thelattercase.

At presentherearestill someimportantrestrictiongo betakeninto consideratiorfior the
designof new detectionalgorithmsof highercompleity.

1. They possiblyrequiremuchmore computationapower for eachsensorcombina-
tion. For hundredsof sensorgerline this may quickly exceedthe availablecom-
putationalpower of a centralprocessingunit sincepartof it is resened for other
administratve tasks(line protocols handlingof displaysetc.).

2. Manufacturersof fire detectionsystemsarefor goodreasonshot too eagerto re-
placetheir tried, testedand reliable central processingunits by completelynew
deviceswith more powerful processorbecausea completeredesigns extremely
expensve! For this reasorthe availableprocessingpower aswell asthe“Random
AccessMemory” (RAM) resourcesreusuallyratherlimited.

3. Thetestauthoritiean Europeinsistto understanétleastthe principledesignrules
of a detectionalgorithm. This is importantasfar asthe selectionof the detection
methodis concernedo avoid problemswhich may occurlaterin the certification
process.

For thesereasonst is recommendablé& pursuea certainstratgy andto keepin mind
the givenrestrictionsduringthe earlydesignphaseof a new detectionalgorithm.



2. Binary signal detection.
2.1 Principle solution of the detectionproblem.

Figurel shaws a block diagramof a multi-sensotaseddetectorandfigure 2 illustrates
the modeof operationof the decision-blockfrom figure1. H, denoteshe so called
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Figure 1: Block schemeof a multi-sensotbasedletector
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“zero-hypothesis”j.e. the signalss;(¢) or signalvectorsS|H, originatefrom no-fire
situations. CorrespondinglyhypothesisH; denotesall signalss;(t) or signal vectors
S|H; originatingfrom fire situations.

Eachsignalvectorpointsto onespecificlocationinsidethemultidimensionabbsenation
spacewhichis hereschematicallyplottedasatwo dimensionakpace.



In theaim to drav anunambiguouslecisionit is necessaryo subdvide the obsenation
spacento two disjointsubspacesrlhis means:

if thesignalvectorpointsto thesubspacé’; = thedecisionis: alarm.

if thesignalvectorpointsto thesubspacé’, = thedecisionis: no-alarm.

Unfortunatelysignalvectorsg‘\Ho andg\Hl undereitherhypothesesnay pointto both
subspace¥, andI';. Hencewe have not only two typesof correctdecisionsut more-
overtwo possibletypesof wrongdecisions afalsealarmor amissedalarm.

Themostsimplecase:thresholddetectorfor onesensor(Herethe obsenationspaces a
onedimensionaktraightline.)

Neaest more complicatedcase: Two subsequentlyneasuredsaluesfrom one sensor
or onemeasured/aluefrom eachof two sensors.(Herethe obsenation spaceis a two
dimensionaplane.)

andsoforth: onemeasuredialuefrom eachof threesensorgwith athreedimensional
obsenationspace.).

n measuredaluesfrom eachof m sensorgrequiresa representatiom am - n dimen-
sionalhyperspace).

Thewell known decisiontheoryclearly stateshow to divide the obsenation spacento
two disjoint subspacesaking into accountcertainoptimizationcriteria. The “Bayes”-
decisionruleis asfollows (seefor example[1], [2]):
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Fromthe formulaabove follows thatwe needto know the conditionalmultivariateprob-
ability densitiespg‘Hi(5‘|Hi) Vi € {0,1}. Unfortunately theseconditionalprobability
densitiesare neitherknown nor determinable.Particularly, our knowledgeconcerning
the signalsof differentsensorsn nofire situationss very poor.

Intuitively, engineersvould apply somethingsimilar to the above decisionrule even if
they have never heardof the “Bayesdecisionrule”.

Considerfor examplea decision,which is basedon one measured/alue from eachof
two sensorsor smolke and CO-concentration. A reasonablesubdvision of the total
obsenationspacecouldbechoserasshown in figure 3 wherewe have plottedasequence
of measuredsamplevaluess; (¢;), s2(ti) Vi € {1,(1),n} from a scatteringight smole
sensoranda CO-measuringdevice which hasbeenrecordedduring a TF2-smoldering-
test-fire.Eachpair of measuredaluesis representetdy onepointin thes;, ss-plane.

Intuitively, an engineemwould fix for exampletwo thresholdvaluessw;, sws in sucha
way that all pointsin the planewhich are above the thresholdsndicate more likely a
genuinefire thana no-fire situationandvice versa- accordingto the assumptiorof the
engineer This reasoningcorrespondso the decisionrule in egn.(1)but therehowever,
the conditionalprobability densitiesare assumedo be known andthus, the borderline
betweernthe subspacewould look quite different.

The “Bayesdecisionrule” moreover takesinto accountthe probabilitiesof occurrence
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Figure 3: Intuitive selectionof the subspacek, andI';.

for fire- andno-fire situations(g, andg;) andcost-or risk factors(K, and K ) assigned
to corrector incorrectdecisions.

Thus,theobsenationspaceds subdvidedinto two disjointsubspacel,, I'; asindicated
by thesolid line in the plot of figure 3. The correspondinglecisionrule in mathematical
termsis:

if ((s1(t;) > swy) or (sqo(t;) > swsp)) = alarm, (2

whichis asimpletwofold thresholddetector

Slightly morecomplicateds a subdvision of the obsenation spaceasindicatedby the
dashedinein figure3. Thisapproacheflectsthefact,thatsimultaneouslgxistingsmole
andC'O-concentrationndicatesmorelik ely afire thansolely the presencef smole or
CO-concentrationln this caseit makessenseo triggeranalarmatlower magnitude®f
bothsmoke andCO-concentration.

Thecorrespondinglecisionrule in this caseis asfollows:
if ((s1(t;) > swy) Or (so(t;) > sws) Or (s1(t;) + so(t;) > sws)) = alarm 3)

The joint evaluationof onesamplefrom eachof threesensorglik e for examplesmole,
heatand CO-concentration)s morecomplicatedbecausen this caseit is necessaryo

fix aborderplanein the 3-dimensionatpace.

If weintendto includenotonly actualsamplesgut alsothelastm sampledraluesof each
of the n sensorsignalsthenthe confusingtaskis to find an adequatéyperplanein an
m - n dimensionahyperspace Thus,thetaskbecomesnoreandmorecomplicatedvith

anincreasinglimensiorof theobsenationvectorandthequestionariseshow to simplify

thesolutionof thetask.



2.2 Feature extraction methods

Featureextractionis a suitablemethodto simplify the decisionproblemconsiderablyif
we wantto includethe history of signalsin our decision.

Featureextractionmeansto extract from eachsignal vectorgj, consistingof n subse-
quentlysampledvaluesof the sensorsignal,one(or afew) featuresm,, k € {1..4;} as

showvn schematicallyn figure4.

Thus,we obtainafeaturevector M of dimensiond 7", ¢;, whichis considerablysmaller
thanthe dimensionm - n of the combinedsignalvectors.We canusethe samedecision

methodaspreviously describedJsingthefeaturevectorJ\ZI :
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Figure 4: Schematicsketchof a detectomwith featureextraction.
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Featurextractionis animportantengineeringaskwhich requireso considerpreviously
known individual characteristic®f the sensorsand their specificresponsen fire- and
no-firesituations.Only afew examplesarementionedn thefollowing:

e Determinatiorof the averagerateof rise.

e Suppressionf thesignalfluctuationwhichis consideredo beirrelevantin nofire

situations.

e Rateof riselimitation for sensoisignalsin thosecasesvherestep-like changesre
unlikely to occureitherphysicallyor dueto thefeaturesof the sensoi(for example
heat) but where step-like changesmay occur due to datatransmissiorerrorsor

noiseinfluence.

e Accumulationof signalamplitudes.

¢ Determinatiorof significantspectratoeficients,if thesignalfluctuationof sensors

differsin fire- or no-firesituations.

¢ Jointevaluationof signalfeaturedrom differentsensorgcorrelation).

e.t.c.



The few examplesmentionedabove shov that featureextractionmethodsusually eval-
uatenot only actualsignalsamplesbut include moreover the temporaldevelopmentof
signals.As anadditionaladwvantagewve usuallyhave a smallervarianceof thefeaturesn
comparisorwith thevarianceof thesignalsitself becausédeaturesarecalculatecassome
sortof averagefrom severalsignalsamples.

Featureextraction is applicablewith more or less computationaleffort and storage-
capacityefficient methods.Onemethodto evaluatethe temporalbehaiour of signalsis

the socalled“windowing”-method,i.e. featureextractionis basedat eachtime instance
with anew samples; (k) onthelastn-samplegwherek denotesidiscretetime variable):

S (k) = {si(k), si(k — 1), 83k — 2),..., si(k —n + 1)}

If thennext samples;(k + 1) is dravn the eldestpreviously usedsamples;(k — n + 1) is
skippedandthe new samplevectorconsistf thefollowing components:

S (ke +1) = {si(k + 1), s:(k), s:(k — 1), ,si(k —n +2)}

Usually, we canfind a recursve calculationfrom this vectorfor whatever featureto be
calculatedn thefollowing form:

commoncig)mponents
mi, (S0 (k+1) = my (S (0) + flsilh+1),5(k), - silk —n+2) +
—f[g,-(k),... ,si(k—n+2l,si(k—n+1)] 4)

commoncomponents

Recursve calculationgreducethe computationakffort significantlybut not the required
storagecapacity

Sincefeaturesareusuallycalculatecassomesortof averageonaccounof therandomna-
ture of thesignals thefollowing alternatve methodis not only computationallyefficient
but savesmorewer storagecapacity

my; (k) = a-my;(k—1)+ (1 —a)- flsi(k), si(k—1);{s;(k)}] and0.9<a<1(5)

In this formula f(-) denotesa so called“partial feature”which is calculatedeitherfrom
the actualsamples;(k), or from two subsequensamplesof one sensor or from one
sampleeachof two sensors.
The updatedfeaturem;, (k) is calculatedfrom its previous value m;, (k — 1) andthe
actually calculatedpartial feature f(-). This type of recursionis called “exponential
windowing” and operatedike a digital filter with RC-low-passtransfercharacteristic
wherethe partial featureis the input signalandthe outputcorresponds$o the smoothed
partial featurevalues. The denotatiorn‘exponentialwindowing” indicates thatthefilter
outputcorrespond$o the sumof anexponentiallyweightedinput sequencef the partial
featureswith highestweight for the actualinput and decreasingveightsfor previous
partialfeatures.
Theconstant determineshe 3dB-cutoff frequeny w, of thelow-passcharacteristior
the“memory-depthrespectiely.

_ In(a)

Wy ==X, with At, thesamplingperiod.



Apart from that, the useof integer or byte arithmeticsaves storagecapacityfor random
accessvariablesas well as computationtime becauset is often possibleto substitute
multiplication- and division-operationgy simple shift operationsand integer or byte
variablesrequirelessstoragecapacityby definition.

Althoughour electronictechnologyoffersenormougprocessingower andgiantstorage
capacityon onechip it seemdo be importantat presento regardthe abose mentioned
aspectsThedevelopmenbf new controlandindicatingequipmentvith powerful central
processoraindlarge storagecapacityrequirestime andenormousexpenditures But the
useof tried andtestedexisting equipmenwith newly implementedietectionalgorithms
setshardlimits with respecto storagecapacityandcomputatiortime perdetector

A centralprocessinginitin afire detectionsystemmustcarry out for exampleonedeci-
sion/secbasedn featureextractionandpreprocessingiethodgor hundredthof sensors
or sensocombinationspartfrom variousadministratvetasks.For thisreasoronly afew
fractionsof millisecondsremainas computationtime for eachsensorcombinationof a
multi-sensordetectorandthe total amountof requiredRAM-storagecapacityis propor
tional to thetotal numberof detectors.

2.3 Automatic decision

The mode of operationof the decision-blockin figure 1 or figure 4 we have already
discussedn the previous section- i.e. the division of the obsenation- or feature-space
into two disjoint subspacesThis taskcanbe solved by two differentapproaches:

by arule baseddecision or by atrainedclassifier

For both of thesemethodsherearevariousdifferentrealizations.Equationg2) and(3)
representvithoutdoubtsimplerule basedlecisions Clearly, therule basebecomesnore
complicatedf morefeaturesareinvolved.

The adwvantageof a trainedclassifieris, that the designerdoesnot needto think about
variouscomplicatedrules for plenty of featuresbecauseheserules are automatically
determinedduring the training phasein a neuralnetfor example. In otherwordsthe
neuralnet automaticallysubdvidesthe multidimensionalobsenation- or feature-space
into thesubspacek, andT’;.

Someproposalaisingneuralnetsasfire detectorarealreadyto befoundin theliterature.
For this reasont seemdo be necessaryo investigatethe chancesand shortcomingsof
this method- particularly becausdhere are software tools available which configure
andtrain neuralnetswithout arny requirementor the userto understananuchaboutthe
background.

3. Detectorswith neural nets.
3.1 Realization of a neural net.

Eachneuronhasn + 1 continuousvaluedinputswheren denoteitherthetotal number
of vector component®of the input featurevector M (or the signal vector.S) which is
appliedto the input nodesor the numberof neuronsn the previouslayer. Eachneuron



Figure 5: Sketchof aneuralnet.

computesaweightedsumof its input elementssubtractsa variablethresholdandpasses
theresultthrougha hard-limiting nonlinearitysuchthatthe outputis betweerD and1.

Oj(k) = 0o (zn: Wy 4 Oz(k' — 1)) with 00(]{,' — 1) =1 ando,-(O) =1m; (6)
1=0

In the above formula k£ denoteghe neurallayer andthe indicesi, j the neuronsin the
k — 1'standk’th layer, respectiely. The inputs of eachneuronare weightedoutputs
(with weightw; ;) of the neuronsof the previous layer (or the input nodevalues). The
nonlinearityo(...) is of a “sigmoid type”; two representatie examplesof which are
shavn in figure6.

0
-10 10

Figure 6: Hard-limiting nonlinearityof sigmoidtype o (z)



A netasshown in figure 5 transformghe setof all input vectorsto a setof outputvalues
in therange0..1with a moreor lesssteeptransitionbetweer0 and1. This corresponds
nearlywith thetaskto subdvide the obsenationspacento two subspaces,e. to assign
avalueof 0 = no-fireto all elementof a subsebf theinputvectorsandavalueof 1 =
alarmto the complementargubsebf theinput vectors.

If abinarydecision(fire or no-fire)is requiredoneneuronis sufiicientin theoutputlayer
with its outputvaluesin therangeO..1. If we interpretthe outputvaluessuch,that for
outputvalues>0.5 the probability for a fire is higherthanfor outputvalues<0.5, we
only needoneadditionalthresholdcomparisorto achieze anunambiguouslecision.

TDecision

1= alarm 1
0.8
0.6
0.4
0.2
0= noalarm 0

smole- 200

value T

Figure 7: Decisionfunction plotted above the obsenation spacewhich corre-
sponddo figure 3 or equation(3), respectrely.

Thus,the outputof a neuralnetdefinesanalmostbinary function above the obsenation
space.For the simpleexampleaccordingto equation(3) andfigure 3 the corresponding
neuralnet output function is shovn in figure 7. The precisemodelingof this simple
decisionrule (equation(3)) requires2 input nodes,3 neuronsin the first layer and 1
neuronin the secondayer, which is the outputlayerin this case.Moreover, 9+4 weight
factorsare necessaryvhich indicatesthe considerableeffort. For this reasonthe rule-
basedsolutionis preferablan suchsimplecases.

3.2 Advantagesand shortcomingsof neural nets.

At first glancea neuralnetis attractve from the point of view thatevenin the caseof
obsenation-or feature-ectorsof high dimensiorandperhapsonfusingrulestheneural
net learnsthe underlyingrules during a training phase. This requiresto assignin ad-
vancethe correct(or required)decisionto ary of theinput vectorsof the training setby
ateacher

All weightsw; ; areinitialized by smallrandomvalues.During thetraining phasethein-
putvectorsarerandomlyselectedrom thecompletesetandeachcorrespondin@utputis
calculated Fromthedifferencebetweerthe calculatecoutputandtherequiredoutputall



weightsin thenetareupdatedwith the socalled“error back-propagatioalgorithm” for
example)suchthatthe meansquare error for all inputvectorstendstowardaminimum.

It hasbeenshawn that a trainedneuralnet for certainassumptionlassifiesprecisely
accordingo thedecisionrule in equation(1) (seefor example[3], p.14).

The disadvantagesare:

1. thecomputationakffort is enormousn comparisorwith otherclassifierspotonly
during the training phase(which can be carriedout off-line) but alsoduring the
classificatiorphase,

2. the training proceduredoesnot guaranteean optimal solution, i.e. the training
phasanustperhapserepeatedereraltimeswith differentweightinitializations,

3. only vaguestatementsboutthe necessarywumberof neuronsin differentlayers
arepossible,

4. thefinal classificationperformancalepends/ery muchon the correctselectionof
the obsenation vectorsand even on the particularselectionsequencesduring the
trainingphase,

5. high partialerrorsmay occur(while classifyingsingleinput vectors)althoughthe
meansquareerrorindicatesa goodoverall classificatiorresult. This might leadto
falseor missedalarms,

6. andlastbut notleast- it is almostimpossibleto comprehendhis classifyingmethod
in detailevenif it worksproperly becauseve do not know the classificatiorrules
afterthetrainingphase.

Someadditionalremarksconcerningtem 3 andthefollowing:

Item 3.:
3.1: n-neuronsin the first layer and 1 neuron in the output layer
(Two-Layer-Perceptron):

Eachneuronin the first layer subdvidesthe (2D)-obseration spaceby a straightline,
the (3D)-obserationspacedy a planeandthe (mD)-obserationspaceby a hyperplane,
the inclination of which is determinedby the correspondingveightsw; ;. With sucha
structureit is possibleto separateopenor simple enclosedregionsin the obsenation
space. The numberof neuronsin the first layer determinethe detailsof the separated
regionswhich are separatedy polygons(seefor examplefigure. 7 with 3 neuronsin
thefirst layer). The outputneuroncarriesout somesort of logical OR operationwhich
resultsin a final decisionregion thatis theinclusionof all partialregionsformedin the
first layer.

This statemenis truefor sigmoid-nonlinearitiesvith almosthard-limitingcharacteristic.
For soft-limiting characteristicsthe edgesof the boundingpolygonsof the separated
regionsaresmoothed.



3.2: Threeneural layerswith oneneuron in the output layer
(Three-Layer-Perceptron):

With a 3-layer structureit is possibleto form arbitrary complex decisionregionseven
with separate@nclosedegionsbelongingto the sameclass.

Hence,more than 3 neuronlayersare not necessaryo solve an arbitrary complicated
classificatiorproblembut it is not prohibitedto usemorethan3 layers.

Item 4.: The aggregateof obsewation vectorsduring the training phase.

One fundamentakequiremento achiese a safe classificationis, that the obsenation-
vectorsin the training setarerepresentatie for all possiblyoccuringfire situationsand
scattereadverthewholeobsenation-spaceuringthelearningphasej.e. mary differ ent
obsenation-vectorsandtheir assignedlass(fire or no-fire) mustform the aggreateof
the training set. Specialattentionmustbe paid to the subsetof training vectorswhich
cannotbe assignedefinitely to one or the other classor thosevectorswhich point to
approximatelythe sameregion in the obsenation spacewith contradictorymeanings
assignedy theteacher Thefinal classificatiorof the trainednetwork for contradictory
training vectorsis with higherprobabilityin favour to thosevectors,which appeamore
oftenin thetraining setwith the sameassignedneaning.

Contradictorytraining vectorscanbe avoidedif theteachembseresthe following rule
in assigningthe requiredclass,which was alreadymentionedas part of the “Bayes”-
decisionrulein equation(1).

IS qo - Ko z q - Kg?

Hereqy, denoteghe probability of occurrencdor suchavectorduringa no-firesituation
andq; = 1 — g, the probability of occurrencdor a similar vectorduringa fire situation.
K, andKj arethecorrespondingost-fictorsfor wrongdecisionsj.e. K, thecost-factor
for afalsealarmand K the cost-factorfor amissedalarm.

Therequiredclassmustbe assignedo the hypothesisvith the higherfactor

Moreover it is of importanceto selectthe training-vectorsat randomanduniformly dis-
tributedfrom the completetraining-vectoraggreate.

Item 5.: Averageclassification-error and partial-err ors.

Thelearning-progresduringthetraining-phasés indicatedby a decreasingneansquare
classification-errowhichis calculatedaccordingo thefollowing sum:

_ 1 X
= NE_: )

or, moresimply, by alow-pasdfiltered sequencef the squaredartialerrorsog;y — t(;).
Here, N denoteshe total numberof training-\vectors,o;y the classificatiorvalue of the
outputneuronfor thei-th training vectorandt; the correspondlng:orrector required
outputvalueassignedy theteacher

F = 0 canonly be achievedaftera sufficiently long training-phaséf no conflictingvec-
torsexistin thetraining-vectoraggreate.Unfortunately this doesnot hold for automatic



fire-detectiorproblemsotherwisefalse-alarmer missedalarmswould notoccurin prac-
tice. Consequentlythe averageclassificatiorerrorreducesluringthetraining-phasend
finally fluctuatesarounda minimum value >0 andthe learningphaseis stoppedif no
morelearningprogressanbeachieved.

Evenif the averageclassification-errors sufficiently small, somepartial errorsmay be
high andthusleadto wrongclassification®f thetrainednetwork in certainsituations.
Particularly, if therequirementsnentionedn item4 areneglectedthis mayleadto missed
alarmsor unnecessarfalsealarmsfor 3-layerperceptronsvith mary neuronsn thefirst
andsecondayer.

For thisreasora smallmeansquareclassification-errois notat all anadequateriterion.
It is moreover urgently recommendedo inspectclosely all training-vectorswith high
partial-errorsandtheir real classificatiorafterthetraining phase!

An adequateconfigurationof the neuralnet (numberof layersand numberof neurons
per layer) may help to avoid sucherrors,thoughthereis no otherrule than: the least
numberof neuronsandlayersbeingsufficientandnecessaryo achievealow meansquare
classificatiorerror.

Generally neuralnetsarebeyond doubt,powerful classifiers.Their usein automatidire
detectionsystemgsequiressomecaution,however, asshovn by theremarksabove - not
to mentionthe problemof explaining with someplausibility their modeof operationto
theauthoritiesof atestinstitutefor example.

4. Testof new designeddetection-algorithms.

A performanceestis animportantpartin thedesignprocesof anewly developeddetec-
tion algorithmindependenof the chosentype of detector Personatomputersn these
dayscanbe usedasa powerful andrigoroustestequipment.If the detectionalgorithm
is software-implementedn the PC, it canbe testedin time-lapsemode,usingrecorded
datafrom fire-testsor, with artificially generatecandrandomlyvariedsignalsequences
for fire- andno-firesituations.

Thoughall manugcturerknow the specifictestproceduregarriedout by testinstitutes
for certification,it is not recommendabléo restrictthe performanceaestto EN54-fires,
for example becausén practiceit is veryunlikely thatafire developsaccordingo EN54-
conditions.

In our Institute, the sensorsignalsare recordedduring the sametest-firefrom various
sensotheadswhich areplacedin differentlocationson the ceiling of thefire laboratory

Someof thesdocationsarechoserarbitrarily unfavourablefor detectiorpurposesThus,

the reproducibility conditionsaccordingto EN54 are usually not fulfilled for all sensor
combinationsgout therecordedsignalsstill represenfiresto be detected.

Moreover, typical falsealarmsituationsare eithersimulatedor appliedasrecordedsig-

nalsmeasuredn moreor lessfalsealarmrelevantervironments.

We have alreadyreportedabouta specialtest methodwhich usessignal-modelswith
stochastiovariation of recordedsignals(seefor example: [4]). This methodgenerates
from acomparatiely smallsetof recordedsignalsn fire- andno-firesituationsarbitrarily
mary randomlyvariedtestsignalswith similar characteristic¢correlationfeaturesthan
thoseof therecordedsignals.



As a measureof quality, we comparethe detectionfeaturesof the newly designedal-
gorithm eitherwith a simple thresholddetectoror with the previously useddetection
algorithmof themanugcturer

Summary

After someintroductoryremarksconcerninghe chancesandstill existing restrictionsin
thedevelopmenbf improvedmulti-senso#/multi-criteriadetectorsthe principlesolution
of adetectionproblemhasbeendiscussed.
Thetaskbecomesnoreandmorecomplicatecandconfusingasmoresensorsand/orcri-
teriaareto betakeninto considerationlt wasshown thatfeatureextractionsimplifiesthe
problemandthe useof recursve methodseduceghenecessargomputationaéffort.
Specialattentionwas paid to neuralnetsas classifierswith the principal advantageof
learningeven complicatedrules automaticallyduring a training phasewith the aid of a
teacher But alsothe shortcomingsandrisks associatedvith neuralnetsas classifiers
have beendiscussed.

The complity of multi-sensot/multi-criteria detectorsrequirescareful performance
tests. A few experimentaltestswith EN54-testfires areinsufficient for a rigoroustest
in the opinion of theauthor

Testmethodsusing computersimulationswith randomlyvariedtestsequencesor fire-
andno-firesituationsareproposedsanalternatve.
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