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Abstract

In this paperthe theoryandsomeexperimentalresultsof a new approacto
fire detectionalgorithmsare discussed.The algorithmis basedon a signal
classificationprinciple, which is widely usedin the field of speechrecogni-
tion. The sensorsignalsaretransformednto appropriatefinite time series.
The transformationis donein a preprocessingtepthat extracta suitablese-
guencefrom the signalsto be classified. The time seriesare modeledby a
HiddenMarkov Model (HMM). The classificationof a recognizedsequence
is thefinal stepwith respecto thedecisionmakingprocess.

1 Introduction

Advancesn semiconductotechnologyhave influencedhe developmenibf fire detection
algorithmsto a high degreein recentyears. The useof microprocessorm fire detection
devicesis nearlystate-of-the-arttmprovementf detectvity hasbeenachievedin modern
fire detectionsystemsandependentlyf the designschemewith respecto centralor dis-

tributedintelligence.Implementatiorof improved detectionalgorithmsleadsto reduced
falsealarmratesandgooddetectionfeaturesn comparisorwith the classicalthreshold
detector

Modernfire detectionalgorithmsare often basedon a fuzzy logic or a neuralnetwork

approach. They might include somesort of featureextraction methodsappliedto the

sensorsignals.

In thefollowing wewill introducetheconcepbf statisticaimodelsof sequentiatlatawith

respecto thefire detectionproblem.



2 Hidden Markov Models

Let usconsideranurn—and-balsystem1], [2]. We assumeéhatthereareN (large)glass
urnsin aroom. Within eachis a large quantity of coloredballs. Thereare M distinct
colorsof the balls. The physicalprocesdo obtainobsenationsis asfollows. A genius
is in theroom, and,accordingto somerandomprocedureit choosesninitial urn. From
this urn, a ball is chosenat random,andits color is recordedasthe obsenation. The
ball is thenreplacedin the urn from which it wasselected.A new urn is the selected
accordingto therandomselectionprocedureassociatedvith the currenturn, andthe ball
selectionprocesss repeated.The entireprocesgenerates finite obsenation sequence
of colors,which we would like to modelasthe obsenrable outputof an Hidden Markov
Model (HMM).

Obviously, the simplestHMM that correspondgo the urn—and-ballprocessis onein
which eachstatecorrespondso a specificurn, andfor which a (ball) color probabilityis

definedfor eachstate.The choiceof urnsis dictatedby the statetransition—matrixof the
HMM.

Furthermorejt shouldbe notedthat the ball colorsin eachurn may be the same,and
the distinctionamongvariousurnsis in the way the collectionof coloredballsis com-
posed.Thereforeanisolatedobsenation of a particularcolor ball doesnot immediately
tell whichurnit is dravn from.

2.1 Elementsof an HMM

The above experimentconsistsof draving balls from urnsin somesequence Only the
sequence®f ballsis shavn to us. An HMM for discretesymbolobsenation suchasthe
urn—and—balmodelis characterizetby the following:

1. N, the numberof statesin the model. Although the statesare hidden, for mary
practicalapplicationsthereis often physicalsignificanceattachedo the statesof
the model. Thus, in the urn—and-balimodel, the statescorrespondo the urns.
Generally the statesareinterconnecteth suchaway thatary statecanbereached
from ary otherstate.However, otherpossibleinterconnectionsf statesareoftenof
interest.In thefollowing individual statesarelabeledas{1,2,...,N} andthe state
attimet is denotedasg;.

2. M, the numberof distinctobsenationsymbolsper state. The obsenation symbols
correspondo the physicaloutputof the systembeingmodeled.For the urn—and—
ball experimentthe obsenation symbolsare the colorsof the balls selectedrom



theurns.We denotetheindividual symbolsasV = {vi,Vz,...,vm }.
3. T, thelengthof anobsenationsequence.

4. O=(010;...0r) theobsenationsequencewhereQ; denoteghe obsenationat
timet.

5. Thestatetransitionprobabilitydistribution A= {a;;} where
aj=P(qt1=jlg=i), 1<i,j<N
definesthe probability of beingin statej attimet + 1 giventhatwe werein statei
attimet. For the specialcasewhereary statecanbereachedrom ary otherstate

in a singlestep,we have ajj > 0 for all i, j. For othertypesof HMMs, we would
have a;j = 0 for oneor more(i, j) pairs.

6. Theobsenationsymbolprobability distribution B = {bj(k)},
bj(k) = P(Or = w|at =), 1<k<M

definesthe probability of observingthe symbolO; = v attimet giventhatwe are
in statej.

7. Theinitial statedistributiont= {15}, in which

% =P(g1=1), 1<i<N

definesthe probability of beingin statei atthebeginningof the experiment(i.e., at
t=1).

It can be seenfrom the above that a completespecificationof an HMM requiresthe
specificationof two modelparametersN andM, specificationof obsenation symbols,
andthespecificatiorof thethreesetsof probabilitymeasure#, B andr. For corvenience,
A = (A, B, ) will beusedasacompactotationto denotean HMM.

Using the model, an obsenation sequence = (0105 ... Or) is generatedsfollows:

We start our experimentat time t = 1 by choosingone of the urns, accordingto the
initial probability distribution 1T, then we choosea ball, the obsenation symbol from

this urn. The stateandthe obsenation symbolat timet = 1 aredenotedasq; and O,

respectrely. After thiswe chooseanurn (maybethe sameor a differentfrom the urn at

t = 1) accordingo thetransitionprobabilitydistribution A andagainselecta ball (denoted
asOy) from this urn dependingon the obsenation symbolprobability bj (k) for thaturn

(state). The continuationof this procedureup to timet = T generateshe obsenation

sequenc® = (0105 ... O7).



2.2 TheThreeProblemsfor HMMs

Most applicationsof HMMs arefinally reducedo solving threemain problems. These
are:

Probleml: Giventheobsenationsequenc® = (0,0, ...0Or) andamodelA = (A, B, 1),
how dowe efficiently computeP(O| M), the probabilityof theobsenationse-
guencefor agivenmodel?

Problem2: Giventheobsenationsequenc® = (010, ... Or) andamodelA = (A, B, 1),
how do we choosea correspondingstatesequencé = (g10z ... qr) such
thatP(O, Q|A), thejoint probabilityof theobsenationsequencandthestate

sequencés maximized?

Problem3: How do we adjustthe HMM modelparameteA = (A, B, 1) sothatP(O|A)
or P(O,Q|A) is maximized?

Problem1 is the evaluationproblem,namely givena modelanda obsenationsequence,
how do we computethe probability that the obsenation was producedby the model?
Problem1 can be viewed as one of scoringhow well a given model matchesa given
obsenationsequencel-or example,if we considerthefire detectionproblemthe solution
of problem1 allowsto make analarmdecision.

Problem2 is theonein whichwe attemptto uncoverthe hiddenpartof themodel. Typical
usesmight beto learnaboutthe structureof the model,to find the optimal statesequence
for agivenobsenationsequence.

Problem3 is the onein which we attemptto optimizethe modelparameterso bestde-
scribehow a given obsenation sequenceomesabout. The obsenation sequence$o
adjustthemodelparameterarecalledtrainingsequencebecausé¢hey areusedto “train”
the model. This problemis the crucial onefor mostapplicationsof HMMs, becausat
allows usto createbestmodelsfor realphenomena.

2.3 Typesof theHMMs

Oneway to classifytypesof HMMs is by the structureof the transitionmatrix A. In the
specialcaseof ergodicor fully connectedHMMs every statecanbe reachedrom every
otherstateof themodelin asinglestep.
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Figure 1. Two typesof HMMs

As showvn in Figurel(a),for anN = 4 statemodel,we have

ail a2 13 a4

a a a; a;
A= [2H T2 T3 4 it > Oforall 1<, j < 4

az1 agz2 az3 azg
41 42 43 a44

For someapplications particularly the one discussedere, othertypesof HMMs have
beenfoundto accountfor obsenedpropertieof thesignalbeingmodeledbetterthanthe
standartergodic model. Onesuchmodelis shovn in Figure1(b). This modelis called
a left-right—-modelbecausehe underlyingstatesequencassociateavith the modelhas
the propertythatthe systemstatesproceedrom left to right astime increasesClearly,
the left-right-typeof HMM hasthe desirablepropertythatit canmodelsignalswhose
propertieschangein time in a successie manner(e.g., increasingsensorsignal values
obtainedform a scatterindight smoke sensor).Thetransitioncoeficientshave the prop-
erty

ajj =0, j<i

Hence hotransitionsareallowedto statesvhoseindicesarelowerthanthatof thecurrent
one.Clearly theinitial statedistributiont= {15} is givenby

1, i=1
0, i#1

T['i:



becaus¢hestatesequencenustbeginin statel. Often,with left—right-modelsadditional
constraintsareplacedon the transitioncoeficients. A constraintof theform

ajj =0, j>i+Ai

is often usedto make surethatlarge changesn stateindicesdo not occur In particular
for theexampleof Figurel1(b), thevalueof Ai is 2.

3 Realization

A discussiorof the solutionof thethreeproblemsof HMMs will exceedthe scoreof the
paper The solutionof problem3, the synthesisor training problem,is not necessarily
partof a detectionalgorithm. The parametere®f anHMM canbe viewed asparameters
of the detectionalgorithmwhich have to be adjustedoy a precedingrainingprocedure.

Thesolutionof probleml, the analysisproblem,will be discussedaterfrom thecompu-
tationaleffort point of view which is of someinterestasfar asthe practicalrealizationis

concerned.

3.1 Theparametersof theHMM

We areusinga left-right—-modelwith N = 10 states.The numberof distinctobsenation
symbolsperstateis M = 15. Here theobsenationsymbolsrepresentertainsensosignal
values.Thelengthof anobsenationsequencequalsT = 12. We usea samplingrateof
0.2 Hz. Hence the obsenationlengthcorrespondso a durationof 1 minute.

Theinitial statedistributionTt= {135} is givenaccordingo thechoseneft-right—-modeby

a10x 1 vectorwith only onenonzerocomponenti.e. Ty = 1. Theremainingparameter
the transition probability distribution, representedy a 10 x 10 matrix, aswell asthe

obsenationsymbolprobabilitydistribution, representetly a 10 x 15 matrix, areadjusted
by acoupleof trainingsequences,e, we used30 training sequencetakenfrom testfires

of typeTF1,TF3,TF4, TF5andTF7.

3.2 Solution of Problem 1

A straightforvard way to determineP(O|A) is by enumeratingevery possiblestatese-
quenceof lengthT. ThereareNT of suchstatesequences.

Theprobability of theobsenationsequenc® = (01 O, ... O7) giventhe statesequence



Q= (0102 ... qr) andthemodelX is
T

P(O|Q,A) = []1P(Ctlak, A

(0[Q,A) t|:l( |Gk, A)

= le(Ol) ) sz(OZ) bQT(OT)

The probability of sucha statesequenc&) canbewritten as

P(Q‘ )‘) = T, " 8quq2 " Agpaz * " " Agr_1qr
The probability thatthe O and Q occursimultaneouslyis the productof the above two
terms
P(0, Q) =P(0[Q. MP(QA)

Theprobabilityof O giventhemodelA is obtainedoy summingthisjoint probabilityover
all possiblestatesequence®. Hence we have

P(O[A) = %P(OI Q, MP(Q[A)

Fromthelastequationwe seethatthe summandnvolves2T — 1 multiplications. Hence
summationover all possiblestatesequencesequires(2T — 1)NT muiltiplications and
NT — 1 additions.Evenfor smallvalues,N = 10 and T = 12, this meansapproximately
2.3- 103 multiplications. Clearly, a more efficient procedurds requiredto solve prob-
lem 1. Sucha proceduresxistsandis calledtheforward procedure.

Considertheforwardvariableo (i) definedas
(Xt(i) = P(Ol, O, ...,0, = i‘)\)

i.e., the probability of the partial obsenationsequenceQs, Oy, ..., O, (until timet) and
thestatei attimet giventhemodelA. We cansolve for oy (i) inductively, asfollows:

1. Initialization

2. Induction

N
ai+1()) = [.Z\Gt(i)aij] bj(Ot+1) 1<t<T-1,1<j<N

3. Termination

2

POIA) = 3 ar(i)



Again, let us examinethe numberof multiplicationsinvolved with this procedure.The
initialization stepinvolvesN multiplications. The inductionsteprequiresN multiplica-
tions plus onefor the out of braclet bj(Ot1) term. This hasto be donefor 1 < j <N

andfor 1 <t < T, which amountsto (N + 1)N(T — 1) multiplicationsin the induction
step. The terminationsteprequiresno further multiplications. Hencethe total number
of multiplicationsis N+N(N+1)(T —1). For N =10andT = 12 we needabout1200
computationgor the forward procedureascomparedo 2.3 - 102 requiredby the direct
computatiorof P(O|A).

3.3 TheAlgorithm

The algorithmwe usedworks asfollows: At eachdiscretetime instantt (e.g., multiple
integerof 5 secondsanobsenationsequenc® is takenfrom the sensosignalincluding
the currentsignalvalueaswell asthe 11 precedingsignalvalues. Thenthe a posteriori
probability P(O| A) is calculatedaccordingto the forward—procedure.

4 Experimentsand Results

In this sectionwe presensomeresultstakenfrom a computersimulationof thealgorithm
describedabore. The following plots showv the output signal s(t) of a scatteringlight
smole sensoandthea posterioriprobability P(O|A) plottedas

P*(O, A) = min(150, —log[P(O|A)])

The performancef the systemin caseof atestfireTF1is in thefollowing plot.
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Figure 2: Sensorsignals(t) andthe logarithmof the a posterioriprobability P(O|A) in
caseof testfireTF1



Obviously, P(O|A) is maximum(or equivalent:P*(O, A) is minimum)about100seconds
afterthesmole sensorsignals(t) leavesthe steady—statealue.

Figure 3 shaws the preformanceof the systemin caseof a smolderingfire, i.e. testfire
TF2. Here,the maximumof P(O|A) is reached0 secondsifterthe smole sensoisignal

s(t) leavesthe steady—statealue.
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Figure 3: Sensorsignals(t) andthe logarithmof the a posterioriprobability P(O|A) in
caseof testfireTF2

Figure 4 shaws the preformanceof the systemin caseof a slowly developingfire, i.e.
testfireTF7.
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Figure 4: Sensorsignals(t) andthe logarithmof the a posterioriprobability P(O|A) in
caseof testfireTF7



Again, the maximumof P(O|A) is reached0 secondsifterthe smole sensorsignals(t)
leavesthe steady—statealue.

Finally, in the last simulationpresentedherewe usedan artificial burst signal. Signlas
likethisaremostunlikely to occurin realfire situtationsput may, for example,occurdue
to electromagnetinfluences.
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Figure 5: An artificial burstsensosignals(t) andthelogarithmof the a posterioriprob-

ability P(O[A)

Obviously, themaximumvalueof P(O| A) (theminimumvalueof —log(P(O|A))) ismuch
smaller(greater)ascomparedo the lastthreeexamples.Note, a classicalthresholdde-
tectorwill reachits alarmconditionin caseof the shawvn artificial burstsignal.

5 Conclusion

In this paperwe have derived a new approachfor fire detectionalgorithms. The key
elementof our approachwhich appeargo be quite useful,is a Hidden—Marlov—Model.
To be moreprecise we useda left—right—-model. Simulationstudieshasbeenpresented
which shaw the ability to improve detectionfeaturesin comparisionwith the classical
thresholddetector
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