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1. Introduction

Predicting the macroscopic properties of composite or porous materials with
random microstructures is an important problem in a range of fields (Bergman,
1978; Hashin, 1983; Torquato, 1991; Sahimi, 1993). There now exist large-scale
computational methods for calculating the properties of composites given a digital
representation of their microstructure; e.g. permeability (Bentz and Martys, 1994;
Adler et al., 1990), conductivity (Adler et al., 1992; Roberts and Teubner, 1995)
and elastic moduli (Garboczi and Day, 1995; Poutet et al, 1996). A critical
problem is obtaining an accurate three-dimensional (3D) description of this
microstructure (Bentz and Martys, 1994; Crossley et al., 1991; Yao et al., 1993).

For particular materials it may be possible to simulate microstructure formation
from first principles. Generally this relies on detailed knowledge of the physics and
chemistry of the system, with accurate modeling of each material requiring a
significant amount of research. Three-dimensional models have also been directly
reconstructed from samples by combining digitized serial sections obtained by
scanning electron microscopy (Kwiecien et al., 1990), or using the relatively new
technique of X-ray microtomography (Flannery et al., 1987). In the absence of
sophisticated experimental facilities, or a sufficiently detailed description of the
microstructure formation (for computer simulation), a third alternative is to
employ a statistical model of the microstructure. This procedure has been termed
“statistical reconstruction’ since the statistical properties of the model are matched
to those of a two-dimensional (2D) image (Quiblier, 1984; Adler et al., 1992;
Bentz and Martys, 1994; Roberts, 1997b). Statistical reconstruction is a promising
method of producing 3D models, but there remain outstanding theoretical
questions regarding its application. First, what is the most appropriate statistical
information (in a 2D image) for reconstructing a 3D image, and second, is this
information sufficient to produce a useful model? In this paper these questions are
addressed, and the method tested against experimental data.

Modeling a composite and numerically estimating its macroscopic properties is
a complex procedure. This could be avoided if accurate analytical structure—
property relations could be theoretically or empirically obtained. Many studies
have focused on this problem (Hashin, 1983). In general, the results are
reasonable for a particular class of composites or porous media. The self-
consistent (or effective medium) method of Hill (1965) and Budiansky (1965) and
its generalization by Christensen and Lo (1979) is one of the most common for
particulate media (Hashin, 1983). No analogous results are available for non-
particulate composites. A promising alternative to direct property prediction has
been the development of analytical rigorous bounds (reviewed by Willis (1981),
Hashin (1983) and Torquato (1991)). There is a whole hierarchy of these bounds,
each set tighter than the next, but depending on higher and higher order
correlation functions of the microstructure. The original Hashin and Shtrikman
(1963) bounds that have been widely used by experimentalists implicitly depend on
the two-point correlation function of the microstructure, although the only
quantities appearing in the formulas are the individual properties of each phase
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and their volume fractions. To go beyond these bounds to higher-order, more
restrictive (i.e. narrower) bounds, it is necessary that detailed information be
known about the composite in the form of three-point or higher statistical
correlation functions (Beran and Molyneux, 1966; Milton and Phan-Thien,
1982b), which do appear explicitly in the relevant formulas. Evaluation of even
the three point function is a formidable task, so use of these bounds has in the
past been restricted to composites with spherical inclusions. It is now possible to
evaluate the bounds for ncn-particulate composites (Roberts and Teubner, 1995),
and it is interesting to compare the results with experimental and numerical data.
If the properties of each phase are not too dissimilar the bounds are quite
restrictive and can be used for predictive purposes (Hashin and Shtrikman, 1963).
Sometimes experimental properties closely follow one or the other of the bounds,
so that the upper or lower bound often provides a reasonable prediction of the
actual property even when the phases have very different properties (Torquato,
1991; Roberts and Knackstedt, 1995). It is useful to test this observation.

In this study we test a generalized version (Roberts, 1997b) of Quiblier’s (1984)
statistical reconstruction procedure on a well-characterized silver-tungsten
composite. Computational estimates of the Young’s moduli are compared to
experimental measurements. The composite is bi-continuous (both phases are
macroscopically connected) and therefore has a non-particulate character. As such
the microstructure is broadly representative of that observed in open-cell foams
(such as aerogels), polymer blends, porous rocks, and cement-based materials. By
comparing the computations of the moduli to the results of the self-consistent
method 1its utility for non-particulate media can be tested. An advantage of the
reconstruction procedure used is that it provides the statistical correlation
functions necessary for evaluating the three-point bounds. Comparison of the
Young’s modulus to the bounds therefore allows the bounds’ range of application
for predictive purposes to be determined.

2. Statistical models of microstructure

The two basic models employed to describe two-phase composite microstructure
are the overlapping sphere model and the level-cut Gaussian random field (GRF)
model. In this section the statistical properties of these models which are useful
for reconmstructing composites are reviewed . The simplest, and most common,
quantities used to characterize random microstructure are p, the volume fraction
of phase I, s,, the surface area to total volume ratio and p®(r), the two-point
correlation function (or y(r) = [ p@(r) — p*}/I p — p?] the auto-correlation function).
p3(r) represents the probability that two points a distance r apart lie in phase 1.
Here, only isotropic materials where p‘® does not depend on direction are
considered. Also note that p=p®(0) and 5,=—4 dp(z)(O)/dr.

Realizations of the overlapping sphere model (Weissberg, 1963) are generated
by randomly placing spheres (of radii ry) into a matrix. The correlation function
of the phase exterior to the spheres (fraction p) is p@(r)=p*"/ for r < 2ry and
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p@(ry=p? for r > 2ry where

3/r 1/r\?
v(r)_l+4(r0) 16(r0) ’ (M
and the surface to volume ratio is s,=—3p In p/ro. With modification it is also
possible to incorporate poly-dispersed and/or hollow spheres. The overlapping
sphere model is the most well characterized of a wider class called Boolean
models, which have been recently reviewed by Stoyan et al. (1995).

The internal interfaces of a different class of composites can be modeled by the
iso-surfaces (or level-cuts) of a stationary correlated Gaussian random field (GRF)
y(r) (so called because the value of the field at randomly chosen points in space is
Gaussian-distributed). Moreover, if r is fixed, the distribution over an ensemble
will also be Gaussian. Correlations in the field are governed by the field—field
correlation function g(r) = (y(0)y(r)) which can be specified subject to certain
constraints [| g(r) | <g(0), lim ,_,g(r)—0]. Invariably g(0) is taken as unity. A
useful general form for g is (Roberts, 1997b)

et — (ro/E)e "™ sin 2mr/d
1 —(r./8) 2nr/d

gr) = (2

The resulting field is characterized by a correlation length £, domain scale d and a
cut-off scale r.. The cut-off scale is necessary to ensure 1 —g(r)~r? as r—0;
fractal iso-surfaces are gencrated if- 1 —g(r)~r. There are many algorithmic
methods of generating random fields. A straight forward method is to sum N
(~1000) sinusoids with random phase and wave-vector

N
y(r) = \/% Z cos(k,-f( T+ ), €))
=1

where ¢, is a uniform deviate on [0, 2n) and k; is uniformly distributed on a unit
sphere. The magnitude of the wave vectors k; are distributed on [0, oo) with a
probability (spectral) density P(k). The density is related to g(r) by a Fourier
transform [g(r):.[(;’Q P(k) sin kr(kr)™' dk]. Note that P(k)>0 specifies an
additional constraint on g(#). Although this formulation of a GRF is intuitive, the
Fast Fourier Transform method is more efficient (Adler, 1992; Roberts and
Reubner, 1995).

Following Berk (1987) one can define a composite with phase 1 occupying the
region in space where a<y(r)<f and phase 2 occupying the remainder. The
statistics of the material are completely determined by the specification of the
level-cut parameters and the function g(r) (or P(k)). The volume fraction of phase
1is

1Y
p=h=pg—p, where p,= (2n)_5J e/ dt, y=ua,p. @)
~00
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Berk (1987) and Teubner (1991) have shown that the two point correlation
function is p ®(r)= h(r) where

h(r)—h2+ng(r)‘ ¥ | ex (———9‘—2—)
=" n), Jice P\ T+

2_ 9 2 2
_2 ( LN )(_ﬁ__)]

The auxiliary variables & and A(r) are needed below. The singularity at = 1 can
be removed with the substitution ¢ = sin 6. The specific surface is s,=-4 Ah'(0)
where

)

' V2( [262 | 1727 4n’ 1
——h(O)——-z—T;(C +e ) @'4‘5'_2 (6)

with g given by Eq. (2). -

Many more models (for which p@(r) can be simply evaluated) can be formed
from the intersection and union sets of the overlapping sphere and level-cut GRF
models. Here we define a few representative models which have been shown to be
applicable to composite and porous media. A normal model (N) corresponds to
Berk’s formulation. Models can also be formed from the intersection (I) and
union (U) of two statistically identical level-cut GRF’s. Another model, I,,, formed
from the intersection of n primary models, has also been found useful. The
statistical properties (p, s, and p@) of each model are given in terms of the
properties of Berk’s model (Eqgs. (4)-(6)) in Table 1 (Roberts, 1997b).

Since the volume fraction of the models is a function of both level-cut
parameters (x, f#) there is a continuum of choices which correspond to a given
volume fraction. For example (x, f)=(-o00, 0.84), (—0.84, —0.25), (—0.25, 0.25),
(0.25, 0.84) and (0.84, co) in Berk’s model all correspond to p = 20%. The final
two choices are statistically identical to the first two and therefore provide nothing
new. It is noted that a small change in these parameters will only slightly alter the
microstructure, so as a compromise between simplicity and generality it is

Table 1 |

The volume fraction p, two-point correlation function p,(r) and surface to volume ratio s, of models
N, I, U and I, in terms of the properties [, A(r) and h’(0)] of Berk’s two-level cut Gaussian random
field model. The formula 4, is used for calculating the level-cut parameters (see Table 2)

Mod. p P(z)(’) Sy hy

N h h(r) —4 h'(0) P

1 n? i) —8hh'(0) JP

U h(2—h) [2 h2+2 h(r)—4hh(r)+h(r)) —8(1—h)R'(0) 1-JT=p
1, n H(r) —4nh" " 'R'(0) pln
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suggested only three distinct cases be considered: (i) the common single-cut field
(¢ =—00); (ii) a symmetric two-cut field (¢=—f); and (iii) an asymmetric two-cut
field. A concise way of expressing this is to take

c 4 c c
pa-—'i—'z"hp and Pﬁ=§+(1'—5)hp

where h, for models N, I, U and 1, is given in Table 1 and ce[0, 1]. Setting
¢=20,1 and % gives cases (i), (i) and (iii) respectively. The implicit formula for
finding («, ) from p, and pg is shown in Eq. (4). As an example the results of the
calculation for nine different models (N, I and U at ¢ = 0, % and 1) at volume
fraction 20% is shown in Table 2. The model N (¢ = 0) is the single level cut
GREF previously used by Quiblier (1984) and Teubner (1991). Model I (¢ = 1) has
been used to model aerogels (Roberts, 1997a) and model N (¢ = 1) is Berk’s
(1987) two level cut model of microemulsions.

3. Statistical reconstruction
3.1. The Jos‘hi*Quiblier-AdIer (JQA) approach

The basic idea of statistical reconstruction is to generate a three dimensional
(3D) model of a random composite using only statistical information measured
from a two dimensional (2D) image. Since 2D cross-sections are readily obtained
by common experimental methods this provides a very attractive method of
modeling porous and composite media. Quiblier (1984) developed a method
capable of producing a three-dimensional model with a specified volume fraction
and two-point correlation function. The method was first studied in two
dimensions by Joshi (1974) and has been extended by Adler (1992). Thus it has
been called the JQA model. We first give a summary of the procedure to
demonstrate its equivalence to the single-cut GRF model discussed in the last

Table 2

The level-cut parameters o and f for different Gaussian random field models are calculated by solving
Eq. (4) where p, =(¢/2)—(c/2)1, and pg=(¢/2) + (1—(¢c/2))hy. hy, is shown in Table | for each model and
c=0, % 1. This table shows the results of the calculation for volume fraction p = 20%

Model type Standard Asymmetric Symmetric
one-cut ¢ = 0 two-cut ¢ = 1/2 two-cut ¢ = |
a« B x B L B
Normal (N) —00 —0.84 —-0.84 ~0.25 -0.25 0.25
Intersection (I} —0o0 —0.13 —1.09 0.22 -0.59 0.59

Union (U) —00 ~1.25 —-0.76 —0.44 -0.13 0.13
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section. First p and pg‘)pl are measured from an experimental image. The level-cut
parameter f is fixed by the volume fraction (Eq. (4) with a= ~00). Second gexp(r:)
is obtained at the set of discrete points where pg)pt is measured by inverting Eq.
(5) with the left hand side set to pg)pt(ri) and a=—00. To carry out the inversion
the right hand side of Eq. (5) is expanded as a series in powers of g

PE(r) = P* + p(1 = p) Y _C L gerpu(r)I™, %)
=0

where the coefficients C,, depend on certain integrals of Hermite polynomials
(Quiblier, 1984). The series converges very slowly for g near one, and Adler (1992)
has discussed the inversion procedure in this case, and possible situations where
the equation has no solution. It is noted that the inversion can also be simply
carried out by numerical integration of Eq. (5) and a standard non-linear equation
solver.

Next it is necessary to generate a GRF with field—field correlation function
Zexpt(r). Quiblier’s original formulation involved the solution of a very large
system of non-linear equations for the terms of a convolution operator used in his
definition of a GRF. Adler (1992) simplified the procedure by reformulating the
problem in- terms of Fourier transforms, which is equivalent to a three-
dimensional version (Roberts and Teubner, 1995) of Rice’s (1944, 1945) method
for Gaussian processes in one dimension. In terms of the definition given in Eq.
(3) the inversion is equivalent to a numerical integration of
Pk) = (2/n)j0°° g(ryrk sin kr dr, where g is known only at a discrete set of points.
The inversion methods described above for g(r) do not guarantee that P(k) (or its
equivalent in other formulations) is greater than zero. However, Adler (1992)
found that if P(k) is negative at some points it is also small, and can be replaced
with zero. Finally the GRF is thresholded in the usual way to obtain the
reconstructed microstructure. Thus the JQA method produces a single-cut
Gaussian random field, which we have termed model N (¢ = 0).

In this paper a different implementation of the JQA method is employed
(Roberts, 1997b). At this stage we restrict attention to model N (¢ = 0). First, the
volume fraction of the model is set to that of an image: pmod = Pexpe. Second, the
experimental two point correlation function is fitted by varying the morphological
parameters of a given g(r) (Eq. (2)) to minimize the non-linear least squares error

Ne
> 1 Pa(rs) = Pt
22 _ =]
EPTY = —5; ) @)
Y [Gnri) = popl
=1

where Nr is the number of experimental points to be fitted. Numerical integration
is used to find pff,z,d(r,) (Eq. (5)). The minimization is very fast, but several
starting points should be used as a check against local minima. Once the
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parameters of g(r) are known an analytic form of P(k) is used to generate the
coefficients of the GRF (3). The reconstructed model is obtained by thresholding
the random field as described above. Note that pgz,d(r,») will not match pg‘)pt( r;)
exactly at each point as would be the case with Quiblier’s procedure. However
with this choice of g(r), P(k) is guaranteed to be positive. More general functional
forms of g(r) can also be employed.

For isotropic materials p and p®(r) can be exactly measured from a two (or
one) dimensional image. Hence the application of the JQA method results in a
model which shares p, s, and p®(r) with a real composite. The question is
whether or not the model provides an accurate and useful representation of the
original microstructure. In certain cases it appears to, in others it does not. First,
predictions of transport properties (conductivity and permeability) obtained from
reconstructed porous models under-estimate experimental and numerical data.
Second, the percolation threshold (the volume fraction at which the pore space or

Fig. 1. The statistical reconstructions (bottom row) of four different two-dimensional images by
adjusting the parameters (r., &, d and f) of model N(¢c = 0) to fit the auto-correlation functions
(middle row) of the original models (shown in the top row). The procedure used is very similar to that
of Quiblier. The results suggest that model N(¢ = 0) cannot mimic all types of microstructure, even
though it can reproduce the two-point correlation functions of all the cases shown. The models in the
top row are (from left to right), overlapping spheres, models N{c = 1), I{c = 1) and U(c = 1) (see
Section 2). The images are 128 x 128 pixels, and the length scale of the correlation functions shown in
the second row extends to 32 pixels.
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inclusion phase is no longer macroscopically connected) of model N(c = 0) is
around 10% (Roberts and Teubner, 1995) for the model, but many materials
exhibit lower thresholds (Roberts and Knackstedt, 1996). Both points indicate
that the pores (or inclusions) of the model are not sufficiently well connected to
mimic many physical materials. Third, we can test the model by trying to
reconstruct several of the distinct models defined in the previous section. The
results are shown in Fig. 1. Even though model N(¢c = 0} is able to reproduce the
correlation functions reasonably well, the reconstructions (i) do not in all cases
appear to reproduce the original microstructure and (ii) look quite similar to one
another. This indicates that irrespective of g(r), and the original image, model
N(c = 0) can only generate microstructures that are similar to those shown in the
final row of Fig. 1.

Quiblier (1984) has suggested that the ability of the method to generate a
reasonable model depends on the validity of the hypothesis that: all the necessary
information about the morphology is contained in the auto-correlation function.
Suppose this were true. Then since the JQA method is sufficiently general to
reproduce all reasonable two-point correlation functions (see Fig. 1), it must also
be able to generate all types of morphology. The discussion above (and Fig. 1)
indicates that model N(c¢ = 0) can only produce a limited class of microstructure
and therefore that the hypothesis is false. This does not mean that the method
cannot produce useful models, but we argue it will do so only when the original
material is approximately contained in the same limited class. If it is not, then a
model from a different class needs to be considered. This issue is discussed in the
following section. :

3.2. Using several models

From the foregoing discussion it is clear that a model more general than a
single level-cut random field is needed to reproduce the random isotropic
microstructures seen in many composite materials. At present there is no one
model that can achieve this. Instead it has been proposed that a number of
morphologically distinct models (N, 1 and U of Section 2) be incorporated
(Roberts, 1997b). This is very simple to do by using the relevant formula
for p&a(r) (Table 1) in Eq. (8). It was found that many of these models were
able to match any given p‘ci)p[(r) (providing further evidence that the two-
point correlation function does not provide sufficient information for a
useful reconstruction). The problem then becomes how to choose the best
model. Clearly higher-order statistical properties need to be taken into
account.

The quantities p and p@(-) are the first and second of an infinite hierarchy of
correlation functions, the three-point function p®Xr, s, t) representing the
probability that three points, distances r, s and ¢ apart fall in phase 1, and so
forth. Two random composites can only be said to be statistically identical if their
N-th order correlation functions (N =1, 2, 3, 4 ...) are identical (Yao et al.,
1993). Therefore the exact statistical reconstruction of a composite requires
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matching all of the correlation functions.? An obvious method of choosing the
best of several models is then to compare p® of each model to experimental data.
As well as being memory and time intensive (Berryman, 1985a) it has been shown
(Roberts, 1997b) that p®, like p®, may not contain the relevant morphological
information (i.e. it does not provide a strong signature of microstructure). A
comparative study of several high-order statistical quantities found that the
simplest and most discriminating signature of microstructure was the chord
distribution functions for each phase p(r) (j = 1, 2). p)(r) is the probability
that a randomly chosen chord in phase j has length r. A chord is defined as any
line-segment which lies entirely in phase ; with end points at the phase interface.
Like p@® the chord functions are the same whether measured from a two or three
dimensional element of the microstructure.

The chord-functions can be employed in a reconstruction algorithm as follows.
First the morphological parameters (the length scales in Eqgs. (1) and (2)) of each
model (overlapping spheres, or the the various level-cut GRFs) are chosen to fit
p2,. We have found that most models are able to provide a reasonable fit of
Pg(pt(r) (e.g. Ep® < 0.1). If this is not the case the model is unlikely to provide a
useful reconstruction and may be rejected. Second, of the remaining candidates,
the model that best reproduces the experimental chord functions pﬁ,{?,, is selected as
the best reconstruction. The error is quantified by a normalized least square sum

M

2
>[200 - s
[Ep(0]'= = _ | ©)

> [

i=1

where p{J) are the measured chord-distributions of the reconstruction for phase
Jj =1, 2 (at M points). The final reconstruction thus has approximately the same
chord functions as the experimental image as well as sharing the low-order
quantities p and p@(r).

A limitation of this ‘model-based’ technique is that one of the of models tested
must, for some choice of its morphological parameters, be able to approximately
reproduce the experimental microstructure. For example, it would be unlikely that
a model derived from the iso-surfaces of a random field would be able to mimic
the highly structured morphology of randomly packed hard spheres. In such a
case it would be expected that none of the model chord functions would
reproduce the experimental data. At present there have not been a sufficient
number of studies to provide numerical criteria on Ep{/) for acceptability. The
general approach outlined is not restricted to the models given in Section 2.
Ultimately it would be useful to incorporate poly-disperse overlapping spheres and

2 Technically, the model and composite may still differ by a point-process (Stoyan et al., 1995), but
this is unlikely to affect the macroscopic properties.
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other Boolean models such as those based on Poisson and Voronoi polyhedra.
The latter models have proved useful in the analysis of mineralogical materials
(King, 1996) and flow in porous filters (Bourgeois and Lyman, 1997). There may
also prove to be more useful discriminants of microstructure than the chord-
functions.

To conclude this section it is noted that a recent study (Yeong and Torquato,
1998) has considered a ‘model independent’ scheme based on sequentially moving
filled pixels (representing the target phase) on a grid so that the reconstruction
reproduces statistical properties of the original image. The method differs from
ours in that numerical estimates of p& replace p@4 in Eq. (8), and Egs. (8) and
(9) are coupled. The authors also employ the lineal path distribution function
LY(r) in Eq. (9) which is related to the pore-chord functions by p{)(r) =
L5, d®L{2(r)/dr* (Torquato and Lu, 1993).

4, Elastic properties
4.1. Theory

The basic information required for the evaluation of the effective moduli are the
volume fractions, and elastic moduli, of each phase; p (fraction of phase 1),
g = 1—p, k; and g; (i = 1, 2). A common approximation for the effective moduli -
is the self-consistent method (SCM) of Hill (1965) and Budiansky (1965) which
involves solving the equations of elasticity for a spherical particle of phase 1
surrounded by a medium of unknown effective moduli x, and u.. The results are
obtained by solving

P, 49 __3
Ke — Ky Ko —Kj 3K + 4p,

(10)

P4 _ Sket2u)
e~ Hy  He — M Sp(3Ke +4u,)

(1)

for k., p.. In the case where one of the phases is perfectly soft or rigid the results
exhibit a percolation threshold of p = 4. The formula is also symmetric to phase
interchange [k.(k1.g1,k2.82.p) = Ke(k2.82.k1,81,1 —p) etc]. These facts limit the
applicability of the SCM, since most composites have lower percolation thresholds
and many are not symmetric (Hashin, 1983). A more realistic formula is obtained
using a generalized SCM (GSCM) (Christensen and Lo, 1979) for the case of a
particle of phase 1 surrounded by a spherical shell of phase 2 (embedded in a
medium of the effective moduli). The result is complicated (Christensen, 1990) and
not reproduced here. The GSCM has zero percolation threshold, and is not
symmetric under phase interchange. For non-particulate media it is not clear
which phase should be associated with the inclusions and which with the matrix.
Below, both cases are conmsidered. Christensen (1990) found that the GSCM
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provided a better prediction of composite properties than other common methods,
so we shall not consider these here. It should also be noted that the volume
fraction is the only microstructural information included in the SCM and GSCM
results. This means that these formulae are insensitive to the distribution of each
phase, or rather that each formula has a ‘built-in’ microstructure, which may or
may not match the experimental one.

The difficulty in deriving general theoretical results for predicting the elastic
properties of random composites has provided the impetus for the development of
rigorous bounds (Torquato, 1991). For orientationally isotropic materials the
bounds take the general form (Quintanilla, 1998),

-1
o1y _ 4paley! —xi)’ 3pglcz — x1)?
((K )_—4_(1-('3—_.1}——{—-37 SKCS(K)_W (12)
-1
oy Pae Y 6eaGn — k) 13
62 ) HeS om0

where for a variable b, (b)=pb, +qb, and (b)=gb, +pb,. The additional
parameters I', A, £ and © depend on the level of microstructural information
available. If any of the moduli (x; or y,) are zero then the lower bound vanishes.
Similarly if any of the moduli are infinite the upper bound diverges.

If only the volume fractions of the composite are known

K1+ 2 4 ©= 1y (%2 + 8uy)

T=4', A=p, E=—1"71_
s H m O+ 81y) K2+ 240,

, (14)

and Egs. (12) and (13) are the bounds of Hashin and Shtrikman (1963) for the
case fp >y and x; > k,. The bounds only apply to well-ordered materials
[(k2—r1 M (pa—1y) = 0] and the inequality signs in the bounds must be reversed if
2 < py and k; < k. If further information is available in the form of three-point
statistical correlations it is possible to derive more restrictive bounds in terms of
the microstructure parameters (Milton, 1981),

- . 9 °°dr OodS ! (3) _P(z)(r)P(z)(s)

5 150 [ dr [* ds
n = .

I
=+ -—J ] duP4(u)(p(3)(r,s,t) - (16)

207" Tpg)y v o s

PP )
p

where t>=r>+s’—2rsu and Py(u) = §(3u* — 1) and Py(u) = 1(35u* — 30u® + 3) are
Legendre polynomials. In this case we have
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Here we have used the standard notation (b); = {;b1 + {3b, and (b), = n,b; + m,b;
where b; is any function of y; and x;, {=1-{, and 5,=1-—#,. With the parameters
given in Eq. (17), the bounds on x are due to Beran and Molyneux (1966) while
the bounds on u are those of Milton and Phan-Thien (1982). The development of
these bounds has been recently reviewed (Torquato, 1991; Quintanilla, 1998).
Below we consider the Young's modulus [E = 9xu/(3x+ )] and Poisson’s ratio
[v=08x—2u)/(6x+2u)] of a composite. The bounds on E (Hashin, 1983) and v
(Zimmerman, 1992) are

9y IKuity 3K — 24, 3y — 214
Bkt 3K+ 4y an 6rq+2uu_ves6xu+2u,’ ' (18)
where the subscripts refer to the upper and lower bound of Eqgs. (12) and (13). -
Depending on the level of microstructural information employed to find the
bounds on x and u Eq. (18) is referred to as the Hashin and Shtrikman (HS) or
Beran, Molyneux, Milton and Phan-Thien (BMMP) bounds respectively. The
microstructure parameters { and n have been evaluated for hard and overlapping
spheres (Torquato, 1991), level cut Gaussian random-field models (Roberts and
Teubner 1995) and can be evaluated for other Boolean models (Jeulin and Savary,
1997).

4.2. Computation

A microstructure made up of a digital image is already naturally discretized and
so lends itself to numerical computation of many quantities. For computing elastic
moduli, there are two methods available: a finite element method (Garboczi and
Day, 1995), and a finite difference method (Poutet et al., 1996). The finite element
method uses a variational formulation of the linear elastic equations, and finds the
solution by minimizing the elastic energy via a fast conjugate gradient method.
The finite difference method formulates the linear elastic equations directly in a
finite difference approach, and solves the resulting set of linear equations with a
similar conjugate gradient method.

For a porous material, with one solid phase and one pore phase, either method
can be used, as the zero normal force boundary condition at a solid--pore
boundary is easy to handle in either method. When there are solid--solid
boundaries between two different phases, the boundary conditions become
continuity of displacement and continuity of normal force. This is harder to
implement in the finite difference method, while it is just as easy to do as in the
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solid-pore case for the finite element method. The finite element method has been
used exclusively in this paper.

The finite element method is one that has been especially adapted for digital
images. It is for linear elasticity only. Each pixel, in 3D, is taken to be a tri-linear
finite element (Cook et al., 1989). There can be any number of phases, whether
isotropic or anisotropic, as long as each phase can be adequately depicted within
the resolution of the digital image used, and can be described with a single elastic
moduli tensor. Thermal strains can also be easily handled (Garboczi, 1998). The
digital image is assumed to have periodic boundary conditions. A strain is
applied, with the average stress or the average elastic energy giving the effective
elastic moduli (Torquato, 1991; Hashin, 1983). Details of the theory and programs
used  are reported in the papers of Garboczi and Day (1995) and Garboczi (1998).
The actual programs are available at http://ciks.cbt.nist.gov/garboczi/, Chapter 2.

4.3. Test case: overlapping sphere model

Before going ahead and reconstructing the W-Ag composite we first tested the
procedure for the overlapping sphere model for which the statistical properties can
be analytically evaluated (Torquato and Stell, 1983). A 3D realization of this
model is also easy to generate, so that the reconstruction can be carefully tested.
The overlapping sphere model (Fig. 2(a)) has previously been reconstructed using
the models derived from the level cut GRF’s (Roberts, 1997b). Model 115 (¢ = 0) °
was found to be the best reconstruction (Fig. 2(b)). To gauge the accuracy of the
procedure for the elastic properties of the tungsten-silver composite (see the
following section) the elastic moduli of the overlapping sphere model and its
reconstruction at volume fraction p = 20% (of the phase outside the spheres) has
been computed. The moduli of each phase at each temperature are set to the
corresponding value for silver and tungsten. The results, shown in Fig. 3, indicate
that the procedure performs very well. When the silver has non-zero elastic

Fig. 2. Cross-sections of (a) the overlapping sphere model, and (b) the best reconstruction (model 1o
¢ = 0). The volume fraction is p = 20% and the images are 96 x 96 pixels.
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Fig. 3. Young’s modulus of the overlapping sphere model (OS) compared with data obtained from the
best reconstruction (Recon.) [model 1,4 (¢ = 0)] (Finite element method). The Beran, Molyneux, Milton
and Phan-Thien (BMMP) bounds are seen to be more restrictive than the Hashin and Shtrikman (HS)
bounds for both models.

moduli, for temperatures below the melting point of silver, the reconstruction
provides an extremely good prediction of E (error <1%). At temperatures above
the melting point of silver, the silver is taken to have zero shear and bulk moduli,
and the reconstructed model is 9% stiffer than overlapping spheres. Since the
moduli depend most strongly on microstructure at high contrast (contrast =the
ratio of the Young’s moduli between the two phases) the latter error is likely to be
more indicative of the ability of the model to reproduce the microstructure of
overlapping spheres. Nevertheless the reconstruction provides a reasonable model.
Similar agreement was seen for the Poisson ratios (not shown).

An advantage of the method is that the BMMP bounds (Eq. (18)) can be
evaluated "(since pgl can be computed). The microstructure parameters for the
reconstruction [model I, (¢ = 0)] were estimated as {,=0.43, 5, =0.35 (Roberts,
1997b). The bounds (see Fig. 3) are significantly more restrictive than those of
Hashin and Shtrikman, and are seen to bound the finite element moduli of both
the overlapping sphere and reconstructed models. Above the melting point the
lower bounds are identically zero, as the elastic properties of silver have been
taken to be zero at this point. Actually, above the melting point of silver, it would
be more reasonable to suppose that the silver has a non-zero bulk modulus, with
a zero shear modulus. This is only important when comparing with experimental
results, however, and not in this model-model comparison.
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5. Application to a tungsten-silver composite

To quantitatively test the reconstruction method, experimental data need to be
available giving a picture of the material, properties for each individual phase, and
overall composite propertics. A well characterized system, suitable to test the
reconstruction procedures, is provided by the tungsten—silver (W-Ag) composite
of Umekawa et al. (1965). This composite was produced by infiltrating a porous
tungsten solid with molten silver (volume fraction of silver p = 20%). The
Young’s modulus of the composite was measured at a range of temperatures
above and below the melting point of silver (960°C). The elastic moduli of
each phase were obtained by measuring the moduli of pure samples of tungsten
and silver at each temperature. This data cannot be used directly because both
phases of the composite actually contained tiny spherical pores. These will reduce
the Young’s moduli and Poisson’s ratio of each phase. This effect can be
accounted for by applying well known results for dilute spherical inclusions
(Christensen, 1990). For porous materials (porosity ¢<1) the formulae can be
rewritten as

| s

By = Bn — pBa( 200 V), (9)
3 (v = DA -2, o

Vg = Vm — §¢((SV 7 —~)5(v,,. V“‘)); _ _ (20)

where E., v, denote matllix properties and E,, v, are the porosity modified

Table 3

The moduli of the silver and tungsten phases, as a function of temperature, after being corrected for
the internal porosity of each phase

Silver Tungsten

Temperature (°C) E (GPa) v E (GPa) v

25 . 71 0.36 400 0.28
200 69 0.36 392 0.28
400 63 0.36 383 0.28
600 54 0.36 373 0.28
800 45 0.37 363 0.28
860 42 0.37 361 0.28
910 39 0.37 359 0.28
950 37 0.37 357 0.28
960 37 0.37 356 0.28
960 0 0.50 356 0.28

1020 0 0.50 354 0.28
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values. The tungsten matrix had an internal porosity of 1% while the silver phase
had a porosity of 10% at room temperature, decreasing linearly to 5% at the
melting point. Table 3 shows the phase moduli used at different temperatures.

To reconstruct the W—Ag composite we digitize a photograph of the sample
(Fig. 4). All points below a selected threshold grey-level are set to black (the silver
phase) while the remainder is set to white. The image was blurred and re-
thresholded to remove the pores of the tungsten matrix (which appeared as silver).
This had little effect on peyp,e and pg%(},,, but a significant effect on the measured
silver chord distribution. The resulting image is shown in Fig. 5. The image
actually has a silver content of only 13.5%, significantly lower than the nominal
value of 20%. The statistical properties of the image are compared with those of
11 trial reconstructions in Table 4, while 2D slices of the models themselves are
shown, for purposes of illustration, in Fig. 6. Several of the models were unable to
reproduce pg)p, and were considered no further. A comparison of the chord
distributions indicated that model N (¢ =y 0) provided the best reconstruction. The -
auto-correlation function of this model ijcompared with experimental data in Fig.
7. The experimental and model chord-distributions are shown in Fig. 8. The silver
distribution pg()p, is well reproduced by the model at all lengths shown, while p D
performs less well at small chord lengths. Two and three dimensional images of
the model are shown in Fig. 9 (shown at the same scale as Fig. 5) and in Fig. 10.

For the purposes of computing the elastic properties of the model the length
scale parameters (&, r. and d) are maintained and the level cut parameter () of
the model is- altered such that p,.=20% (in accord with the experimental
composite). The Young’s modulus, computed using the finite element method, is

Fig. 4. The original scanned image from Umekawa et al. (1965) (236 x 204 um at 759 x 657 pixels).
The dark phase corresponds to tungsten and the lighter to silver.
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Fig. 5. The cropped (640 x 640 pixels) binary image obtained from the scanned image. This is the
sample used lo calculate the statistics of the composite (side length 198.7 pm). The black phase
corresponds to silver. .

compared with the experimental data of Umekawa et al. (1965) in Fig. 11. For the
temperature region below the melting point of silver the maximum error is 4%, a
very good result. Above the melting point of silver, when the silver phase is taken
to have a zero bulk and shear modulus, the error is only 3%. The agreement may

Table 4

A comparison of the statistical properties of 11 reconstructions with those of the experimental compo-
site; p = 13.5% and s,=0.17 pum™' (obtained from Fig. 5). Many of the models are able to reproduce
the low order statistical properties of the composite (Ep™® < 0.1). This shows that p®(r) does not
uniquely specify composite microstructure

Mod. ¢ e & d Sy Ep® Ep™ Ep®
N 0 2.16 2.15 13.0 0.19 0.05 0.03 0.28
N i 28.1 28.2 220 0.18 0.11

N 1 0o oo 25.6 0.18 0.10

1 0 2.88 2.89 12.5 0.20 0.05 0.28 0.88
1 4 13.4 13.5 15.9 0.18 0.06 0.32 0.53
1 1 327 321 17.4 0.17 0.05 0.11 0.38
U 0 2.69 2.68 13.1 0.18 0.05 0.08 0.30
U 3 60.2 144 355 0.20 0.15

U 1 o0 o] 43.0 0.20 0.15

ho 0 4.75 4.76 12.6 0.21 0.06 033 0.58
oS ro=3.75 0.21 0.25 0.49 0.45
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Fig. 6. Cross-sections of a portion of the original image (a) and the eleven trial reconstructions (b-1) at
p = 13.5%. The length-scale parameters of the trials are chosen to match pg)p,(r). The chord-
distributions (Table 4) indicate that model N(c = 0) (shown in (b)) provides the best reconstruction.
Each image has side length 39.7 pm.

actually be better than that, however. Since the elastic measurements were
dynamic measurements, the liquid silver can be considered as being trapped on
the time scale of the experimental measurement, before any significant flow could
take place, and so could still contribute to the effective moduli via its non-zero
liquid bulk modulus. Just before melting, the silver had a bulk modulus of about
35 GPa. If the bulk modulus is taken to be somewhat lower, in analogy to the
ice—water difference around 0°C, then a bulk modulus of 23.1 GPa causes the N
(¢ = 0) model to agree perfectly with experiment at temperature points above the
melting point of silver.

The bounds are also shown in Fig. 11. For model N (¢ = 0) the microstructure
parameters are {;=0.31 and 5,=0.27. The results bound the experimental data
and provide a reasonable prediction of the Young’s modulus below the melting
point of silver. Note that even if the silver phase is given a non-zero bulk modulus
past its melting point, the zero shear modulus causes the lower bounds for shear
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Fig. 8. The good agreement between the model and experimental chord distributions [silver: p ),
tungsten: p2(r)] indicates that model N(c¢ = 0) provides the best reconstruction.
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Fig. 10. The silver phase (shown as solid) of the best reconstruction [model N(c = 0)]. The side length
is 39.7 ym.
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Fig. 11. The experimental Young’s moduli compared with FEM data obtained from the best
reconstruction (Fig. 10). The Beran, Molyneux, Milton and Phan-Thien (BMMP) bounds for the
reconstruction and Hashin and Shtrikman bounds are also shown.

modulus and therefore Young’s modulus to be identically zero. Unfortunately,
there were no “reported Poisson’s ratio results for the composite, so the model
results for this quantity cannot be compared.

6. Analysis of analytical effective elastic moduli predictions

Now different analytical predictions of the effective moduli are compared with
the finite element data. The two most common models are studied using the
moduli appropriate for the W-Ag composite studied above. The results are shown
in Fig. 12(a) for overlapping spheres and in Fig. 12(b) for the single level-cut
GRF or excursion set of Quiblier {model N(c = 0)]. The seli-consistent method
provides a very good estimate of E, for model N(¢ = 0), but not for overlapping
spheres. This might be expected because the N(c = 0) model is symmetric with
respect to phase-interchange (like the SCM) while the overlapping sphere model is
not. As stated above the application of the generalized SCM is difficult because it
is not obvious which phase should be chosen as the ‘inclusion’ phase. For the
overlapping sphere model the tungsten phase is comprised of spheres (at 80%
volume fraction), so is the more likely choice for the inclusion phase.
Nevertheless, both estimates are reported (80% W inclusions and 20% Ag matrix
or 20% Ag inclusions and 80% W matrix) for both models. For either choice, the



A_.P. Roberts, E.J. Garboczi| J. Mech. Phys. Solids 47 (1999) 2029-2055 2051

(a) 300 _
250 .
~~ - 4
& .
@]
m --- SCM .. -
200 === GSCM (20% Ag inc.) ’ .
—-eeme GSCM (80% W inc.)
~——— HS Bnds
" ---0--- FEM/BMMP Bnds
L s s
U SRRV ST I SN TN S S W
0 200 400 . 600 800 1000
\ LS
(5) 300 ]
250 .
—
&
@] . ]
~ ~\
§3] - -~ SCM ) - L~
200 =--—-- GSCM (20% Aginc.) el =
- GSCM (80% W inc.) 1
—— HS Bnds
-.-@--- FEM/BMMP Bnds ]
| SO WO R NSRS WURN GO SN SO HAY W IS ST SN S S Y

0 200 400 600 800 1000
T,°C

Fig. 12. Comparison of theory (predictions and bounds) with finite element (FEM) calculations for the
Young’s modulus of (a) the overlapping sphere model and (b) the single-cut GRF model [N(c = 0), see
Fig. 10]. The standard (SCM) and generalized (GSCM) self-consistent methods are shown, as are the
Hashin and Shtrikman (HS) and Beran, Molyneux, Milton, and Phan-Thien (BMMP) bounds.
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GSCM fails to provide an accurate estimate. Indeed, above the melting point of
silver the GSCM vanishes for the case 20% Ag matrix case since the matrix phase
is now completely soft. For the overlapping sphere model the Beran, Molyneux,
Milton and Phan-Thien bounds are calculated using the microstructure parameters
{1=0.52, #,=042 (Torquato and Stell, 1983; Berryman, 1985b). Below the
melting point of silver (where the contrast between the phases is moderate) the
upper bounds provide a very good estimate of the effective moduli.

A brief discussion of the effect of elastic contrast is necessary here. It has
already been noted that the analytical predictions of effective moduli do not
explicitly depend on microstructure, but have a ‘built-in’ microstructure. The
elastic contrast, the ratio between the phase moduli, will determine how sensitive
the effective moduli actually are to microstructure. For example, in the case of a
two-phase composite having equal shear moduli but different butk moduli, there is
a simple exact formula for the effective bulk modulus which is totally insensitive
to microstructure (Hill, 1963). In the case of small contrast, the effective moduli
can be expressed exactly as a power series in the moduli differences (Torquato,
1997). Up to second order in this difference, at any volume fraction, the
coefficients of the power series are not dependent on anything but the volume
fractions and the individual phase properties. Therefore at small contrast,
analytical predictions of effective moduli that explicitly depend only on volume
fractions and phase moduli should all work well. ’

7. Conclusion

Throughout this paper, the finite element computation method has been treated
as being perfectly accurate, so that comparisons of elastic results to experiment
were solely a test of how well the reconstructed microstructure compared to the
real microstructure. This is not exactly true, since there are numerical errors in the
finite element method (Garboczi and Day, 1995; Garboczi, 1998). These are small,
however, and are generally of about the same size or less than the differences seen
between model computations and experimental data for the elastic moduli. There
are also statistical sampling errors associated with the finite size (x40 pm) of the
models we employ to estimate the elastic properties. Since this is much greater
than the correlation length of the samples (=5 pm—see Fig. 7) we again assume
these errors to be small. Therefore, the good agreement between model prediction
and experimental data seen in this paper is good evidence that the model
considered is indeed capturing the main aspects of the experimental
microstructure. '

Various theoretical results have been compared to finite element computations
of the effective Young’s modulus E. for non-particulate media: a W—Ag composite
and two model media (overlapping spheres and a single-cut Gaussian random
field). The generalized self-consistent method (derived for particulate composites)
did not provide a good estimate of E. for the bi-continuous materials considered
here. The standard self-consistent method provided a good estimate for the single-
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cut GRF and W-Ag composite. Since the method predicts zero moduli for
porosity above 50% but the solid phase of the single-cut GRF remains connected
up to porosities of around 90% (Roberts and Teubner, 1995) such agreement
cannot be general. Upper bounds, calculated using three-point statistical
correlation functions, provided a good prediction at low contrast (E,/E; =~ 6) for
each composite. When one of the phases was completely soft the bounds lost
predictive value. Therefore, for general composites, it is important to employ
numerical computations of the effective moduli. For accurate numerical prediction
of composite properties it is important that a realistic model be used. Model-
based statistical reconstruction, based on the Joshi—Quiblier—-Adler approach,
appears to be a viable route for microstructural simulation. However, it is
important that the models underlying the procedure be capable of mimicking the
composite microstructure. It has been shown how several different models can be
employed to find a useful reconstruction.
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