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Corrigenda
On page 24, Eq 29 should read

aF,
as

P(S) = —= = 4uMS2e— "M’ 6}

On page 25, the authors’ expression in Eq 35 is, by definition,
unity. Equation 35 for the cumulative density function should be

]
K'Q = I k'(Q") dQ' 2

The integration variable must differ from the cumulative density
function parameter.

In an approach similar to that of Philleo (1955), the authors
have attempted to calculate the distribution of distances between
random points in the paste and the nearest air void surface (paste-
void proximity distribution). This approach has a distinct advantage
over single parameter spacing equations (Powers 1949; Attiogbe
1993) that cannot characterize a distribution of spacings. However,
like the Philleo equation, the authors’ equation for the paste-void
proximity distribution is an approximation, and is only exact for
zero air content. This discussion will demonstrate this point conclu-
sively for monodispersed spheres. Additionally, by comparing
results of a similar numerical experiment published previously to
predictions based upon the authors’ equation, it can be demon-
strated that the authors’ equation contains considerable error at a

concrete air content of 5% for a zeroth-order logarithmic distribu-
tion of sphere diameters.
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Sphere Centers as a Poisson Process

The approach used by the authors is based upon the assumption
that the location of the sphere centers follow a Poisson process.
However, they do not acknowledge this fact as such, “The probabil-
ity that this point is located at a distance smaller or equal to §
from the center of the nearest air void, noted p(S), is given by the
following equation (Philleo 1983)

P(S) = AmMS e~ 4xMs™0 3)

where M represents the number of voids per unit volume.” In the
limiting case when the air voids have zero radius the location of
the centers do follow a Poisson process; however, once the air voids
have a finite radius, this assumption fails because the placement of
an individual sphere depends upon the placement of all the other
spheres, since the spheres may not overlap.

The authors continue by using a convolution integral of the
spacing between air void centers and the distribution of sphere radii
(or, equivalently, the sphere diameters). Given that the probability
density for the distance from a randomly chosen point in the system
to the nearest sphere center follows the distribution g(x), and that
the sphere radii follow the probability density function f(r), the
probability density of being a distance s from the nearest edge of
a sphere is

k'(s) = r gls + nNf(r) dr @
0

The authors, lacking a true value for g(x) used the reasonable, but
incorrect, approximation given in Eq 3 above.

The errors induced by this approach can be demonstrated using a
monodispersed sphere radii distribution. Let the monosized sphere
radius distribution be represented by a Dirac delta function
(Lighthill 1958):

f()=3¥r-r,) )

Using this radius distribution, and the definition of a delta function
© 1997 by the American Society for Tasting and Materials



K(Q) = 41rMJ' (Q + r2e M@+ By(r — 1) dr

0
= 4uM(Q + r,Ye "M@+ (©)

This leads to the simple relation for the cumulative density function
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For the probability density function k'(Q), the authors state, “The
area under the curve for Q < 0 thus simply corresponds to the
air content of the paste fraction A,.” However, in this example for
monosized spheres, the area under k' (Q < 0) is equal to K'(Q = 0):

K'(Q=0)=1- 43 ®

which is the expected air content for overlapping spheres. The
true air content is simply

w™r3 )

However, in the limit of small air content one can use a Taylor
expansion of the exponential function,

K'©@=0lp0=1- (1 - Sy + )
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and the relationship holds, to first order in A,. Therefore, the
equation derived by the authors is only exact in the limit of zero
air content. For finite air contents, their equation is only an approxi-
mation. The air content in the authors’ numerical experiment was
5% by total volume. In a system composed of 30% paste, as in
the authors’ system, the paste air content would be 16%, which
is significant.

Theoretical versus True Values

As a demonstration of the authors’ method, they perform a
numerical example using a computer to simulate the air void system
and to measure circle diameters and chord lengths on a plane
surface through the system. The culmination of the experiment is
a table of data comparing the predicted results from circle and
chord measurements to theoretical values. The theoretical values
shown for air content, A, specific surface, o, Powers spacing factor,
L, and number density of spheres, M,,, are the true values. However,
as argued in the previous section, the values given for Qs and
Qs are only approximations.

A previous numerical experiment (Snyder et al. 1994) used a
computer that tabulated the true cumulative density function K(Q).
In order to use this computer program to calculate the true values
for the authors’ experiment, the parameters of the zeroth-order
logarithmic distribution must be calculated, since the authors did
not report them, from the values in the authors” Table 1 for specific
surface, air content, and number density of spheres using the
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moments of the zeroth-order logarithmic distribution (Espenscheid
et al. 1964):

2
d™ = am exp[(m2 + 2m) 32-] an

The parameters d, (modal diameter) and o, (standard deviation of
the logarithms) can be calculated from the following two relations:

d?)
™dh = 200 cm™!

5@

o=

A= -E-Mp(d3) = 0.05 (12)

For a system in which the unit volume is a cube one centimeter
on a side, the solution of these two equations gives

d, = 0003254 o, = 0.7966 (13)
A modal diameter of 32.54 um is in contrast to the curve shown
in the authors’ Fig. 9 (“size~distribution of the air voids used for
the numerical example”) which suggests a modal diameter near
100 pm. This discrepancy would cast doubt upon the results of a
direct comparison between the results from the authors’ numerical
example to the true results calculated by computer.

Comparison to Previous Results

As mentioned above, a numerical experiment similar to the
authors’ has been performed previously (Snyder et al. 1994).
Spheres with diameters following a zeroth-order logarithmic distri-
bution were randomly parked in a fixed volume and both the
distances from random points in the paste to the nearest air void
surface (paste-void proximity distribution) and the distances
between nearest neighbor spheres (void-void proximity distribu-
tion) were measured in the system. The results were compared to
the predictions of Powers (Powers 1955), Philleo (1983), and
Attiogbe (1993). A zeroth-order logarithmic distribution of spheres
was used with the parameters d, = 30 wm, and o, = 0.736; the
resulting distribution had a specific surface area of 300 cm%cm?®.
An abbreviated listing of these results is summarized here in Table
L. The quantity n is the number of spheres per unit volume, L is
the Powers spacing factor, F50 and F95 are Philleo factors for the
50th and 95th percentile of the paste-void proximity distribution,
and pv50 and pv95 are the measured 50th and 95th percentiles of
the paste-void proximity distribution of the system, representing
the true values. These values are expressed along with a 95%
confidence interval. Note that the air content given (expressed as
a fraction) represents the air content of the air-paste system; the
corresponding concrete air contents (assuming 30% paste, as the
authors have) would be 0.48, 1.9, and 5.9% for three number
densities reported in Table 1.

This model system was then analyzed using the authors’ equation
which estimates the spacing distribution from points exterior to
the spheres. This distribution, £(Q), renormalizes k'(Q) to account
for the volume of the system outside the spheres:

k'(Q)

O =T

(14)

Here, two different analyses are performed. Since A, does not
equal K’(Q = 0) for the authors’ equation, both 1 — K'(Q = 0)
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TABLE 1—A partial list of results from a previous numerical experiment. The results are expressed in both number density of spheres, n, and
paste air content, A. The quantities L, F50 and F95 are the Powers spacing factor, and the Philleo spacing at the 50th and 95th percentile,
respectively. The 50th and 95th percentile of the measured paste-void proximity distribution are labeled pv50 and pv95, respectively, along with
the 95% confidence interval (Snyder et al. 1994).

-l:.cm

n, cm™3 Air FS50, cm F95,cm pv50, cm pvIs, cm
20000 0.016 0.0450 0.0146 0.0272 0.0163+0.0001 0.0291+0.0003
80 000 0.066 0.0247 0.0073 0.0150 0.0085+0.0001 0.0161x0.0002

240 000 0.197 0.0136 0.0037 0.0087 0.00420.0001 0.0089-0.0001

TABLE 2—Comparison of the authors’ predictions for the 50th and 95th percentiles of the paste-void proximity distribution (Ksy and Kss) and

the measured true values (pv50 and pv95) expressed along with the 95% confidence interval. The authors’
A,] (as suggested by the authors) and the quantity [1 - K'(q = 0)].

k'(Q) was normalized two ways: the quantity [I —

Jor the distribution

[1 —A,) 1 - KQ =0)}
n,cm™? Air K'(Q=0) Ksp, cm Kys, cm Ks, cm Kos, cm pv50, cm pYISs, cm
20000 0.016 0.012 0.0172 0.0302 0.0173 0.0304 0.0163+0.0001 0.0291+0.0003
80 000 0.066 0.039 0.0098 00173 0.0100 0.0185 0.0085+0.0001 0.0161+0.0002
240 000 0.197 0.082 0.0058 0.0099 0.0063 0.0123 - 0.0042+0.0001 0.0089+0.0001
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FIG. 1—Comparison of the measured paste-void spacing distribution (ﬁlled circles) and the equation proposed by the authors (solid line) for two
number densities of spheres, 20 000 and 240 000, corresponding to paste air contenis of 1.6% and 19.7%, respectively.

and 1 — A, were used to normalize the portion of the distribution
k'(Q) for Q@ > 0. The results of both analyses are given in Table
2. As expected, the authors’ equation is fairly accurate for the
very low air content. However, in the system with a concrete air
content of about 5%, the authors’ estimate is in error by a consider-
able percentage for both normalization factors. What is even more
surprising is that, although the authors’ estimate is more accurate
than Philleo’s for low air contents, it is less accurate at higher air
contents. This is significant because the Philleo approach does not
require knowledge of the distribution of sphere diameters. Rather,
Philleo’s equation only requires the number density of spheres, as
does the authors’ equation.

A qualitative comparison between the authors’ estimate and the
true paste proximity spacing distribution is also reported. The
computer program measured the paste-void proximity cumulative
density function, which was numerically differentiated and shown
in Fig. 1 for the two number densities of 20 000 and 240 000 per
cubic centimeter, corresponding to 1.6 and 19.7% air by volume

of paste. As expected, the authors’ approximation is a reasonably
accurate estimate of the paste-void proximity distribution at low
air content, but far less accurate at higher air contents.
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REPLY TO THE DISCUSSION BY KEN SNYDER

The author’s are grateful to Mr. Snyder for his corrigenda (which
is correct) and for his very interesting discussion on the validity
of the test method described in the paper. This method is based
on the assumption that the centers of air bubbles are randomly
dispersed throughout the paste volume which means that overlap-
ping of air bubbles sometimes happens. Mr. Sayder points out
that, since air bubbles may not overlap, this method provides only
an approximation of the paste-void proximity. To prove his point,
he compared the results obtained in our paper with those obtained
with his own numerical method which was developed in such a
way that air bubbles may not overlap. As expected both mcthods
gave very similar results for low air contents (where overlapping
is negligible), but the results were significantly different at higher
air contents. Mr. Snyder thus concluded that our method is not
valid because the calculated flow length overestimated the real
distance between any point of the cement paste and the nearest
air-void boundary.

We do not agree with Mr. Snyder when he says that air bubbles
cannot overlap into the cement paste. On the contrary, overlapping
of air bubbles is frequently seen during the ASTM C 457 micro-
scopical examination, especially for concretes having high air con-
tents. (For those concretes, clusters of 2, 3, or even 4 air bubbles
are quite numerous.) In fact, overlapping of air bubbles was found
to be important enough to significantly influence the variability
of the test method (Pleau et al. 1990) because it is not easy
for the operator to determine if the overlapped bubbles must be
considered as a single void or as distinct ones. In the last years
we had tried, without success, to develop an automatic computer-
assisted air-void analysis system able to determine the characteris-
tics of the air-void system and, more specifically, the size-distribu-
tion of air bubbles. Incidently, one of the major difficultics
encountered was to develop an algorithm able to correctly split
the overlapped air bubbles (Laurencot et al. 1992).
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It is probably not true that air bubbles can overlap freely into
the cement paste as it is assumed in our test method. However, it
is also not true that air bubbles may not overlap as it is assumed
in Mr. Snyder’s method. Consequently, the paste-void proximity
values provided by Mr. Snyder in his discussion are also an approxi-
mation of the reality. It is reasonable to believe that the “real”
distance between any point of the cement paste and the nearest
air-void boundary is located somewhere between the flow length
value given by our method, and the paste-void proximity value
given by Mr. Snyder’s method. Both methods do provide a much
better index than the commonly used ASTM C 457 spacing factor.

It is also important to note that our method provides results
which are significantly different from those obtained with Mr.
Snyder’s method only for concretes containing a large number of
air bubbles. From a practical point of view the differences observed
between these two methods are not really important because those
concretes are frost resistant and, most of the time, the ASTM C
457 spacing factor can be considered as a good enough index. In
fact, the flow length (or the paste-proximity) is particularly useful
for concretes having an air-void system of marginal quality (that
is, with a spacing factor ranging from 200 to 400 pwm approxi-
mately). For those concretes it is most likely that the values
obtained with the two methods would be quite similar.
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