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SUMMARY

The optimum parameters of tuned mass dampers (TMD) that result in considerable reduction in the response of
structures to seismic loading are presented. The criterion used to obtain the optimum parameters is to select, for a given
mass ratio, the frequency (tuning) and damping ratios that would result in equal and large modal damping in the first two
modes of vibration. The parameters are used to compute the response of several single and multi-degree-of-freedom
structures with TMDs to different earthquake excitations. The results indicate that the use of the proposed parameters
reduces the displacement and acceleration responses significantly. The method can also be used in vibration control of
tall buildings using the so-called ‘mega-substructure configuration’, where substructures serve as vibration absorbers for
the main structure. It is shown that by selecting the optimum TMD parameters as proposed in this paper, significant
reduction in the response of tall buildings can be achieved. © 1997 by John Wiley & Sons, Ltd. Earthquake eng. struct.
dyn. 26: 617-635, 1997.
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INTRODUCTION

The tuned mass damper (TMD) is a passive energy absorbing device consisting of a mass, a spring, and
a viscous damper attached to a vibrating system to reduce undesirable vibrations. According to Ormondroyd
and Den Hartog,' the use of TMDs was first suggested in 1909. Since then, much research has been carried
out to investigate their effectiveness for different dynamic loading applications. Tuned mass dampers are
effective in reducing the response of structures to harmonic? or wind®* excitations. TMDs have been
installed in high rise buildings to reduce wind-induced vibrations. Examples include: the 244 m high John
Hancock Tower in Boston® with a TMD consisting of two 2:7 x 10° kg (300 t) lead and steel blocks; the
280 m high Citicorp Center Office Building in New York City® with a TMD using a 3-6 x 10° kg (400 t)
concrete block, and the Terrace on the Park Building in New York City,” where a TMD was installed to
reduce the vibrations induced by dancing. For seismic applications, however, there has not been a general
agreement on the efficiency of TMD systems to reduce the structural response.
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Figure 1. Tuned mass damper mounted on a main structure

This paper briefly reviews studies on the use of TMDs for seismic applications and proposes a method for
selecting the TMD parameters by providing equal and large damping ratios in the complex modes' of
vibration. The optimum parameters are formulated in terms of the mass ratio of the TMD, the damping ratio
and mode shapes of the structure. To show the effectiveness of the proposed method, the response of several
single and multi-degree-of-freedom structures, with and without TMDs, to different ground excitations are
presented and compared to those from other methods. The method is also used to compute the tuning and
damping ratios of substructures utilized as vibration absorbers in tall buildings. This concept, referred to as
‘mega-substructure configuration’ by Feng and Mita® uses no external devices nor additional masses to
control vibrations. Comparisons with responses using their method are presented to demonstrate the
effectiveness of the method proposed herein.

SUMMARY OF PREVIOUS WORK

A typical tuned mass damper consists of a mass m which moves relative to the structure and is attached to it
by a spring (with stiffness k) and a viscous damper (with coefficient c) as shown in Figure 1. A tuned mass
damper is characterized by its tuning, mass, and damping ratios. The tuning ratio [is defined as the ratio of
the fundamental frequency of the TMD o, to that of the structure w,. Thus,

f=w/m 1)
The mass ratio u is
p=m/M 2

where M is the total mass of a SDOF structure or the generalized mass for a given mode of vibration
of a MDOF structure computed for a unit modal participation factor. The damping ratio of the TMD
is given by

{=c/2mo, 3

Several investigators have studied the effect of optimum TMD parameters fand ¢ for a given y on reducing
the response of structures to earthquake loading. There has not been a general agreement, however, on the
effectiveness of TMDs in reducing structural response to seismic loading. The following is a brief summary of
the studies.

* Because of non-proportional damping, the analysis of TMD systems lends itself to complex modal analysis
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Gupta and Chandrasekaren® studied the influence of several TMDs with elastic—plastic properties on the
response of SDOF structures subjected to the S21W component of the Taft accelerogram, Kern County
earthquake, 1952. Their study showed that TMDs are not as effective in reducing the response of structures
to earthquake excitations as they are for sinusoidal loads. Kaynia et al.!® used an ensemble of 48 earthquake
accelerograms to investigate the effect of TMDs on the fundamental mode response. They found that the
optimum reduction in response is achieved at f= 1 and that increasing the period and damping of the
structure decreases the effectiveness of TMDs. They concluded, however, that in general TMDs are less
effective in reducing the seismic response of structures than previously thought. Sladek and Klingner!! used
the Den Hartog® method to select the parameters fand ¢ for a TMD placed on the top floor of a 25-storey
building. The basis for the Den Hartog method is to minimize the response to sinusoidal loading which for an
undamped system results in the following TMD parameters:

f= [ 3F (4)

/ 8(1 + )

=m

The analysis of the 25-storey building subjected to the SOOE component of the El Centro accelerogram, the
Imperial Valley earthquake, 1940 revealed that the TMD was not effective in reducing the response of the
building. '

The first successful analysis of TMD for seismic loading was introduced by Wirsching and Yao!? where
they computed the first-mode response to a non-stationary ground acceleration for a five- and a ten-storey
building with 2 per cent damping. They selected a TMD mass equal to one-half the mass of a typical floor
and a tuning ratio f = 1. Considerable reduction in response was obtained with a TMD damping ratio
¢ = 0-20. Later, Wirsching and Campbell'? used an optimization method to calculate the TMD parameters
for 1-, 5- and 10-storey buildings subjected to a stationary white noise base acceleration. They observed that
TMDs were quite effective in reducing the response.

Dong'# observed that the light wing of a building can act as a vibration absorber for the main building and
reduce its seismic response significantly, while the wing itself may experience large displacements. Ohno
et al.'® presented a method for tuning TMD:s so that the mean square acceleration response of the main
structure is minimized. They assumed that the acceleration power spectral density of the earthquake ground
motion at the base is constant for a certain frequency range. Jagadish et al.'® analysed a two-storey structure
with a bilinear material behaviour subjected to the S69E component of the Taft accelerogram, Kern County
earthquake, 1952 with the top floor functioning as a vibration absorber for the lower one. They observed that
for f = 0-8-1-0, a reduction of 50 per cent in the ductility demand for the lower storey can be achieved. They
also introduced the concept of ‘expendable top storey’ where the top floor can absorb a major portion of the
seismic energy and experience damage, thereby, reducing the response of the lower stories. Such a concept
juxtaposes the ‘soft first storey’ concept where the earthquake energy is absorbed at the base or the first level.
The soft first storey approach, however, is not practical and may jeopardize the stability and safety of the
structure. :

Numerous studies on the applicability of TMDs for seismic applications were carried out by Vil-
laverde,! 718 Villaverde and Koyama,!® and Villaverde and Martin?® where it was found that TMDs
performed best when the first two complex modes of vibration of the combined structure and damper have
approximately the same damping ratios as the average of the damping ratios of the structure and the TMD.
To achieve this, Villaverde'” found that the TMD should be in resonance with the main structure (f = 1) and
its damping ratio be

E=f+0/u (5)

where f is the damping ratio of the structure, u is the ratio of the mass of the absorber to the generalized mass
of the structure in a given mode of vibration (usually the fundamental mode) and ® is the amplitude of the
mode shape at the TMD location. Both u and ® are computed for a unit modal participation factor. This
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method was used in several 2D and 3D analyses of buildings and cable-stayed bridges under different ground
excitations and was found effective, numerically and experimentally, in reducing the response. It will be
discussed later that Villaverde’s formulation does not result in equal dampings in the first two modes of
vibration, especially for large mass ratios. More recently, Miyama?! argued that TMDs with a small mass
(less than 2 per cent of the first mode generalized mass) are not effective in reducing the response of buildings
to earthquake excitations. He suggested that most of the seismic energy should be absorbed by the top storey
so that the other stories would remain undamaged. The top storey should have appropriate strength,
ductility and supplemental damping to resist the loads. Numerical results indicate that it is possible to obtain
80 per cent energy absorption with a mass ratio of 5 per cent by tuning the frequency of the top storey to that
of the structure.

From the above discussions, it seems that TMDs can be effective in reducing the response of structures to
seismic loads. The problem is how to find the optimum TMD parameters in order to achieve the greatest
reduction in response. In the following sections, an improvement to the method introduced by Villaverde is
presented and new equations are formulated to ensure that the first two modes of vibration of the structure
with TMD will have equal damping ratios which are greater than (¢ + £)/2. Numerical results are presented
to illustrate the effectiveness of the improved method in determining the TMD parameters for seismic
applications.

TMD FOR SDOF STRUCTURES

For a SDOF structure with a TMD (Figure 1), the system matrix A in terms of the natural frequency and
damping ratio (w, and fB) of the structure, and the mass, tuning, and damping ratios (g, f, and &) of
the TMD is

0 0 1 0
| o 0 0 1 ©
— wh f? wif? — 2w¢ fE 2w fE
wipf? = wi(l+uf? 2weufé = 2wi(ufE + P

The eigenvalue problem [4-A1 | results in the following fourth-order equation:

"
A

~\ 4 3 2
(i> + [2fE(1 + p) +2B]< > + 1 +uf?+f? +4f5ﬁ](—{> +2f¢ +fﬁ)<—l—) +f7=0 ()
Wy Wo (2]

Wo

The solution of equation (7) is in complex conjugate pairs with the following complex eigenvalues:

)~r,r+1 = - a)rér i ia)r\/ 1 - éf , = 153 (8)

where 1, is the rth eigenvalue, », and &, are the natural frequency and damping ratio of the system in the rth
mode, and i is the unit imaginary number (i = ./ — 1). Villaverde!” showed that for a TMD to be effective,
the damping ratios in the two complex modes of vibration, ¢, and ¢; should be approximately equal to the
average of the damping ratios of the structure and the TMD, ie. &; = &3 =(£ + f)/2. To achieve this
criterion, it was shown analytically!”-® that the TMD should be in resonance with the main system ( f= 1)
and its damping ratio should satisfy equation (5). Numerical results, however, show that such formulation is
valid only for mass ratios smaller than approximately 0-005. For mass ratios larger than 0-005, significant
difference in the two modal dampings exists for a typical structure with a damping ratio f = 0-05 (see
Table I). Consequently, another procedure to achieve equal damping in the two vibration modes is proposed
in this paper.
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Table I. Complex mode damping ratios computed by the Vil-
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laverde method for a structure with damping 8 = 0-05

2 ¢ &+ P2 1 ¢
0:005 01207 0-0854 0-0983 00727
0010 01500 0-1000 0-1207 0-0801
0020 01914 01207 0-1544 00888
0050 02736 01618 0-2281 01019
0-100 03662 02081 03218 01111

621

The proposed procedure searches numerically for the optimum values of fand & (the optimum values are
those which result in approximately equal damping ratios &; 2 ¢5) corresponding to a desired mass ratio p.
Since the eigenvalues in equation (7) are normalized to ,, the optimum parameters fand ¢ are independent of
the natural frequency (w,) of the main system. To determine the optimum values of fand ¢ for a given ;2 and
B, the complex eigenvalue problem [A4-A1| is solved in the following manner: for a given damping ratio § and

Table II. Optimum TMD tuning and damping ratios for three structural damping ratios

Mass B=0 B =002 B =005
ratio

7 A ¢ A 4 A 4
0-000 1-0000 0-0000 1-0000 0-0200 1-0000 0.0500
0-005 09950 00705 09936 0-0904 0-9915 01199
0010 09901 0:0995 09881 01193 0-9852 0-1488
0015 09852 01216 09828 01412 09792 0-1707
0020 09804 0-1400 09776 0-1596 09735 0-1889
0.025 0.9756 0.1562 09726 0.1757 0.9680 0.2048
0.030 0.9709 0-1707 09676 0-1900 09626 02190
0035 09662 0-1839 09626 02032 09573 02320
0040 09615 0-1961 09578 02153 09521 0-2440
0-045 09569 0-2075 09530 0-2266 09470 02551
0-050 09524 02182 09482 02372 09420 0-2656
0055 09479 0-2283 09435 02472 09370 02754
0-060 09434 02379 09389 02567 09322 0-2848
0-065 09390 0-2470 09343 02658 09274 02937
0-070 09346 02558 09298 0-2744 09226 03022
0-075 09302 0-2641 09253 0-2827 09179 0-3103
0-080 09259 02722 0-9209 0-2906 09133 03181
0-085 09216 02799 09165 0-2983 09087 03257
0-090 09174 02873 09122 0-3056 09042 0-3329
0-095 09132 02945 09079 0-3128 0-8998 0-3399
0-100 0-9091 03015 09036 03196 0-8954 0-3466
0-105 09050 0-3083 0-8994 03263 0-8910 03532
0110 0-9009 0-3148 0-8952 0-3328 0-8867 0-3595
0115 0-8969 03212 08911 0-3390 0-8824 0-3656
0120 0-8929 0-3273 0-8870 0-3451 0-8782 0-3716
0125 0-8889 0-3333 0-8830 03511 0-8741 0-3774
0130 0-8850 0-3392 0-8790 0-3568 0-8699 0-3831
0135 0-8811 03449 0-8750 03624 0-8658 0-3886
0140 0-8772 0-3504 0-8710 03679 0-8618 0-3939
0-145 08734 03559 0-8671 03733 0-8578 0-3991
0150 0-8696 0-3612 0-8633 0-3785 0-8538

0-4042

Note: &; = &3 and w; = ;3

© 1997 by John Wiley & Sons, Ltd.
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Figure 2. Optimum TMD parameters for different mass and damping ratios

for each mass ratio p, the values of fand ¢ are varied, matrix A is formed, and its eigenvalues are computed.
The optimum values are determined when the difference between the two damping ratios &; and &; is the
smallest. The procedure was used for systems with damping ratios g = 0+, 0-02, and 0-05 and mass ratios
1 between 0-005 and 0-15 with increments of 0-005. It was found that the optimum TMD parameters result in
approximately equal modal damping ratios (¢, = ¢; ) greater than (¢ + f)/2 and equal modal frequencies
(@, = w5 ). The optimum ratios are presented in Table II. Figure 2 shows the optimum parameters fand £ for
different mass ratios and the three structural damping ratios f. The figure indicates that the higher the
damping ratio of the structure, the lower is the tuning ratio and the higher is the TMD damping ratio. The
figure may be used to select the TMD parameters by estimating its mass, computing the mass ratio p, and
then determining the tuning and damping ratios fand £. Figure 3 shows the modal frequencies and dampings
for the structure with TMD. It is observed from the figure that the higher the mass ratio, the higher the
damping in the modes. From Table II and Figures 2 and 3, it is evident that increasing the mass ratio
u requires a decrease in the tuning ratio f and an increase in the damping ratio £, thus resulting in a higher
damping in the two modes of vibration.

For design purposes, it may be convenient to present the optimum TMD parameters by simple equations
rather than tables. Curve fitting was used to find fand ¢ in terms of u and f. For an undamped structure, the

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, VOL. 26: 617-635 (1997) © 1997 by John Wiley & Sons, Ltd.
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Figure 3. Natural frequencies and damping ratios in the first two modes

tuning ratio f'is found to be equal to 1/(1 + u) and the damping ratio ¢ equal to \/u/(1 + p). For a damped
structure, the following equations give close approximations to the fand & values presented in Table 1I:

“_’"1+,1[1 A 1+ﬂ] ©)
and

B U

S =TT Vi+a (10)

These equations result in a maximum error of approximately 0-2 per cent in f and 0-4 per cent in &.

Numerical studies

To examine the effectiveness of the proposed procedure in determining the TMD parameters for seismic
excitations, 30 SDOF structures with periods between 0-1 and 3-0 s with increments of 0-1 s were analysed
with and without TMDs. The structures had damping ratios § = 0-02 and 0-05 and the mass ratios were
selected to vary between 0-02 and 0-10 with increments of (-02. The TMD parameters used were those
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presented in Table II. The structures were subjected to a set of 52 horizontal components of accelerograms
from 26 stations in the western United States (Appendix I). These records include a wide range of earthquake
magnitudes (5-2-7-7), epicentral distances (6-127 km), peak ground accelerations (0-044g to 1-172g), and two
soil conditions (rock and alluvium). The response (displacement or acceleration) ratio is computed as the
ratio of the peak response of the structure with TMD to the peak response without TMD. The stroke ratio is
defined as the peak stroke length (displacement of TMD relative to that of the structure) divided by the peak
displacement of the structure. The mean displacement and acceleration response ratios, and the mean stroke
ratio for the 30 structures, the five mass ratios, and the 52 records are shown in Figure 4 for a damping ratio
of 0-02 and in Figure 5 for a damping ratio of 0-05.

The following observations can be made from Figures 3-5:

(a) Reductions in displacement and ﬂcceleratinn responses can be achieved with a TMD, especially for
structures with low damping ratios 02 (Figures 4 and 5).

(b) Increasing the mass ratio decreases the response (Figures 4 and 5). This is expected since 1ncreasmg the
mass ratio results in a higher TMD damping ratio, and consequently, a higher damping in the two
modes of vibration.
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Figure 4. Mean response of SDOF structures with TMDs with 0.02 damping
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Figure 5. Mean response of SDOF structures with TMDs with 0.05 damping

(c) For a mass ratio of 0-04 (Figure 3), the structure with a f = 0-02 will have a damping ratio of 0-12 in the
first two modes (six times greater than the damping of the structure), whereas for a § = 0-05, the first
two modes will have a damping ratio of 0-15 (only three times the damping of the structure). Therefore,
TMD:s are more effective for structures with small damping ratios.

(d) For rigid structures, i.e. structures with periods 0-1-0-2 s (Figures 4 and 5), TMDs are not effective. The
use of a higher mass ratio is not desirable and may be even detrimental to the structure, especially for
a damping ratio of 0-05.

(e) As expected, for systems with small damping ratios, the stroke length is larger. This must be accounted
for in design (Figures 4 and 5).

To examine the dispersion of the results obtained from the 52 records, the coefficient of variation (COV)
(standard deviation divided by the mean) was computed for various cases. Figure 6 presents the COV for the
displacement response ratio for structures with a damping of 0-05. The figure shows that the larger the mass
ratio, the larger is the dispersion of the results. The COV, however, for all periods and mass ratios is less than
0-16. Similar values were obtained for mean acceleration response and stroke lengths.
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Figure 6. Cocfficient of variation for displacement ratio for SDOF structures with 0,05 damping

Comparison with Villaverde’s method

The method proposed herein is compared with that introduced by Villaverde. The comparison is
carried out for two SDOF structures with different periods T, dampings f and mass ratios u as
shown in Table III. Four accelerograms — the SO0E component of El Centro from the Imperial
Valley earthquake, 1940; the S90W component of El Centro from the Borrego Mountain earthquake,
1968; the NOOW component at 8244 Orion Boulevard and the NOOE component at 7080 Hollywood
Boulevard from the San Fernando Earthquake, 1971— were used in the analysis. Table III indicates
that the method proposed in this paper results in a lower response than Villaverde’s method. It should be
noted that for a given mass ratio, the proposed method results in a lower stiffness (compare f= 1
with f<1 in equation (9)) and a lower damping coefficient (compare ¢ in equation (5) with ¢ in
equation (10)) than those used by Villaverde, and yet, gives smaller displacements and accelerations up
to 14 per cent. The reason that the proposed method produces better reduction in the response is that it
results in approximately equal damping in the first two modes, whereas, the method by Villaverde results in
unequal damping. The difference between the two modal dampings in Villaverde’s method is more pro-
nounced when the mass ratios are large. Consequently, the mode with the lower damping increases the
overall structural response.

The results in Table III for the structure with a period T = 0-50s, a damping ratio § = 0-05, and
amass ratio 4 = 0-12 subjected to the SOOE component of the El Centro accelerogram, 1940 show practically
no reduction in the displacement response with a TMD. The reason is that the addition of the
TMD corresponds to w,/we = 093 (Figure 3) indicating a shift in the period of the structure from 0-50
to 0-54 s and the damping ratio from 0-05 to 0-22 (see Figure 3). An examination of the response spectrum
of this record reveals that the shift in the period results in a higher response. It should be noted that
TMD parameters selected by the Villaverde’s method resulted in a higher displacement response than that
without a TMD.

TMD FOR MDOF STRUCTURES

In this section, the optimum TMD parameters for MDOF structures are formulated and the effectiveness of
these parameters in reducing the response to earthquake loading is examined. For an n degree of freedom
structure with a TMD attached to one of the floors, there are n + 1 pairs of complex conjugate modes. For
a MDOF structure, the mass ratio is computed as the ratio of the TMD mass to the generalized mass for the

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, VOL. 26: 617-635 (1997) © 1997 by John Wiley & Sons, Ltd.
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Table III. Response of SDOF systems with and without TMDs using the method by Villaverde!” and the method proposed in

this study
San Fernando, 1971
Imperial valley, Borrego mountain, San Fernando, 1971 Hollywood
1940 El Centro 1968 El Centro Orion Boulevard Boulevard
Method

Structural of X max Amax X max Gmax X max Gmax X max Qmax
properties analysis (mm) )] (mm) (9 (mm) (9) (mm) (9)
T =025s No TMD 18-6 1-200 43 0275 101 0-648 37 0-239
B =002 Villaverde 133 0-768 27 0-155 103 0-580 38 0216
u=010 This study 12:5 0-748 2:4 0141 09-4 0-539 35 0-202
T =050s No TMD 516 0-836 79 0128 344 0-556 135 0218
B =005 Villaverde 545 0-767 65 0093 389 0-537 121 0174
=012 This study 510 0732 60 0-089 339 0498 104 0156

Table V. Properties of the three MDOF structures used in the analysis

(a) Properties of the ten-storey frame (b) Properties of the six-storey frame (c) Properties of the three-storey frame
Stiffness x Mass x  First mode Stiffness x Mass x  First mode Stiffness x Mass x  Frst mode
10® kN/m 10 kg shape 10° kN/m 10°kg shape 10° kN/m 10% kg shape

3431 98 1-359 45 80 1-327 360 100-0 1-231
3743 107 1-321 55 80 1-186 380 100-0 0-965
40-55 116 1-248 7-5 80 0.966 41-0 1000 0-515
43-67 125 1-146 80 80 0.743
4679 134 1019 9-0 80 0-489 =0
4991 143 0-871 10-0 80 0.238 wey = 1441 Hz
5302 152 0-708 M= ¢T [M]¢p, =271 x10%kg
56:14 161 0-534 p =005
5226 170 0355 woy = 1’23 Hz
62:47 179 0175 M, = @] [M]¢, = 39598 x 10° kg

f =002

wey = 05 Hz

M, = ¢T [M]e, = 1109 x 10° kg

Note: (1) Properties of floors are shown from top to bottom
(2) First mode shapes and generalized masses are computed for a unit modal participation factor
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fundamental mode for a unit modal participation factor

m
T $I[M1é;

where [ M] is the mass matrix and ¢, is the fundamental mode shape normalized to have a unit participation
factor. A procedure similar to that for SDOF systems is used to determine the optimum fand ¢ that would
result in approximately equal frequencies and damping ratios in the first two modes. Numerical studies were
carried out using three MDOF structures: a ten-, a six-, and a three-storey building. The structures are
assumed to have the following damping ratios in the first mode only: 0-02 for the ten-storey, 0-05 for the
six-storey, and zero for the three-storey building. The properties of the three frames together with their
fundamental mode dynamic characteristics are given in Table IV. For each frame, a TMD is attached to the
top floor to control the response. The mass ratio u is assumed to be 0-05 for the ten-storey, 0-075 for the six-
storey, and 0-10 for the three-storey building. The optimum values of fand £ for the three structures are given
in Table V along with the resulting damping ratios in the first two modes of vibration. As shown in the table,
the damping ratios are extremely close to each other and are greater than (¢ + f)/2. It should be mentioned
that the TMDs attached to the structures affected only the damping in the first two modes and had no effect
on the other modes which were assumed to have a zero damping.

It was found that the tuning ratio f for a MDOF system is nearly equal to the tuning ratio for a SDOF
system for a mass ratio of u®, where @ is the amplitude of the first mode of vibration for a unit modal
participation factor computed at the location of the TMD, i.e. fyupor(1) = fspor(#®). The equation for the
tuning ratio is obtained from equation (9) by replacing u by u®. Thus,

_ 1 u®
f_1+uq>{1_ﬂ 1+uq>} (12)

u (11)

The TMD damping ratio is also found to correspond approximately to the damping ratio computed for
a SDOF system multiplied by @, i.e. Eypor(i) = Pspor (). The equation for the damping ratio is obtained

by multiplying equation (10) by @
=0 {L + —“—} (13)

1+u 1+ pu

For MDOF structures, the above equations result in an error of 0-4-5 per cent in the tuning ratio and 0-5—
0-8 per cent in the damping ratio. If more accurate parameters are needed, a searching procedure similar to
that applied before should be used.

Equation (13) indicates that the best location for a TMD is where it results in the largest &, i.e. at the level
where @ and consequently the damping in the TMD and in the first two modes are maximum. Since in most

Table V. Optimum TMD parameters for the three MDOF structures

Damping ™™D hiJ
Mass ratio Tuning damping at the

No. of ratio (first mode) ratio ratio top
storeys u B f 14 & &, $18 storey
10 0-050 002 09302 03253 0-1759 0-1758 01727 1-359
6 0-075 005 09070 0-4139 0-2437 0-2435 0-2170 1-327
3 0-100 0 0-8701 0-3694 0-1955 0-1953 0-1847 1-231
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cases, the first mode dominates the response, it is desirable to locate the TMD at the top floor where the
displacement amplitude of the first mode is the largest. Similar observations have also been reported by
Villaverde!”.

Numerical studies

To demonstrate the effectiveness of the proposed procedure for computing the optimum TMD
parameters, the ten- and six-storey buildings with and without TMDs were analysed using four
recent earthquake accelerograms. The records include: the 90° component of Corralitos Eureka Canyon
Road accelerogram and the 90° component of Capitola Fire Station accelerogram from the Loma
Prieta earthquake, 1989, and the 90° component of Santa Monica City Hall Grounds accelerogram
and the 90° component of Arleta Nordhoff Avenue Fire Station accelerogram from the Northridge
earthquake, 1994. The displacement and acceleration responses for the structures with and without
TMDs are presented in Table VI for the ten-storey building and in Table VII for the six-storey
building. It is observed that for the ten-storey building (Table VI), a TMD with an effective mass
ratio of 0-05 (a mass ratio of 0-04 when considering the actual mass rather than the generalized
mass of the structure) and a damping ratio § = 0-02 results in a considerable reduction in displace-
ments and accelerations (up to 48 per cent). Similar observations are made for the six-storey
building with an effective mass ratio of 0075 (a mass ratio of 0062 when considering the mass
of the structure) and a damping ratio § = 0-05. As expected, the higher the intrinsic damping in the
structure, the larger is the mass required to achieve approximately the same level of response
reduction.

PRACTICAL CONSIDERATIONS

TMDs are relatively easy to implement in new buildings and in retrofitting existing ones. They do not require
an external power source to operate and do not interfere with vertical and horizontal load paths like some
other passive devices do. TMDs can also be combined with active control mechanisms to function as
a hybrid system, with the TMD serving as back-up in the case of failure of the active device. From the
numerical studies presented in previous sections, it is evident that TMDs are effective in reducing earth-
quake-induced vibrations. TMDs, however, require a considerable mass to achieve a sizeable reduction in the
response, especially for structures with large damping ratios. The following practical considerations are
noteworthy:

L. For structures with low damping ratios, TMDs with small mass ratios can be effective in reducing the
response. The existing mechanical equipment, often placed on the roof, may be used as TMDs by
mounting them with springs and dampers with proper stiffness and damping. Another possibility is
using blocks of concrete, steel, or lead as used in John Hancock Tower and Citicorp Center Office
Building. In any case, TMDs will experience large displacements which must be accounted for in the
design.

2. For structures with high damping ratios, TMDs with large mass ratios are required to signifi-
cantly reduce the response. In such cases, the use of roof equipment or addition of heavy blocks
will not provide the mass necessary to introduce sufficient damping in the predominant modes
of vibration. The top floor itself, however, can provide the required mass. The concept of ‘expendable
top storey’ introduced by Jagadish et al.'® or the ‘energy absorbing storey’ presented by Miyama?!
is an effective alternative where the top floor acts as a vibration absorber for the other floors
of the building. Although this concept may work effectively, the top floor may experience large
displacements. The top floor should, therefore, have sufficient strength and ductility to account for large
displacements.

© 1997 by John Wiley & Sons, Ltd. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, VOL. 26: 617-635 (1997)
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Table VI. Responses of the ten-storey building with and without a TMD with a mass ratio of 0-05

Corralitos, 1989

Capitola, 1989

Santa Monica, 1994

Arleta, 1994

No TMD With TMD No TMD With TMD No TMD With TMD No TMD With TMD
xmax amax xmax amax xrnax amax xmﬂl amax xmax amax xmﬂx amax xl'l'lax amxx xmax amﬂx
Level  (m) (9 (m) 9 (m) ) (m) (9 (m) (9) (m) (9) (m) (9) (m) (9)
Top 0396 243 0271 167 0257 204 0180 1126 0483 229 0450 1-51 0-398 164 0203 084
9 0337 199 0235 132 0214 1112 0160 103 0443 1-56 0408 1226 0381 104 0182 059
8 0-239 1134 0177 088 0204 1140 0146 1-03 0-402 1-80 0362 134 0354 1119 0163 061
7 0163 064 0122 058 0199 144 0132 074 0376 147 0315 098 0306 08 0136 059
6 0194 102 0137 072 0182 1.06 0109 071 0-361 140 0263 1110 0290 088 0138 051
5 0240 1-61 0-165 109 0160 132 0111 073 0322 1-80 0218 1-31 0-268 120 0134 078
4 0267 1-85 0169 114 0150 137 0098 093 0284 1-53 0170 109 0236 1’14 0117 056
3 0-244 1-80 0156 1112 0136 1-10 0085 088 0226 140 0145 1113 0188 088 008 059
2 0-185 149 0126 102 0122 1143 0071 084 0164 129 0100 081 0132 097 0059 051
1 0-102 104 0070 078 0072 130 0039 079 0092 159 0051 1112 0070 09 0032 061
Table VII. Responses of the six-storey building with and without a TMD with a mass ratio of 0-075

Corralitos, 1989 Capitola, 1989 Santa Monica, 1994 Arleta, 1994
No TMD With TMD No TMD With TMD No TMD With TMD No TMD With TMD
xmax amnx xmax amax xmax amx xmax amﬂX xmax amax xmax amﬂx xmax amax xmax amax
Level  (m) (9 (m) (9 (m) (9) (m) (9) (m) () (m) (9) (m) () (m) @
Top 0277 256 0186 165 0135 170 0110 088 0111 1-68 0088 1-57 0158 167 0121 0-96
5 0254 209 0167 1-50 0116 124 0093 1-:00 0096 120 0067 106 0136 1117 0104 084
4 0-210 175 0135 1-15 0100 172 0077 1-03 0-081 1-51 0-054 107 0108 1119 0087 081
3 0-167 193 0103 102 0084 1-61 0057 094 0063 1137 0045 1-00 0083 137 0066 073
2 0118 1-74 0068 091 0-059 145 0037 058 0042 171 0-031 1-31 0-053 148 0043 087
1 0060 143 0033 076 0031 139 0020 086 0022 162 0018 1119 0026 124 0021 0-81
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Figure 7. Properties of the mega-structure with and without control

VIBRATION ABSORBERS FOR TALL BUILDINGS

Feng and Mita® assert that, for tall buildings, the large stiffness of the structural components and the
dominance of bending deformations prevent the use of conventional damping devices. The large stiffness
requires a significant number of damping devices to achieve the desired damping ratios and the dominant
bending deformations render damping devices which utilize shear deformation ineffective. Consequently,
they proposed an innovative vibration control system to reduce the dynamic response of tall buildings to
wind and seismic loads. Their proposed system takes advantage of the ‘mega-substructure configuration’
used in the design of tall buildings. The substructures, consisting of several floors, serve to dissipate energy
without added masses. The details of such systems are discussed in Reference 8. They arrive at the parameters
of the substructures by using a two-degree-of-freedom system and minimizing the mean square response of
the main mass to a white noise ground acceleration for seismic analysis and to a white noise force excitation
for wind analysis. For seismic loading, they give the following absorber parameters® which ignore the effects
of damping and the mode shapes of the structure:

Iy [
A A N [ 1

where the mass ratio p is defined as the ratio of the substructure mass to the floor mass instead of the
substructure mass to the generalized mass of the fundamental mode. Feng and Mita used this procedure to
compute the response of a 200 m tall building with a damping ratio of 0-02 in each mode to the SOOE

* Feng and Mita® define their damping ratio in terms of the natural frequency of the structure, whereas in this paper the damping ratio is
defined in terms of the natural frequency of the damper. With appropriate substitution, it can be shown that the second of equation
(14) and the damping expression in Table 3 of Feng and Mita® are identical
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Table VIII. Response of the mega-structure to the SOOE component of El Centro scaled to a peak ground
velocity of 0-25 m/s

Mega subconfiguration With control using
No control Feng and Mita®* proposed procedure
Mega-structure  Mega-structure Sub-structure Mega-structure Sub-structure

xmax amBX xmax amax StrOkemax amax xmnx amax StIOkemax amax
Level  (m) (®) (m) (® (m) (9) (m) (9) (m) (9)
Top 0-357 0-28 0-156 0195 0-02 0-105 013 0-074 0-04
3 0-319 0-25 0-102 009 0-070 0-03
2 0215 019 0091 012 0-067 0-04
1 0-122 0-25 0-055 016 0-062 0-02

* Responses of lower stories not reported

component of El Centro, the Imperial Valley earthquake, 1940, scaled to a peak ground velocity of 025 m/s.
Figure 7 shows a schematic of the building with and without the mega-substructure configuration along with
their properties and the dynamic characteristics of the first mode. The figure shows the modelling of the
substructures as SDOF systems attached to the mega-structure. They assumed that the substructures have
the same mass as the floors they are attached to, resulting in a mass ratio ¢ = 1. Their procedure results in
a considerable reduction in the response of the building (Table VIII).

To test the effectiveness of the method proposed in this paper for computing the absorber parameters, the
building with the same configuration was analysed using equations (12) and (13) to select the parameters. The
mass ratio u was computed by equation (11). Unlike the Feng and Mita procedure® where fand ¢ are the
same at each substructure level, the parameters computed by equations (12) and (13) are different for each
level because of the influence of the fundamental mode shape. The lower the substructure in the building,
the smaller is the fundamental mode shape amplitude and, consequently from the equations, the larger the
stiffness and the smaller the damping. The results of the analysis are presented in Table VIII along
with those reported by Feng and Mita. The results show that using the proposed parameters further reduces
the mega-structure displacements (from 0-156 to 0-105 m for the top floor), and the substructure displace-
ments (from 0-195 to 0-074 m for the top floor stroke). The proposed parameters, however, do increase
the substructure accelerations (from 0-02g to 0-04¢g for the top floor) as compared with those reported by
Feng and Mita.

CONCLUSIONS

The overall objective of this paper was to determine the optimum parameters of tuned mass dampers that
result in a considerable reduction in the response to earthquake loading. The criterion used is to find, for
a given mass ratio, the tuning and damping ratios of the device that would result in approximately equal
damping in the first two modes of vibration. The optimum TMD parameters for SDOF and MDOF
structures are presented in tabular and equation forms. It was found that the equal damping ratios in the first
two modes are greater than the average of the damping ratios of the lightly damped structure and the heavily
damped TMD. Consequently, the fundamental modes of vibration are more heavily damped. The proposed
method was used to select the parameters of TMDs for several SDOF and MDOF structures subjected to
a number of earthquake excitations. The results indicate that using the proposed TMD parameters reduces
the displacement and acceleration responses significantly (up to 50 per cent).

The method was also applied to a vibration control system proposed by Feng and Mita® for tall buildings,
referred to as mega-substructure configuration, where the substructures in the mega-structure serve as

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, VOL. 26: 617-635 (1997) © 1997 by John Wiley & Sons, Ltd.




PARAMETERS OF TUNED MASS DAMPERS 633

vibration absorbers. Further reductions in the displacement response of the mega-structure and substruc-
tures were achieved using the method proposed in this paper. The acceleration response of the substructure
however, was increased compared to that reported by Feng and Mita.

The results also show that in order for TMD:s to be effective, large mass ratios must be used, especially for
structures with higher damping ratios. The top floor with appropriate stiffness and damping can act as
a vibration absorber for the lower floors. The safety and functionality of top floors, however, may present
problems since the top floor may experience large displacements.

>

APPENDIX I

Table IX. Earthquake records used in the statistical study

Epicentral Peak
distance accel.

Earthquake Mag. Station name (km) Comp. (9)
Imperial Valley 67 El Centro Valley 116 SO00E 0-348
05/18/1940 Irrigation District So0W 0214
Northwest California 58 Ferndale City Hall 56-3 S44W 0-104
10/07/1951 N46W 0112
Kern County 77 Pasadena - Caltech 1270 SOOE 0-047
06/21/1952 Athenaeum S90W 0-053
Taft Lincoln School 414 N21E 0-156
Tunnel S69E 0-179
Santa Barbara Court 88-4 N42E 0-089
House S48E 0-131
Holywood Storage 1204 SO0W 0055
Basement N9OE 0-044
Eureka 65 Ferndale City Hall 40-0 N44E 0-159
12/21/1954 N46W 0-201
San Francisco 53 San Francisco Golden 11-2 N10E 0-083
03/22/1957 Gate Park S80E 0-105
Hollister 57 Hollister City Hall 221 SO1W 0-065
04/08/1961 N8OwW 0-179
Borrego Mountain 64 El Centro Valley 673 Soow 0-130
04/08/1968 Irrigation District SOOW 0-057
Long Beach 63 Vernon CMD Bldg. 50-5 SO8wW 0-133
03/10/1933 N§2w 0-155
Lower California 71 El Centro Valley 66-4 SO0W 0-160
12/30/1934 Irrigation District So0wW 0-182
Helena Montana 60 Helena, Montana 62 SOOW 0-146
10/31/1935 Carrol College SoowW 0-145
1st Northwest California 55 Ferndale City Hali 552 N45E 0-144
09/11/1938 S45E 0-089
Northern California 52 Ferndale City Hall 43-1 N44E 0-054
09/22/1952 S46E 0-076
Wheeler Ridge, California 59 Taft Lincoln School 42-8 N21E 0-065
01/12/1954 Tunnel S69E 0-068
Parkfield, California 56 Cholame, Shandon, 56-1 NO5SW 0-355
06/27/1966 California Array #5 N85E 0-434
Chalome, Shandon, 53-6 NS50E 0-053
California Array #12 N4OW 0-064
Temblor, California # 2 59-6 Né65wW 0-269
S25W 0-347
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Table IX. (Contd.)

Epicentral Peak
distance accel.
Earthquake Mag. Station name (km) Comp. (9)
San Fernando 64 Pacoima Dam 73 S16E 1-172
02/09/1971 S7T4W 1-070
8244 Orion Blvd. 21-1 NOOW 0-255
Los Angeles, California So0wW 0-134
250 E First Street 41-4 N36E 0-100
Basement, Los Angeles N54W 0-125
Castaic Old Ridge 29-5 N21E 0-315
Route N6OW 0-270
7080 Hollywood Blvd. 335 NOCE 0-083
Basement, Los Angeles N9CE 0-100
Vernon CMD Bldg. 48-0 NE3IW 0-107
SO7TW 0-082
Caltech Seismological 346 SoowW 0-089
Lab., Pasadena SO0W 0193

APPENDIX II

ynax maximum absolute acceleration

A system matrix

c damping coefficient of TMD

f tuning ratio of TMD

g acceleration of gravity

i unit imaginary number

1 identity matrix

k stiffness coefficient of TMD

m mass of TMD

M generalized mass in an MDOF structure
[M] mass matrix

n number of degrees of freedom

r counter for eigenvalues and mode shapes
T natural period

Xmax maximum relative displacement

Greek letters

B damping ratio of structure

¢ fundamental modal shape

(0] modal amplitude at the location of TMD

A eigenvalues

u mass ratio of TMD

Wy natural or fundamental frequency of the structure
w, natural frequency of TMD

Wy, 03 natural frequencies in the first two complex modes
£ damping ratio of TMD

&1, &5 damping ratios in the first two complex modes
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