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Examples of Correlating V4 and
Liquefaction Potential

Stokoe et al. (1988b) applied the strain approach by Dobry and his col-
leagues (1982) in an analytical study of the liquefaction potential of sandy soils
in the Imperial Valley, California, to generate liquefaction assessment charts
based on measured Vg and maximum horizontal ground surface acceleration,
a,,,, for stff soil (nonliquefiable clay) site at the candidate-site location. The
chart for 15 cycles of shaking, the approximate number of cycles of the Borah
Peak earthquake (Mg = 7.3), at a level ground site with the liquefiable sand in
the upper 12 m is shown in Figure 2. Liquefaction is predicted to occur right
of the shaded region. Within the shaded region, liquefaction would likely
occur depending on thickness and depth of the liquefiable layer. Liquefaction
is predicted not to occur left of the shaded region because the sand is too dense
to liquefy. During the Borah Peak earthquake, the estimated values of a_,, at
Goddard Ranch and Larter Ranch are 0.34 g and 0.6 g, respectively. As illus-
trated in Figure 2, liquefaction is predicted at Goddard Ranch in sediments with
Vs < 110 mv/s and liquefaction likely in sediments with 110 m/s < 'V <
170 m/s. Similarly, liquefaction is predicted at Larter Ranch in sediments with
Vs < 165 m/s and liquefaction likely in sediments with 165 m/s < Vg <
280 m/s.

At Goddard Ranch, liquefaction occurred as evidenced by numerous sand
boils in the low-lying areas (Youd et al. 1985). Shown in Figure 3 are sedi-
ment layers beneath the gravelly side bar investigated. Also shown are several
penetration profiles determined by the Cone Penetration Test (CPT) and the -
Standard Penetration Test (SPT). Liquefaction most likely occurred in
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Introduction

Introduction

Liquefaction of granular soils is one of the major causes of lifeline damage
in past earthquakes. Screening techniques based on geology, hydrology, and
soil conditions can identify areas along the lifeline corridor requiring more rig-
orous analyses. These areas can extend for several kilometers, however. 'i’he
Spectral-Analysis-of-Surface-Waves (SASW) method has great potential for
rapid determination of the layer thickness and small-strain shear wave velocity,
Vs, of soil deposits. The SASW method is nonintrusive and nondestructive. It
is based on the principal that surface seismic waves of high frequency propa-
gate only in near-surface layers, and surface waves of low frequency propagate
at different velocities if stiffness varies with depth. Thus, different portions of
the soil profile can be tested by using surface waves over a wide range of fre-
quencies. The general SASW test configuration of source, receivers, and
recording equipment is shown in Figure 1. Liquefaction potential and V; of
granular soils are influenced by many of the same factors (e.g., density, con-
finement, and geologic age). This paper evaluates the ability of the SASW
method to delineate liquefiable soil using data from two sites (Goddard Ranch
and Larter Ranch) where liquefaction occurred during the 1983 Borah Peak,
Idaho, earthquake and the liquefaction assessment procedure by Stokoe et al.
(1988b). Application of the SASW method to lifelines is discussed.




Unit C1, a loose (Iow penetration resistance) sandy gravel with less than a few
percent fines (Andrus 1994). Unit C2, a loose to medium dense sandy gravel,
using penetration resistance is predicted to be liquefiable to marginally lique-

- fiable material. Unit B is a sandy silt with clay, and is nonliquefiable. Three
V;s profiles determined by the SASW method are shown in Figure 4. Profile
SA-85 was determined in an earlier study (Stokoe et al. 1988a) before penetra-
tion and borehole data were available. Profiles SA-2 and SA-3 were deter-
mined assuming the layering observed in penetration profiles. Regions of
liquefaction and liquefaction likely have been shaded in Figure 4 using values
of Vs, and are in good agreement with the assessment based on penetration
resistance. Soil type is needed to correctly assess no liquefaction for Unit B.

At Larter Ranch, liquefaction caused the steeply sloping (about 34 percent)
distal end of an alluvial fan to move laterally downslope about 1 m. Numerous
sand boils erupted along the toe of the fan. Shown in Figure 5 are sediment
layers beneath the slide. Also shown are penetration profiles determined by the
CPT, SPT, and Becker Penetration Test (BPT). Liquefaction most likely
occurred in Unit C, a loose to medium dense sandy gravel with about 7 percent
fines (Andrus 1994). Beneath the zone of fissures, Unit C is predicted margin-
ally liquefiable since it exhibits higher penetration resistances. Three V; pro-
files determined by the SASW method are shown in Figure 6. These profiles
were determined in an earlier study (Stokoe et al. 1988a) before penetration
and borehole data were available. Regions of liquefaction and liquefaction
likely have been shaded in Figure 6 using V;, and are in good agreement with
the assessment based on penetration resistance. '

These findings illustrate the ability of the SASW method to delineate lique-
fiable materials in granular deposits. Soil type is needed to correctly predict
behavior in deposits with layers of soft clay.
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Application of the SASW
Method to Lifelines

‘The SASW method consists of making field measurements of surface wave
velocity at various frequencies and determining V; profile through a process
called inversion. Several different source and receiver spacings are required to
measure over a wide range of frequencies due to attenuation and near-field
effects. Although it is preferable to conduct the test with receivers spaced
about a common midpoint (see Figure 1) and source locations reversed, the
common source test configuration shown in Figure 7a is more appropriate for
automation. Hiltunen and Woods (1990) demonstrated that the sacrifice in
quality is small with the common source configuration. Recent work by
Nazarian et al. (1994) has shown that inversion can be automated, reducing the
time for testing and determining V; profile at a site like the one shown in Fig-
ure 7a to about 30 min. For alignments of moderate length, test arrays could
be effectively overlapped, as shown in Figure 7b, to produce profiles at dis-
crete intervals of 4x. Since most liquefiable soil layers lie within the upper
10 m of soil deposits, a typical value of x would be 2 m for profiling depths of
0.5 m to 10 m. Moving source-receiver systems are under development at the
University of Texas at Austin (Stokoe 1995) for generating continuous Vg pro-
files rather than profiles at discrete locations. Based on these developments,
the SASW method appears well suited for rapid profiling along lifelines.

Application of the SASW Method to Lifelines
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Figure 1. General SASW field testing configuration
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Figure 3. Cross section of the gravelly side bar at Goddard Ranch (Andrus 1994)
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Figure 5. Cross section of the lateral spread at Larter Ranch {Andrus 1994)
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Figure 7. SASW testing with common source configuration along pipeline




