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Fig. 2 Responses of uncertain systems with respect to 32 vertices of
the uncertain parameter region

That is, for any 0 < | < 8 and positive semidefinite matrix S,
Wi(Bg + (1 - 8)q:.5) = fW(q,, 5) + (1 = BIW(42. 5)

Therefore W(q..) is also convex. The maximum is only
achieved on the corners of the polytope. Hence the maximiza-
tion in (9) is reduced to comparing the function values on the
corners.

The method developed in the above is applied in design of
the longitudinal control of a small aircraft, the Trinidad 20. The
linearized longitudinal motion model is given by Mora-Camino
and Chaibou (1993). The uncertain parameters are aerodynamic
derivatives whose values are dependent on the current point in
the flight envelope and evolve the limits

-163 =27, < —1.41,

0.09 = Z, = 0.104,
—860 = M, = —-7.52,
-194 = M, = -1.68.
-934 = M, = -8.09.

The open-loop system is unstable. We want to assign all poles
of the uncertain systems within the disk D(—4, 3.5).

Using the design method developed in this technical brief,
we obtain

u=-05184 <0

and the state feedback gain for robust pole placement is given
by

K =1-09434 0.3964 0.8043]

Following Theorem in the above, all poles of the closed-loop
systems under the uncertain parameters are within the desired
region D{ -4, 3.5).

Suppose the initial angle of attack and the pitch angle errors
are 0.0 rad. The responses of the uncertain Systems with respect
to the 32 comners of the uncertain parameter region are shown
in Fig. 2. As seen from Fig. 2, the variations in the pitch angle
and the angle of attack responses are very small. The pitch rate
response has a little bit large variation but it is also very small.
Hence the resultant closed-loop systems have nice performance
robustness dgainst the parameter variations.
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Melnikov-Based Open-Loop Control
of Escape for a Class of Nonlinear
Systems

Emil Simiu’ and Marek Franaszek'

The performance of certain nonlinear stochastic svstems is
deemed acceptable if, during a specified time interval, the svs-
tems have sufficiently low probabilities of escape from a pre-
Jerred region of phase space. We propose an open-loop control
method for reducing these probabilities. The method is applica-
ble 10 stochastic systems whose dissipation- and excitation-
free counterparts have homoclinic or heteroclinic orbits. The
Melnikov relative scale factors are system properties containing
information on the frequencies of the random forcing spectral
components that are most effective in inducing escapes. Numeri-
cal simulations show rhat substantial advantages can be
achieved in some cases by designing control sysiems that take
into account the information conrained in the Melnikov scale
factors.

Introduction

In this work we discuss a Melnikov-based procedure aimed
at achieving efficient stabilization by open-loop control. The
proposed procedure is applicable to the class of multistable
systems with stochastic excitation, whose dissipation- and forc-
ing-free counterparts possess homoclinic or heteroclinic mani-
folds. Examples are the motion of a ship subjected to wave
loading, as modeled by a second-order equation of motion with
a nonlinear restoring term (Hsieh et al., 1994), the rf-driven
Josephson junction, and higher- or infinitely-dimensional sys-
tems such as buckled columns (Franaszek and Simiu, 1996},
mechanical devices (Wiggins and Shaw, 1988), and flows over
a corrugated surface (Allen et al., 1991, Simiu, 1996). We
review in the following section the theoretical basis of our
procedure. Next, we test its effectiveness by using numerical
simulations.

Melnikov Processes and Exits From a Well

For a class of dynamical systems described later in this sec-
tion, the Melnikov approach is a technique providing necessary
conditions for the occurrence of chaos—and of exits from pre-
ferred (or *‘safe’") regions of phases space. Originally the Mel-
nikov approach was applied only to deterministic systems, in-
cluding systems with quasiperiodic excitation (Beigie et al.,
1991). However, the result was recently extended to systems
with stochastic excitation (Frey and Simiu, 1993). One remark-
able result of this extension is that, under certain conditions, a
motion can be both stochastic and chaotic (i.c., sensitive to
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initial conditions). (See also Seki et al.,
review of stochastic Melnikov theory, see Sivathanu et al.
{1995). We note that the theory is useful in applications even
if the dissipation and excitation terms are relatively large (Fra-
naszek and Simiu. 1995).

We consider for definiteness the equation

I= =V + ult) + e[ yG(1) - B7]

2r¥(w) =

where V(:) is a potential function, u(7) = —ey G (1) is a
stochastic control input. and 3. y. y, are positive constants. We
assume: (1) V(7) has the shape of a multiple well, so that the
unperturbed system has a center at the bottom of each well and
a saddle point at the top of the barrier between two adjacent
wells. and the stable and unstable manifolds emanating from
the saddle point at the top of the potential barrier between two
adjacent wells are homoclinic or heteroclinic: and (ii) € is
sufficiently (though not asymptotically) small. Fina]l) we as-
sume Giryisa random process with spectral density 27¥({w).
As a tyvpical example belonging to the class of systems just
described we consider the Duffing-Holmes equation. which has
potential

Vi) = 2974 - 22, (2)

homoclinic orbits with coordinate
=(2)'"* sech (1),

L) = (3)

and a modulus of the Fourier transform of the function A(1) =
(=0
Sty =12) "ruwsech (7w/2). (4)

The function S(.) is known as the Melnikov scale factor ( Bei-
gie et al.. 199]). We also note that

c= f H7ydr =

b

(5)

Associated with Eq. (1) is a Melnikov process with the ex-
pression

M(_r)=—ﬁc+yf h(7)G( — 7)dT. (6)

(Frey and Simiu. 1993). Any realization of the Melnikov pro-
cess represents the distance between the stable and unstable
manifolds of Eq. (1) (¢ # 0) corresponding to a realization of
the random process G(1).

The mean zero upcrossing time 7, of the Melnikov process
induced by the excitation is a measure of the mean time of exit
from a well. 7, { Sivathanu et al.. 1996). For any given system,
7. can be m;reased by adding to the excitation\e yG(t) a control
force u(1) = —ey G (1). where 0 < v, < . A trivial choice
of the open-loop control force would be G.(t) = G(1). For this
choice. the ratio between the average power of the exciting
force and the average power of the control force is Q =
y3/yZ. We seek to use the information contained in the Melni-
kov relaiive scale factor $(.) to obtain open-loop control forces
that would achieve results comparable to those achieved by the
trivial control. but with considerably more effectiveness.

From Eq. (6) it follows that the spectral density of the Melm-
kov process for the uncontrolled system is
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1993.) For a brief -

28, (w) = SHwW)[27V(w)] (7)

where S(w) is the modulus of the Fourier transform of h(r),
and 27 ¥(w) is the spectral density of the random process G(r).
To illustrate Eq. (7), we consider the Duffing-Holmes equation,
for which S(w) is given by Eq. (4). Let us consider a force

(1) G(¢) with spectral density
0.03990 In (w) + 0.12829 004 = w =104
0.05755 In (w) + 0.14493 0d=w=12 (8)
—0.38301{In (w)]* + 1.06192 In (w) — 0.0294] 12 =<w =< 154

(Fig. 1). To a first approximation this spectrum is representative
of low-frequency fluctuations of the horizontal wind speed (Van
der Hoven, 1957). The functions S*(w) and 27¥(w )} S (w) are
represented in Figs. 2(a) and 2(b), respectively. Figures | and
2 show that, owing to the shape of S(w)—which plays the
role of an admittance function—only pant of the frequency
components of the excitation G{(¢) contribute significantly to
the spectral density of the uncontrolled system’s Melnikov pro-
cess (for example, components with frequencies w > 4 are
suppressed; components with frequencies 2.5 < w < 4 are very
strongly reduced).

The following approach appears reasonable. Instead of
G. (1) = G(1), it would be more efficient to apply a control
force obtained by filtering out from the function G(¢) those
frequency components that do not contribute significantly to
the spectral density ¥y (w). The advantage of this approach
over the trivial approach G.(r) = G(¢) is that, for the same
control power, it would result in smaller ordinates of the
controlled sysiem’s Melnikov process and in a lower mean
exit rate—since those smaller ordinates entail smaller cha-
otic transport across the pseudoseparatrix (Beigie et al,
1991; Frey and Simiu, 1993).

Like its trivial counterpart, the approach just described is
not feasible owing to practical limitations on the operation
of the control system. These limitations entail non-zero time
lags between sensing of a signal and the actuator response. .
In addition, practical filters may entail other inefficiencies.
Nevertheless, our approach can be effective, as is illustrated
by the numerical simulations presented in the next section.

2x¥(w)
1
oz}
as +
C4 |
02 b
°o ) s 1;1 15 20
W
Fig. 1 Spectral density of excitation
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Fig. 2 (a) Square of Melnikov relative scale factor; (b) spectral density
of Melnikov process

Numerical Simulations

We considered the Duffing-Holmes equation (Egs. (1) and
(2)),e = 0.1, 8 = 0.45. We examined two cases: (1) 2r¥(w)
is given by Eq. (8): (2) 27 ¥(w) = 27/5 for 0 < w < §
and 2n¥(w) = O otherwise. We first estimated by numerical
simulation the mean exit rate for the uncontrolled system. We
then estimated the mean exit rate for the system with control
forces. We considered four types of control force:

(a) Control type (a) seeks to counteract the excitation by
applying. with lag 1, a control force proportional and of oppo-
site sign to eyG(t). The smaller the lag to, the more effective
the control. Y

(b) Control type (b) utilizes the information provided by
the Melnikov scale factor S(w) as follows. Consider for exam-
ple excitation case 1. Figure 2 shows that spectral components
with frequencies 0 = w = w, where w, < 0.3, say, and frequen-
cies w > w, where w; = 2.5, say, contribute little to the spectral
density of the Melrikov process. In other words, the spectral
components inside (outside) the interval (w;, w,) are effective
(ineffective ). Control type () differs from control (a) in that
all ineffective components are suppressed.
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(¢) Control type is similar to control type (a), except that
the signal —ey.G.(1) is first passed through a realistic, practical
filter with impulse response function shown in Fig. 3 (4 = 0.1.
B =2.25) :

(d) Control type (d) is similar to control type (c), except
that all ineffective Fourier components are suppressed from
the output of the filter, while leaving the other components
unchanged.

In all the simulations we assumed a time lag 7, = 0.1. The
frequencies w, and w, defining the intervals over which ineffi-
cient components were filtered out in (b) and (d) were chosen
by examining the spectral densities of the Melnikov processes.
The choices were w, = 0.3, w, = 2.5 (excitation case 1) and
wy = 0.3, wy = 0.2 (excitation case 2).

The strength of the control force was assumed 1o be v, =
0.5y for control types (&) and (d). For control types (a) and
(c¢) . was chosen so that the control forces have the same
average power (i.e., the same variance) as the control forces
for type (b) and (d), respectively. This choice yielded, in exci-
tation case 1, y. = 0.167y for type (a) and vy, = 0.197y for
type (¢) and, in excitation case 2. y. = 0.292v for type (a)
and y. = 0.345y for type (¢).

The filter of Fig. 3 has transfer function A(w) = R(w) +
JjI{w), where

R(w) = r*(Aw/2) cos (Aw)

- r*{(Bux/2)cos (24 + B)w (9a)
I(w) = —r*(Aw/2) sin (A)
+ r{Buw/2) sin (2A + B)w. (95)

r(x) = sin (x}/x (Frey and Simiu, 1996). Equations (9) were
obtained from expressions given in Papoulis (1962). We show
in Fig. 4 the dependence on frequency of the filter gain and
phase.

The numerical simulations were performed by the adaptive
step-size Runge-Kutta method. The realizations of the excitation
process G(t) were simulated by sums of twenty-five sine and
cosine terins with equally spaced frequencies and amplitudes
distributed normally with zero mean and variance 27 W(w) A,
where Aw is the frequency increment (Rice, 1954). For each
realization the initial points were chosen randomly and the tra-
jectories were integrated for a time interval T, = 10007, where
T = 27/ wWme and wn,, is the maximum energy-containing fre-
quency of the spectrum of G(7). The number of zero crossings
was counted for each of a total of 800 realizations. For this
number of realizations the error in the estimation of the main
upcrossing rate was found to be about 0.5 percent. A similar
procedure was applied to the controlled system. The results are
shown for cases 1 and 2 in Figs. 5 and 6. respectively, where
o =ey.

VA

»f-o--mmem- 3

-1/B

Fig. 3 Impulse response of a two-parameter filter with initial response
and recoil

Transactions of the ASME



1.8
(a)
=t
= 1.2 4
r= o
~ N Sc——— |
B
Q
=
i 0.6 A
0.0 r T T
0 2 4 6 8
(%}
b
Q
)
<
=
8
<
-
R R
——
-27T T 1 1
0 2 4 6 8
(Y]
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Discussion

We now compare mean escape rates induced by control forces
modified to 1ake advantage of the system’s Melnikov properties
with rates induced by those forces’ unmodified counterparts.
Recall that the control forces corresponding to curves (b) and
(d) in Figs. 5§ and 6 have the same average power as those
corresponding to curves (a) and (c), respectively. and that
they were obtained from the latter by using Melnikov theory to
eliminate inefficient components. It is seen that this procedure
is useful for both cases 1 and 2. The benefits tend to be stronger
for case 1. for which $°( ) renders ineffective a larger propor-
tion of the total power of the excitation process G(7) than is
the case for case 2 (see Figs. 5 and 6. and recall that for case
20,(w) = 0 for w > 5). For example, Fig. 5 shows that, given
the external excitation ey = 0.15. for case ] the escape rate
reduction due to the use of a control force type () is about 20
times larger than that due to a control force type (a) having
the same average power: while control force type (d) is about
5 1imes more effective than control force type (¢) with the same
power. Note that the effectiveness of the control force increases
as ¢y decreases.

Toconclude, the exploratory numerical simulations presented
in this section suggest that controls based on the information
contained in the Melnikov transfer function can help to stabilize
efficiently a system subjected to random excitation. The degree
to which an efficient Melnikov-based open-loop control can

Journal of Dynamic Systems, Measurement, and Control

be accomplished in practice depends upon the system under

consideration (i.e., its Melnikov characteristics), the spectral
density of the excitation, and the characteristics of the filters
used to obtain the control force.

Conclusions

A Melnikov-based open-loop approach to the control of a
class of nonlinear stochastic systems was proposed. The aim
of the proposed approach is to achieve a relatively efficient
stabilization of the system. Exploratory numerical simulations
suggested that the information contained in the Melnikov rela-
tive scale factors can help to achieve this objective. It is empha-
sized that our calculations fully accounted for the nonlinearity
of the systems at hand.

The degree to which an efficient Melnikov-based open-loop
control can be accomplished in practice depends upon the sys-
tem under consideration (i.e., upon its Melnikov scale factors).
the spectral density of the excitation, and the quality of the filter
design. The intent of this paper is not to study the filter problem
in the context of Melnikov-based open-loop control. Rather. it
is to draw the attention of control specialists to the approach
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Fig. 5 Case 1: (i) Escape rate n, for uncontrolled oscillator subjected
to noise o = €¥; (i} ratio n,/n, between escape rate of controlled and
uncontrolled system. Curves (a), (b}, (c), (d) are described in the text;
o= €Y.
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Fig. 6 Case 2: same legend as for Fig. 5

proposed herein, in the belief that, whether used singly or as a
component of a more complex control strategy. it may become
a useful addition to the current body of nonlinear control theory
and practice. ’
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