do not introduce into the problem additional data. Therefore,
they are mathematical devices for the solution of an undeter-
mined set of equations. The belief in their ability to give the
location and magnitude of the damage comes from the nu-
merical examples. Hassiotis and Grigoriadis (1996) introduce
a new set of criteria based on measurements of the system
Markov parameters.

The numerical example is based on a 10-story two-bay
frame. The frame was modeled by a 50-clement, 90 degree-
of-freedom (DOF) system using finite elements and not by 10
mass-spring units. Therefore, the use of 10 frequencies does
not constitute a full set of data on natural frequencies. Damage
on the 90 DOF structure was identified using as few as seven
natural frequencies when the unknowns were any of 50 ele-
ments. The example chosen for publication is representative
of results obtained when seven or more frequencies weére as-
sumed to constitute the data. In a similar example of a 10 DOF
system that was modeled by spring-mass units, three natural
frequencies were found to be enough for identification of dam-
age. Precise identification of damage will be limited by the
chosen model for the structure and by the data that can be
obtained for a given structure.

In case of noise-polluted data, the identification is not as
good as with exact data. A separate study using only the first
criterion and noise-polluted data is published in Hassiotis and
Jeong (1993). It was found that damage (in the order of 50%
decrease in stiffness) can be identified when the measured nat-
ural frequencies are within £1% of their actual values. How-
ever, in both the experimental example published within and
the numerical examples published earlier, the identification of
erroneous or ‘‘spurious’’ damage was observed mainly due to
the noise in the data.

The damping ratios shown in Table 2 were used simply to
obtain undamped natural frequencies. Although damage will
affect the damping of a system, trying to concurrently identify
both changes in the stiffness and damping matrices would be
infeasible with such limited data.

The development of the theory depends on a model of a
structure before damage and a model of the structure after
damage. Since we are looking at a change between the two
models, the original modeling of the boundary conditions will
not affect the results or conclusions of the method presented.
However, the writers agree with the discussers that the bound-
ary conditions should be carefully modeled when dealing with
real problems.
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TABLE 4. Peak Response of Megastructure to NS Component of El Centro

VIBRATION CONTROL OF TALL
BUILDINGS USING MEGA
SUBCONFIGURATION"

Discussion by Fahim Sadek® and
Bijan Mohraz,* Fellow, ASCE

The authors present an innovative system of vibration con-
trol to reduce the dynamic response of tall buildings. By con-
sidering the ‘‘mega-substructure configuration’’ where sub-
structures consisting of several floors serve as vibration
absorbers, the responses of the structure and its substructures
are reduced significantly. This system is cost effective, since
it requires no additional masses to control vibrations as tuned
mass dampers and vibrations absorbers do.

To determine the substructure (absorber) parameters, the au-
thors use a two-degree-of-freedom system and minimize the
mean square response of the main mass to a white noise
ground and wind excitation. For ground acceleration, they ar-
rive at the following frequency and damping ratios (Table 2):

s

=3
B ®

and

1 -3 + o’
1+ py

where B, ., and A, = frequency, mass, and damping ratios of
absorber, respectively. The damping ratio A, is defined in terms
of the natural frequency of the structure instead of the ab-
sorber. In computing p, the authors use the ratio of the sub-
structure (absorber) mass to that of the mega-floor to which it
is attached. For multi-degree-of-freedom structures, the floor
masses do not represent the structural mass in a given mode;
therefore, it would not be appropriate to use them to compute
the mass ratio. Kaynia et al. (1981) and Villaverde (1985) have
suggested that one should compute the mass ratio using the
generalized mass for a given mode (usually the fundamental
mode) corresponding to a unit modal participation factor. If
one uses the generalized mass for the fundamental mode (M,

h=3 \/u + WB* + B+ (10)

"October 1995, Vol. 121, No. 10, by Maria Q. Feng and Akira Mita
(Pa’per 9125).

Postdoctoral Fellow, Struct. Div., Nat. Inst. of Standards and Technol.,
Gaithersburg, MD 20899; formerly, Grad. Res. Asst., Mech. Engrg.,
Southern Methodist Univ., Dallas, TX 75275.

“Prof. of Mech. Engrg., Southern Methodist Univ., Dallas TX.

——J
AUTHORS' DATA* AUTHORS’ METHOD USING p = 0.28 | VILLAVERDE'S METHOD USING . = 0.28
Megastructure Substructure Megastructure Substructure Megastructure Substructure
Xerax Qmax Xerax Smax Xerax Bz Xrax Bmax Xerax max Xenax o
Level | (mm) (9 (mm) (9 (mm) () (mm) (@ (mm) (9 {mm) @
L)) (2 (3) 4 5 (6) ™ (8) ) (10) (amn (12) (13
Top 167 0.150 159 0.023 103 0.111 95 0.020 125 0.067 54 0.039
3 127 0.110 130 0.021 96 0.090 85 0.018 118 0.077 49 0.040
2 84 0.134 122 0.021 86 0.121 82 0.014 98 0.110 48 0.041
1 56 0.158 103 0.018 52 0.151 66 0.010 54 0.149 49 0.030

“The small discrepancy between the results presented in Table 3 of the paper and the results shown under (. = 1.0) is due to the fact that the suthors
used approximate values in computing the substructure parameters, while exact parameters are used herein.
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= 35,737 Mpg) for their example, the mass ratio would be 0.28
instead of 1. Table 4 presents the response of the mega- and
substructures to the same excitation used by the authors (NS
component of El Centro, 1940, normalized to a peak velocity
of 25 cm/s) for mass ratios w = 1 and u = 0.28. The results
indicate that further reductions in response are achieved using
the generalized mass.

Eqgs. (9) and (10) are derived using a vibration absorber
attached to a single-degree-of-freedom structure. For multi-
degree-of-freedom structures, however, the validity of these
equations is questionable. Villaverde (1985) considered the ef-
fect of the fundamental mode shape when determining the pa-
rameters of the absorbing systems. In such cases, the damping
ratios for different substructures will no longer be equal, as
assumed by the authors, since they would depend on the shape
of the fundamental mode. The frequency and damping ratios
suggested by Villaverde are

=1 a1
and
h=E + &V (12)

where §, and ¢ = structure’s damping ratio and mode shape
amplitude (normalized to have unit modal participation factor)
at location of absorber, respectively. The responses of the same
structure using (11) and (12) are also presented in Table 4.
The table shows that by using (11) and (12), one can further
reduce the displacements of the substructures. This reduction,
however, is accompanied by some increase in accelerations
when compared to those for pu = 0.28.

It should be noted that when considering mega-substructure
configurations, the connection between the megafloors and
substructures underneath them should be accounted for in de-
sign by permitting the substructures to move independently of
the megastructure.

The following is one minor correction: in the right column
of page 1086, line 29, B should be 0.35 and &, should be 0.15.
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Closure by

Maria Q. Feng,’ Associate Member, ASCE,
and Akira Mita," Member, ASCE

For a multi-degree-of-freedom mega-sub building, the mass
ratio in our study is defined with respect to a certain mega-
structure mode shape normalized with its top amplitude (Mita
and Kaneko 1994). That is
B=(dim, + dimy + <0 + dim VM

(= 1.0 in Feng and Mita's example for every mode) (13)

where ¢, represents normalized modal amplitude of ith mega-
mass for selected mode; and m,, = ith submass. It is assumed
that the dynamic characteristics of all substructures are the
same. The generalized mass in (13), M, is defined as

M= ¢¥mnl + ¢;mu2 + e+ ¢:mm (14)

where m,, = ith megamass. It is clear that the mass ratio de-
fined in this form is independent of participation factors, mak-
ing it possible to define a unique mass ratio for various exter-
nal loads.

The mass ratio of 0.28 presented by Sadek and Mohraz is
a mass ratio between the top submass and the generalized mass
for a unit participation factor. The submasses attached to the
lower floors are not included. If they are included, the mass
ratio should be close to 1.0.

Slight improvement in displacement response is observed in
Sadek and Mohraz's example. However, this is mainly due to
the fact that the spectral components of the El Centro (1940,
NS) earthquake ground motion are not flat, while the optimum
values obtained by Feng and Mita are for a white-noise input.

Sadek and Mohraz's interest in our paper is highly appre-
ciated.
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