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ABSTRACT

This state-of-the-art review of the shear design of high-strength concrete (HSC) beams
consists of four parts. In the first part, various analysis methods are presented:

a) The plastic solution assumes that both concrete, modeled as a modified Mohr-Coulomb material,
and steel reinforcement are at yield. Under shear loading, the concrete web develops an inclined
compression field which satisfies both upper and lower bound theorems. A plastic solution of shear
friction is also discussed.

b) Both the compression field theory and the modified compression field theory (MCFT) are
“exact”theories in the sense that they satisfy equilibrium, compatibility of displacements and stress-
strain relationships. The MCFT accounts for the contribution of the tensile strength of concrete to
shear resistance.

¢) Other “exact” solutions are also discussed, that do not assume that the principal stress and principal
strain directions are aligned with each other, as the MCFT does.

d) The 45° truss, the variable angle truss (VAT) and strut-and-tie models (STM) belong to a class
of solutions that only satisfy equilibrium.

The second part of the report is a comparison of various National Codes:

a) The ACI Code is semi-empirical and based on the 45° truss with a correction term called the
concrete contribution. For shear-friction, the ACI Code only accounts for a friction term.

b) The Canadian Code (CSA) and the AASHTO Code are more “rational” and based on the MCFT.
STM are acceptable for “D” regions near supports, loads or sudden changes in geometry. For shear-
friction, the CSA Code accounts for a friction and a cohesion term.

c) The Norwegian (NS) Code’s general design method is also based on the MCFT. However, the
VAT method and a simplified method are also allowed. Again, STM are acceptable for D regions.
For shear-friction, the Norwegian Code accounts for a friction and a cohesion term.

d) The Japanese Code is based on an equilibrium theory and considers shear resistance as a
combination of arch action and (variable angle) truss action.

¢) The CEB-FIP Code is based on the VAT, and

f) so is the French Prestressed Concrete Code which includes a concrete contribution term.

g) However, the French Reinforced Concrete Code is based on the 45°truss with a concrete
contribution term.

The third part of the report is a review of research results:

a) Beam test results are surveyed and compared to various empirical and design code equations.
b) Panel tests are reviewed, that simulate the state of biaxial tension and compression in beam webs.
c) Shear friction measurements and theories are discussed and

d) Size effect is briefly covered, with the help of fracture mechanics.

The last part of the report discusses future work. We recommend that emphasis be placed on
experimental measurement of the shear friction properties of HSC. Biaxial behavior is also important,
but would require a major commitment in funding. In addition, we recommend that NIST perform
a parametric study of the strength of HSC beans, using the MCFT, to determine the influence of
various models of shear friction and biaxial tension-compression softening; and that the work on
automation of strut-and-tie modeling be expanded.

Keywords:  building technology; compression field theory; design codes; high-strength concrete;
reinforced concrete; shear strength; strut-and-tie model; truss model.
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1. INTRODUCTION

In the last 30 years, the compressive strength of concrete that can be produced reliably in the field
has more than doubled, from 35 MPa (5000 psi) to 85 MPa (12 000 psi). Strengths as high as 140
MPa (20 000 psi) can be achieved in the laboratory and on rare occasions in the field'. Very high
strengths have been achieved with Reactive Powder Concrete which is made of powders with no
aggregate (200 MPa when hot water cured at 90°C and 800 MPa - twice the strength of most steels -
when dry heated at 400°C. Bonneau et al 1996). These advances have been made possible by two
major developments: the introduction of high range water-reducing admixtures (superplasticizers)
and the use of silica fume. The admixtures allow the production of workable concrete mixtures with
very low water-cement ratios, and the silica fume can produce cement paste with very low porosity.

High-strength concrete (HSC) will be used more and more frequently, to mention a few examples,
in columns which can be made smaller and thus result in more useable floor space than if normal-
strength concrete (NSC) were used (Walthers 1989); in joints between precast columns, which can
then develop their full strength; in offshore structures where mass and buoyancy need to be
considered (Jakobsen 1989); and in structures where durability (resistance to corrosion and abrasion)
is important because HSC is less permeable than NSC. When strength is not the only consideration,
the term high-performance concrete® (HPC) is preferred to high-strength concrete (HSC). In addition,
early strength development of HSC can accelerate construction schedules significantly. For example,
a 105-MPa HSC is as strong after one day as a 35-MPa NSC is after one month (Walraven 1995).
Also, HPC exhibits excellent workability and an ability to seif- desiccate, thus reducing or eliminating
moisture problems due to concrete “sweating”.

As far as shear strength is concerned, high-strength concrete presents three main challenges:

1) Current American Concrete Institute (ACI) code provisions for shear strength design rely on
empirical rules whose data base is largely below 40 MPa (6000 psi). New design rules would have
to rely on either rational methods or on tests that cover a higher range of strengths. Much
progress has been made in the last 20 years on rational methods for shear design and there is hope
that the rules can be made more understandable from first principles of mechanics, such as has
been achieved for flexure. Moreover, it is likely that the rules can be made simple enough that
they will gain adoption by the design community in the not-too-distant future. The Canadian

1Two Union Square in Seattle employs 130-MPa concrete, the highest strength used up to
1989 in a conventional building. Concrete with strength of 160 MPa has been used experimentally
in Norway to armor pavement subjected to studded tires. The ice shield on the piers of the bridge that
will link New Brunswick to Prince Edward Island in Canada uses 100 MPa concrete. The bridge is
scheduled to be completed in 1997.

>The term “high-performance concrete” means concrete having special properties that are
tailored to a specific application and which cannot be obtained by using only the basic ingredients of
cement, water and aggregates.



Code (CSA 1994) and the Norwegian Code (NS 1992) are two pioneering examples of such
efforts.

2) Shear failure surfaces in high-strength concrete members are smoother than in normal-strength
concrete members, with cracks propagating through coarse aggregate particles rather than
around them. Since one of the shear transfer mechanisms across cracks is by aggregate interlock
this mechanism needs to be re-examined for high-strength concrete. Test results to date of HSC
indicate a reduction in shear friction of up to 35% compared to NSC.

3) In the cracked web of a beam under shear, the portions of concrete between cracks act as
compression struts that are also subjected to transverse tension, which reduces their compression
capacity. Modeling of this softening behavior is based on tests. Softening shows a dependence
on concrete strength that needs to be extended to HSC. However, test results to date indicate no
marked difference in biaxial tension-compression behavior between HSC and NSC.

This report reviews in detail the literature on the shear problem in beams, with particular attention
devoted to beams made of HSC. Chapter 2 surveys solution methods, starting with plasticity analyses,
continuing with more exact solutions (such as the modified compression field theory) and ending with
truss solutions often used in design (strut and tie). Chapter 3 compares various national concrete
design codes. Some codes have remained basically unchanged for the last 30 years and still rely on
the 45° truss with a concrete correction term, whereas other codes have achieved a remarkable level
of rationality founded on more exact solutions. Chapter 4 reviews research results, mostly
experimental: beam tests from around the world; panel tests (biaxial tension-compression) from
Canada, the U.S.A., Europe and Japan; and shear friction tests from Europe and the U.S.A.. Fracture
mechanics and size effect are also mentioned in Chapter 4, but they are topics that deserve a separate
review. Finally, Chapter 5 is a proposal for work that NIST could perform in the next several years
to improve the solution of shear problems in HSC beams, with a view to updating design and
construction standards.



2. ANALYSIS METHODS

2.1 Elastic Solution — Uncracked RC Beams

In the uncracked state, reinforced concrete (RC) can be considered as a homogenous, elastic
material. For a simply-supported, uniformly loaded beam, the combination of shear stresses, which
are high at the supports, and bending stresses, which are high at midspan, cause the principal stress
trajectories to change directions along the length of the beam (Fig. 2.1a), as shown, for example, by
Morsch (1909). For a brittle material such as concrete, reinforcement is provided to carry the tensile
stresses. The elastic stress distribution provides the basis for using inclined reinforcing bars to resist
the effect of shear, as shown in Fig. 2.1b.

Modern design methods, however, account for cracking in a reinforced concrete member, even
under loads well below the ultimate strength of the member.

2.2 Plastic Solution — Cracked RC Beams

Designers are often more interested in designing a safe structure than in tracking its complete
behavior over its loading history. This approach is called /imit state design. The theory of plasticity
offers useful tools for establishing the carrying capacity of structural members. Application of the
theory of plasticity to structural engineering is based on the following two theorems:

1. If a load path can be found where equilibrium is satisfied, the boundary conditions are fulfilled
and the material does not exceed the yield condition anywhere, then the structure is safe. This is the
lower bound theorem of the theory of plasticity. The stress field can be continuous, as for example
in the compression field theory, or it can be discontinuous, as for example in the strut-and-tie
method.

2. On the other hand, the load that causes a failure mechanism compatible with the geometrical
constraints of the structure is an upper bound of the strength of the structure.

Whereas the reinforcing steel exhibits a definite plastic behavior and a readily defined yield point
(Fig. 2.2a), plain concrete exhibits strain-softening and a rather brittle behavior in compression (Fig.
2.2b). Concrete behavior can be idealized to have a yield plateau at £, = v 1., where v is a factor less
than 1.0, whose value depends on the cylinder compressive strength £, , the ultimate strain €, and
the application. v is calculated by equating the area under the stress-strain curve for the real and the
elastic-plastic curve, as shown in Fig. 2.2c. This rigid-plastic idealization has been found to be useful
in soil mechanics and in the analysis of reinforced concrete behavior. For shear in RC beams with
stirrups, an average empirical value is:

/
v =08- Je
200
A safe value is:
/
v=07- Je
200
which gives v = 0.5 for f7, = 40 MPa. On the other hand, for punching shear,
v = 3.2
f/

(Nielsen 1984), which also gives v = 0.5 for f, = 40 MPa. It should be noted that the majority of
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reinforced concrete members are under-reinforced and their strength is essentially determined by the
yield strength of the reinforcement. The concrete model, i.e. the choice of v, does not have a
pronounced effect, except in over-reinforced cases. If an appropriate concrete compression strength
(i.e. adjusted by tests) is taken into account, limit analysis leads to quite satisfactory strength
predictions even for over-reinforced cases.

A model of concrete strength that has proved to be very useful is the Mohr-Coulomb failure
criterion. According to the Coulomb theory, sliding failure occurs when (Fig.2.3a):

|tf] =c-po=c-otan ¢ 2.1
where © = shear stress,
o = normal stress (tension is positive),
¢ = cohesion intercept (typical value for concrete =f,/ 4),
u = tan¢ = friction coefficient, and

¢ = friction angle (typical value for concrete = 37°).
If, in addition, a separation (fracture) failure criterion, such as

o =f
can be defined, the material is called a modified Mohr-Coulomb material. From Fig. 2.3a:

AB = OB - O4
or
1 1 .
‘5("1 —03)=ccosc|>-5(o1 + 0,) sin¢
(u+\/1+u’)201-°3=20(u+\/1+u2)
k01—03=20ﬁ (2_2)
with

o T (348 -

4 2
The constants can be determined from a compression test, which according to this theory, involves
sliding failure:
0,=0,=0and 0; = -f,
Substituting into Eq. 2.2, gives
-0'3 =2cﬁ :L (2.4)

Therefore, Eq. 2.2 can be rewritten as
ko -o0; =1, 2.5

Figure 2.3b shows the modified Mohr-Coulomb failure criterion plotted in terms of shear stress
versus normal stress. If the Mohr’s circle of stress touches the inclined boundary, failure is by sliding
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as indicated by the circles representing uniaxial and triaxial compression. If the circle touches the
tension cut-off, failure is by separation, as indicated by the circle representing uniaxial tension.

The Mohr-Coulomb criterion for sliding failure considers only the maximum shear stress, which
is related to the difference between the largest and smallest principal stresses. Another way to view
the failure envelope is in terms of principal stresses, which is shown in Fig. 2.4a for biaxial stress
states. If tensile strength is neglected, the failure envelope is as shown in Fig. 2.4b.

2.2.1 Lower Bound Solution
Figure 2.5 shows a reinforced concrete beam with two concentrated loads applied at distance a
from the supports. The portions of the beam between the supports and load points are subjected to
a shear force equal to P. The yield envelope for the beam is reached when one or more of the
following is attained:
» the longitudinal steel (x) yields,
» the transverse (stirrups) steel (y) yields, or
e the concrete "yields".
The following example, taken from Nielsen (1984), shows best how the method works.
Equilibrium— Consider shear loading only for the beam in Fig. 2.5, and assume that the concrete
web develops a diagonal compression field making an angle 0 to the x-axis. The stirrups and the
lower stringer are in tension, whereas the upper stringer is in compression.
If the stirrups are closely spaced with horizontal spacing s, the stirrup stress o, can be replaced
by an equivalent stirrup stress o, distributed over the concrete area.
A o,

oys s =r o

where A, is the stirrup area crossing the concrete area bs, and r is the reinforcement ratio. Upon
transformation of the concrete diagonal compressive stress o, into the x-y coordinates, the total
stress carried by the concrete and the stirrups are:

- - 2
6. = -0, cos’0
- - s 2
o, = -0 sin“8 +ro,
T = 0,sin6 cosO
These equations can be rewritten as
T
= ———— =1 (tan0 + cot )
¢  sin0 cos©
o, = -Tcotb

Vertical equilibrium requires o, = 0, therefore,
ro, =o_ sin’6 =t tanb (2.6)

Yield Conditions — If the upper and lower stringers are strong enough, the lower bound solution
must satisfy the material conditions:
o, = t(tan0 + cotB) < f, 2.7
o, </,



where f, = concrete “yield” strength and
J, = stirrup yield strength.
The best lower bound solution is the largest load satisfying those conditions. From Eqs. 2.6 and 2.7:
ro, ra, o,
from which
tan el = T-é— (2.8)

with the notation

£ = — (2.9)

where £ is the degree of shear reinforcement and 0, is the lower bound solution for the strut angle.
From Eqgs. 2.7 and 2.8,

T 1 (2.10)
o, (tanB + cot0)
VI @10
or
1) 1)1
(.&_] +(g 5] =2 2.12)

Eq. 2.12 represents a circle in the (t/0,, £) coordinate system. In the range 0 < £ < %, the right hand
side of Eq. 2.11 is a positive and monotonically increasing function of £&. Therefore, T is maximum
for (0,).x =, and for

r (Us)mx _rf
e e
i.e., the web crushes and the stirrups yield simultaneously (Fig. 2.6). The longitudinal reinforcement,
however, remains elastic. For £ > 14, Eq. 2.11 or 2.12 gives the best lower bound solution as 1, =
Y2 1., 1.e., a straight line as shown in Fig. 2.6, and Eq. 2.9 gives 0, =1,/ (2r) <f,. Equations 2.8 and
2.11 show that when 0 < Y < 0.5, the compressive stress directionis 0 < 6 < 45°. For { > 0.5, 1.,
= 0.5 f,, and 0 = 45° (from Eq. 2.11). The lower bound solution thus produces a diagonal
compression field at an angle that varies depending on the reinforcement ratio and does not exceed
45° to the longitudinal axis. Notice that the above solution neither discusses displacement
compatibility, as this is not required in a lower bound solution, nor the special conditions at the

concentrated loads.
Eq. 2.10 can be rewritten as

(2.13)



LI, 1
g tan 6 + tan (90° - 0)

[4

and produces the same numerical result for 6 and (90°- 6).

This lower bound solution was first published by Nielsen in November 1967 in the Danish Journal
of Structural Engineering, Vol. 38, No. 2, pp. 33-58.

2.2.2 Upper Bound Solution

The following also follows Nielsen (1984). Figure 2.7 shows the shear failure mechanism of a
beam under two concentrated loads. An upper bound solution is sought whereby the central portion
of the beam slides along straight yield lines at angle 0 to the horizontal and displaces by a vertical
distance . The number of stirrups crossing the yield line is % (cot 6) / 5. They have cross-sectional
area A, and stretch a distance # at yield. The internal work of the stirrups is (Fig. 2.8):

h cot©
s

W =

s

Asj;u=rj;bhcotﬂu (2.14)

The internal work of the concrete compression strut is more difficult to evaluate. Assume concrete
is a modified Mohr-Coulomb material with zero tensile strength, and whose failure envelope is
represented by Fig. 2.4b. Energy dissipation per unit volume is:

W =08 + 0,8 + 038 (2.15)

where the subscripts correspond to the three principal directions. For a rigid-plastic Coulomb
material, the failure condition of the frictional hypothesis is (see Eq. 2.5):

f=ko, -0, -f =0 for o,20,>0 (2.16)

There are five similar equations depending on the relative magnitudes of ,, 0,, and 0;. If we use the
yield condition Eq. 2.16 as the associated flow rule, the normality condition states that

g = A %
where A is an arbitrary constant. Thus the strains corresponding to Eq. 2.16 are:
g =-A € =0, & =21k 2.17)
This is represented as plane 2 in Fig. 2.4b. By addition of the principal strains:
g te e =A(k-1) (2.18)

The energy dissipation therefore is (from Eqs. 2.15, 2.16, 2.17 and 2.18):



W =-Ao, + Ako, = A(-0,+ koy)
S
k-1

The same operation is performed on the other planes, edges and apexes of the yield surface in the (o,,
0,, ;) space. In all cases,

W=Af = (g, +&,+¢€;)

W = kf-cl (g, +e,+ &) (2.19)

Disregarding the apex, summation gives

o e ;
W= e =52l (2.20)
and therefore
k=22 @2.21)
Z |e7] '

where Y €* is the sum of positive principal strains and } | & is the sum of the absolute values of the
negative principal strains. Next, consider a line of discontinuity (yield line) where there is a jump in
displacement between two parallel planes separated initially by a distance 6 (Fig. 2.10). Part I has
displacements (u, , ) with respect to part II. In the volume, the strains are:

U, usina
£ = e =
9 ]
g =0
y = ¥ _ucosa
nt 6 6
The principal strains are:
€ H 2 qin2 2 2
1 =1usmai_1_ usma+ucosa=l_1i(sinail) 2.22)
e,] 2 8 2 52 32 28
From Eq. 2.21:
€ 1 +sine
=152 2.23)
g, 1l -sina
For plane strain, Eqs. 2.19 and 2.23 give
1 u .
W=f ——=(1 -sina
L3535 ¢ ) (2.29)
The dissipation per unit length in the #-direction is:
W,=Wb5=%fcub(1—sina) 2.25)

It turns out that Eq. 2.24 is also valid for plane stress. From Eq.2.25 and Fig. 2.9, where the
displacement vector is u, the length of the yield line is A/sin 0, and the beam width is 5, the work of
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the concrete is

h

- u
sin ©

W, = -;—fc b (1 - cos) (2.26)

Dissipation formulas for yield lines in Coulomb materials and modified Coulomb materials were
first derived by Jensen and by Nielsen and others. A more complete and detailed derivation can be
found in Nielsen (1984).

Neglecting the contribution of the longitudinal reinforcement, the work equation for the
reinforced concrete beam with vertical stirrups failing under constant shear is, from Eqs. 2.14 and
2.26:

Pu=rfbhcot6u+-1-fcb(1—cosﬁ) .h u
Y 2 sin ©
from which
T P 1 - cos®
—_— = = te ———
Y T T @.27)

where §= rf,/f, is the shear reinforcement mechanical ratio. If t/f, is minimized with respect
to 0, we obtain the upper bound solution:

J% Ve a-w (2.28)

which is identical to the lower bound Eq. 2.11, and is therefore the “exact” solution within our
assumptions (concrete is a modified Mohr - Coulomb material with zero tensile strength, longitudinal
steel performs no work). The best upper bound of Eq. 2.28 above is obtained for

tan @, = 2 Vl"’_(lz l"l"") (2.29)

where 0, is the upper bound solution for the strut angle. This is twice the crack angle found by the
lower bound solution Eq. 2.8:

8, =286,

Braestrup (1994) explains what this means physically. For a strut angle of 0,, the applied shear
force equals the force in the stirrups over the length Acot6, . Once the stirrups yield, increasing loads
can only be carried by an increase in cot,, i.e. a flattening of the strut inclination. This causes the
concrete stress to increase, since its vertical component remains constant to balance the stirrup
stresses, until compression failure occurs. The beam fails by sliding failure along yield lines inclined
at 0, , exactly twice the strut angle 6,.



(a) Principal stress trajectories (b} Reinforcement layout

Compression A S
— — -Tension

Figure 2.1 — (a) Principal stress trajectories for a simply-supported beam; (b) reinforcement
layout to carry principal tensile stresses.
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Figure 2.2 — Schematic stress-strain curves: (a) structural steel: (b) concrete with different
compressive strengths; and (¢) rigid-plastic idealization of concrete used in plasticity analysis.
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Figure 2.3 — (a) Mohr-Coulomb envelope for sliding failure.
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Figure 2.3 — (b) Modified Mohr-Coulomb failure criterion with tension cut-off showing failure
under uniaxial tension, uniaxial compression, and triaxial compression.

11



(a) 02,&2

Tension
01.€1
Compression
G2 €2
(b)
e 4 (0, 2k, -A)
‘ 01, €1
— Plane (2)
(Ak, 0, -A)
(-2, 0,2k) | -
‘ -fe
©, A2k ¥

Figure 2.4 — Biaxial stress failure envelopes based on modified Mohr-Coulomb failure theory;
(a) tensile strength included and (b) tensile strength neglected.
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Figure 2.5 — Lower bound solution of beam under shear loading.
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Figure 2.6 — Relationship between shear strength and reinforcement ratio compared with test
results (Nielsen 1984).
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Figure 2.9 — Internal work of concrete.
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Figure 2.8 — Strain energy of stirrup.

Figure 2.10 — Yield line (crack) in concrete web.
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2.3 Plastic Theory of Shear Friction

The plastic theory of shear friction was also developed by the “Copenhagen Shear Group™ and
the following is adapted from Nielsen (1984).
2.3.1 Upper bound solution

Fig. 2.11 shows a shear friction test where a failure mechanism has formed along the line of
loading. The relative displacement of the two halves is », at an angle a to the yield line. The external
work is:

W = Pucosc.

Both steel reinforcement and concrete contribute to the dissipation of energy. The reinforcing
steel of area 4, is at yield in the ultimate limit state. Neglecting the dowel effect of the steel
reinforcement, here perpendicular to the crack, the steel dissipation is:

W, = Asj;usina

The concrete dissipation is evaluated in the same way as in § 2.2.2, Fig. 2.9, but with the yield
line length as 2. From Eq. 2.25:

W, = Wh = -;—fcubh(l - sinc)

Depending on the direction ¢ of the relative displacements, consideration of energy balance gives
rise to the following values of shear strength:
e =0 Since the displacement is perpendicular to the reinforcement, W, = 0 and

1
Pu=—fubh
212
T P 1
or _=.__=__
fo bhf, 2 (2.30)

0<a<¢ where ¢ is the friction angle of concrete.
Pucosa = -zl-fcubh(l - sine) + 4, , u sina

T 1 -sina

or — = +{tance
Jf.  2cosa (2.27a)
where  is the degree of reinforcement
Af,
=
bhf,
The minimum value of Eq. 2.27a is:
T
PR (2.28)
which occurs for
sina = 1-2¢ (2.29a)




Since 0 <@ < ¢, Eq. 2.28 applies in the interval
1 -sin¢ 1
<y <=
2 v 2

Inthe (v /£, ¥) coordinate system, Eq. 2.28 represents a circle with radius 0.5 centered at (0, 0.5).
Eq. 2.30 is a tangent to this circle at (0.5, 0.5). See Fig. 2.6.

e¢=¢ The work equation is:

Pucosd = %fcubh(l - sind) + 4, f,u sind
T _ 1-sind .
7T sk Viend @2.31)

From Eqs. 2.3 and 2.4:

5 T &) _ 1+tan($p/2) _ 1+cosdp+sind _ sindg+1-cos¢p _ 2cosd
=< = tan[ — + 2| = = = =

2¢ 4 2 1-tan($/2) 1+cosd-sing singp-1+cos¢p 2-2sind

So

fﬁ +y tand (232)

Eq. 2.32 is tangent to the circle Eq. 2.28 at
( 1 -sind cosd))

o e

b

2 2

Fig. 2.12 shows good agreement with experimental results.

o > ¢ This case involves the concrete tensile strength and Egs. 2.20 and 2.21 are generalized to:

W=f2lel+f(Xe -kXle]) (2.33)
when
Ye’ k
Tiel @39

Eq. 2.20 is a special case of Eq. 2.33 when condition Eq. 2.21 is satisfied. From Egs. 2.22 and 2.33:

W= W = Lfubl1-sina+Zt[1-k+(1 +Ksina]
27 7

¢

From Eq. 2.3

k—l:-ﬁr}i_ and k+1: -
1 -sin¢ 1 -sind
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and the dissipation is
é sine - sin¢

1 .
W,==fub|1-sinc +2
f zfcu sin - T —sind (2.35)
which can be written more compactly as:
W, = %fcub(l-msina)
with
1=1—£(k-1)=1-2£ sing (2.36)
£, f, 1-sind
S L1
m=1-Z(k+1)=1-22
fc( ) 7 1-snd (2.37)
The work equation is:
Pucosa = -!-fc(l —sina)+wf‘ ubh+A_f usinc.
2 1 -sind Y
or T _ 1l-sina | sinc.z—sind) “£+1|Jtana
f, 2cosa (1 - sing) cose f,
The minimum value is found to be:
o ge)f1o2fsine S (2.38)
A A S, 1-sind A
occurring for:
¥ +£
sing = 1-2 J.
ﬁ sin¢p
[, 1-sind
Eq. 2.38 is a circle of
radius = 1 —Z’- sin.(b
f, 1-sin¢g

and Eq. 2.31 is tangent to this circle.
Eq. 2.38 can be written in a more compact form:
T 1
— = = I?-(m-2y)*
773 VI - (m - 2)
with / and m defined in Eqs. 2.36 and 237.
When f,=0, Eq. 2.38 becomes identical to Eq. 2.27a and Eq. 2.31 vanishes. In this case the
load-carrying capacity is the same as for beams, where the tensile strength is assumed to be 0 (see §
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2.2.2). |

Experimental results agree well with the above equations. The effectiveness factor is less for
cracked (v’ = 0.45) than for monolithic concrete (v = 2/3), but the friction angles are the same (¢ =
¢’ =37°). InFig. 2.13, curves for cracked and uncracked concrete are shown. Where the curve for
cracked concrete exceeds that of uncracked concrete, the latter governs.

2.3.2 Lower bound solution

A statical interpretation can be given to the upper bound solution shown above, although it is not
a true lower bound solution because the stress fields are defined only along the yield line.

The compressive normal stress in the concrete due to the reinforcement is:

A f
o= = .39
7 v, (2.39)
The average shear stress is given by:
P
T —
> h (2.40)

We now use a modified Mohr-Coulomb material with a circular cut-off (Fig. 2.14):

+1 + j; : s 12 = 1 _ Sil'ld)
(" 27 l_sm¢] e @4

Inserting Eq. 2.39 into Eq. 2.41 gives the shear strength Eq. 2.38.
In Fig. 2.14, the straight line has the equation:

T =c - otand @1

Inserting Eq. 2.39 into Eq. 2.1 gives Eq. 2.32.

When we assume plane stress, one of the principal stresses is always 0. When there is no tension,
the greatest Mohr circle (Fig. 2.3b) passes through (0,t) = (0,0) and (0,t) = (f., 0) and has the
equation

(mlf)zﬂz: lf)2 (2.42
27 27¢ 42)

Inserting Eq. 2.39 into Eq. 2.42 gives Eq. 2.27a.

For degrees of reinforcement greater than %, the reinforcement does not yield because the shear
strength of the concrete is limited to t / £, = %, which is Eq. 2.30.

These statical solutions are thus shown to be identical to the upper bound solutions.

2.3.3 Axial Forces
With axial forces &, all equations are still valid if we replace §f by:

._ . N
U R v

where N is positive for tension.
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2.3.4 Design Recommendations
Nielsen (1984) recommends the following values:
- For cleaned and rough joints ¢’ /f”,= 0.05 to 0.06 and tan ¢’ = 0.75.
- For smooth joints ¢’ =0 and tan ¢’ = 0.6.
(The ’on ¢’ and ¢’ indicates cracked, as opposed to monolithic concrete).

In the introduction to his book, Nielsen (1984) wrote: “...the concrete world, in the early days
of concrete history was forced to develop its own methodology with sparse connections to classical
mechanics with its roots in linear elastic theories. Since only little progress can be made by identifying
concrete with a linear elastic body, the world of mechanics in its classical sense and the world of
concrete have been and still are very separated.” By solving the shear problem using rigorous
plasticity theorems, Nielsen and his “Copenhagen shear group” have made a very important
contribution to the unification of the two worlds.
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Figure 2.11 — (a) Disk subjected to shear and (b) failure mechanism (from Nielsen 1984)
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Figure 2.12 — Test results for monolithic concrete (Nielsen 1984)
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Figure 2.14 — Dissipation in a yield line for a modified Mohr-Coulomb material
with a circular tension cut-off (Nielsen 1984)
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2.4 “Exact” Solutions — Compression Field Theories

2.4.1 Compression Field Theory

The compression field theory is an “exact” solution because it satisfies equilibrium, strain
compatibility and stress-strain relationships. It was developed by Mitchell and Collins (1974)
following the “tension field theory” invented by Wagner (1929) to describe the post-local buckling
behavior of thin webs of steel girders, and is similar to Nielsen’s (1967) lower bound solution. In
contrast to the limit-state analysis of plasticity theory, compression field theory describes shear
behavior through the entire cracked range up to failure. Therefore, neither the concrete nor the
reinforcement are at their limiting stress in a typical case. Compression field theory idealizes cracked
concrete as a material with coinciding principal stress and strain axes which are free to adapt their
direction as required by the applied loads.

Equilibrium — This is similar to developments shown for the lower bound solution of the plasticity
theory. Consider the equilibrium at a cross-section in a reinforced concrete beam where the bending
moment is zero, as shown in Fig. 2.15a.

Concrete: The vertical component of the diagonal compressive force in the concrete, which is
inclined at O to the longitudinal axis, must equal the applied shear force (Fig. 2.15a).

V=Dsin0 = (f, b, jd cosB) sin0

— (tan O + cot 0)
b,jd (2.43)

Stirrups:  In turn, the diagonal compression in the concrete transfers vertical force to the stirrups
(Fig. 2.15b).

f2=

A, f,=(f b, ssin0)sinbd

A
vt = 1 tan ©

s jd (2.44)

Stringers:  The longitudinal component of the diagonal compression in the concrete is equilibrated
by tension in the “stringers™:
N,=A4_f =Vcotb

Two important assumptions are made:

* the concrete carries no tension after cracking.

o the angle of inclination of the diagonal compressive stress coincides with the angle of inclination
of the principal compressive strain. This is the exact converse of Wagner’s hypothesis for the
diagonal tension field theory. In reality, the principal directions for stress differ from those for strain
after the concrete cracks (as will be discussed).

Strain Comparibility. The strain compatibility relationships in the cracked web are established using

the geometrical transformations represented by Mohr’s circle of strain as shown in Fig. 2.16b.
From triangle 2Bx in Fig. 2.16b:
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Y. = 2 (g,-¢,) cotB

while from triangle 2At:
Yo = 2(¢,-€,)tan 6
where €, = longitudinal strain of web (tension is positive),
€, = transverse strain,

Y. = shear strain, and
€, = principal compressive strain (negative).

From both equations above, we obtain the angle of inclination of the diagonal compression:

g€ - €
tan? 6 = 2 2
& -5

Since the above strain compatibility relationship was derived using Mohr’s circle, the diagonal
compression field theory is also sometimes referred to as the Mohr-compatibility truss (Hsu 1993).
However, this latter name lacks the physical and historical appeal of the former one.

The first strain invariant also provides a useful relationship:

g, +Eg =€ *E

Note that, for cracked concrete, these compatibility relationships are expressed in terms of “average”
strains, i.e., strains measured over base lengths long enough to include several cracks.

Stress-strain Relationships of Cracked Concrete — The concrete web is not only in compression
in direction 2, but also in tension in direction 1 (Fig. 2.16a). Vecchio and Collins (1982) tested
reinforced concrete panels under biaxial stresses (including pure shear) and found that the principal
compressive stress in the concrete, f, , is a function not only of the principal compressive strain €,,
but also of the coexisting principal tensile strain €,.

They suggested the following parabolic stress-strain relationship (Fig.2.17):

2
o (3] (2

Somax _ 1 <
I 0.8 + 170 g,

where

The presence of transverse tensile strain reduces the compression capacity of the concrete. For this
reason, this model is sometimes referred to as the softened truss model (Hsu 1993). In addition, the
reinforcing steel behaves elastically:

Es er
E ¢

SN
It
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Thus we have three equilibrium equations, two strain-compatibility equations, and three stress-strain
relations to solve for the three stress unknowns f;, £,, f;, four strain unknowns €, €,, €, , €, and the
angle of the diagonal compression 0, or a total of eight equations for eight unknowns. With these
relationships, it is possible not only to predict the strength (limit-state) but also the load-deformation
response of reinforced concrete members subjected to shear.

It would be interesting to simplify the stress-strain relationship of concrete to linearly elastic-plastic
and then compare this “exact” solution to the previous plasticity solutions which neglect elastic
deformations. For consistency with the plasticity solutions, we assume that the stringers are elastic
J.=E e < f,,but that the stirrups and the concrete have just reached their elastic limit.

f,=f,; €&=g,=yield strain
f=1; &=-¢ (&g isanegative quantity)

The shear stress is now the unknown. From Eq. 2.10:
tan O

T
[ tan?0 +1

From Eq. 2.44:
tan6=—-é=__”_ é.ﬁ:lll'é
A4, f _ . .
where ¢ = ’¥ = shear reinforcement mechanical ratio,
bs f,
from which

1l
=
—~

I
=
~

t = —_——

1 -w)

So we retrieve the lower bound solution of the theory of plasticity , Egs. 2.11 and 2.8, as we should,
without making use of strain compatibility.

2.4.2 Modified Compression Field Theory
The compression field theory neglects the contribution of tensile stresses in the cracked concrete
and consequently overestimates deformations and underestimates strengths. This is corrected in the
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modified compression field theory (Vecchio and Collins 1986). The key simplifying assumption of
the modified compression field theory is that the principal strain directions coincide with the principal
stress directions. This assumption is justified by experimental measurements which show that the
principal directions of stress and strain are parallel within +10° (Fig. 2.18). Also, concrete struts are
at a shallower angle than cracks, and the compressive stress field must be transferred across the
cracks, thus reducing concrete strength from its uncracked state and inducing shear stress across the

crack faces (Collins 1978).

Equilibrium between cracks — Fig. 2.19 is used to establish the equations of equilibrium. Shear
in the section is resisted by the diagonal compressive stresses f, together with the diagonal tensile
stresses f; . The tensile stresses vary from 0 at the cracks to a maximum between cracks. The average
value is used in the equilibrium formulation.

From the Mohr circle (Fig. 2.19c¢):
In triangle Atl: Al

In triangle At2: A2

n

v tan 0

v cot©

Sy +f, = Al + A2 = v (tan 0 + cot0) (2.45)

where
V

b, jd

Compared with the previous equilibrium equation, Eq. 2.43 of the compression field theory, concrete
tensile stresses contribute to carrying the load. The diagonal compressive stresses push apart the
flanges of the beam while the diagonal tensile stresses pull them together. The vertical imbalance is
carried by tension in the web reinforcement.

A f, = (f, sin?0 - f, cos® 0) b, s (2.46)
From Eqs. 2.45 and 2.46
A
y = -fl + 1 v'f;’ +_f1 cos2e 1
tan® + cot® tan® + cot® | b s sin” ©

A1, b, jd cos’0 + sin? O . S b, jd

V=vb jd = 1 + cot? 0
w/ b,s (tan + cot®) sin6® tanB + cot6 ( )
= A"f"jd cot?0 + 1 > tan® + cot O
s tan® + cotO tanO (tan® + cot0) ¥

4,1, tanQ + cot©
V=22jd b_jd cot©
s tan© (tan© + cot6) *h by jd co

4,1,
jd cot® + f, b jd cot©
s

V =V, + ¥V, = Steel Contribution + Concrete Contribution

V =

So the steel contribution is based on the variable angle truss model (§ 2.6.1), whereas the concrete
contribution is the shear resisted by tensile stresses in diagonally cracked concrete.
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Similarly, the longitudinal imbalance f; between the diagonal tension and compression in the
concrete must be carried by the longitudinal steel.
A_f, = (f, cos’® - f, sin*0) b, jd = V cot® - f, b, jd

Equilibrium Across Cracks — In checking the condition at a crack, the actual complex crack
pattern is idealized as a series of parallel cracks, all occurring at angle © (the strut angle) to the
longitudinal reinforcement (Collins 1993). At low shear values, tension is transmitted across cracks
by local increases in reinforcement stresses. At a certain shear force the stresses in the web
reinforcement will just reach yield at the crack locations. At higher shear forces, transmitting tension
across cracks will require local shear stress, v,;, on the crack surface. The two sets of stresses, at a
crack and between cracks, must be statically equivalent (see Fig. 2.20). Equivalence of vertical forces
at the two locations shown in Fig. 2.20a and 2.20b requires:

Jja ) . _ jd
Ava( ) 4 cos O A"f"y(stan

b, jd
in O

b jd
S. e) + vcz w-]

s tan O

To maintain this equality, the average tensile stress, f, , must be:

A4, ~
75 T =)

w

f1=vc,.tan6+

The concrete contribution, which depends on £, is thus tied to the shear that can be transmitted
across cracks by aggregate interlock. The ability of the crack interface to transmit the shear stress v,
depends on the crack width w. Vecchio and Collins (1986) suggest the following limiting value of v,

0.18 /17,
Vei = 24w
03 +
a+ 16

where f°, = compressive strength of concrete in MPa, and
a = maximum aggregate size in mm.

This equation is based on Walraven’s (1981) experiments performed on concretes with cube strengths
of 13, 37, and 59 MPa and maximum aggregate size of 32 mm (see § 4.3.2). This formula will require
further investigation because, for high f°, , the aggregate may fracture, whereas for low f°, , fracture
goes around the aggregate.

The use of the above formula for design requires an estimate of the crack width w. It can be taken
as the product of the principal tensile strain €, and the average spacing of the diagonal cracks, s,

w = 81 S.0

The spacing of the inclined cracks depends upon the crack control characteristics of both the
longitudinal and the transverse reinforcement. Referring to Fig. 2.21, the diagonal crack spacing can
be related to crack widths in the vertical and horizontal directions:

1
sin @ . cos@

smx smv

Smﬂ =

Crack spacing is estimated from the provisions of the CEB-FIP Model Code:
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s\ d
s =2(cx+—x +0.25k1—b—x-
10, Px

\ d
s =2(c + 3 +0.25k1—b‘1

mv v 10 ) P,
where d, = bar diameter,
c = distance to reinforcement,
s = bar spacing,
pp = 4,/(b,.5),
p, = A_/A,,and
kK = 0.4 for deformed bars or 0.8 for plain bars.

Fig. 2.22 further defines the parameters influencing crack spacing.
Finally, equality of the horizontal forces at a crack and between cracks also limits the magnitude
of the concrete tension to the value corresponding to yielding of longitudinal steel at a crack.

A
AufyzAuf“+flbwjd+[fl- bvs(f"“’_f")) b, jd cot* ©

w

Compatibility — The compatibility equations for the average concrete strains are the same as
described in the compression field theory.

Stress-Strain Relationship of Cracked Concrete — In addition to having the diagonal
compressive stress f, as a function of the principal strains €, and €, as in the compression field
theory, the modified compression field theory also has the diagonal tensile stress f; as a function
of ¢,. Based on Vecchio and Collins’s (1986) tests of reinforced panels made with concrete having
a compressive strength less than 35 MPa, Collins and Mitchell (1991) recommend:

Ife, <e, then f =E_ ¢

o o, f,

1+ /500 ¢,

cracking strain and strength of concrete,
factors accounting for the bond characteristics of the reinforcement (deformed
or smooth bars) and the type of loading (short term, cyclic, or sustained).

Ife, >¢, then f

where ¢, f,
al’ a2

Il

The above equations for equilibrium, compatibility, and stress-strain properties provide a complete
solution by which to predict the shear strength of a reinforced concrete element.

Comparison with Data — Figure 2.23 shows that the modified compression theory offers a marked
improvement over the compression field theory and a good prediction of experimental results. See
also § 3.2.5, Fig.3.12 and § 4.1.15, Fig. 4.23 - 4.25.

Vecchio (1991) notes that: “The simplicity of the modified compression field theory formulations
has allowed them to be easily adopted into various analytical algorithms. Procedures have been
developed for the nonlinear analysis of membranes, beams, plane frames, plates and shells, and three
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dimensional solids. In applying the analysis procedures to the modeling of more complex structural
systems, generally good correlation was found between predicted and observed responses. The theory
was found to provide accurate modeling of crack patterns, deformation, reinforcement stresses,
ultimate strengths, and failure modes. This was achieved by an accurate description of the constitutive
behavior of structural concrete in a simple, transparent, and easy to implement formulation. It can be
said that the modified compression field theory represents a unified, rational analysis approach that
can be applied to structural concrete in many of its various forms and applications.”

2.4.3 Extended Modified Compression Theory
The MCFT was developed for shear and axjal loads. Nakamura and Higai (1995) extended it to

shear, axial and flexural loads. An outline of their method follows:

1- Divide the cross-section into layers.

2- Distribute the axial force N and shear force ¥ uniformly over the cross-section.

3- Assume a longitudinal strain ¢, . For a given curvature ¢, the strain €, in each layer located at y,
is calculated from an assumed linear distribution over the section depth / and an assumed strain
g, at the top fiber:

e, = (h-y,) b + ,

4- Satisfy equilibrium and compatibility for the known quantities T,, and €, in each layer.

5- Repeat Step 4 for all layers.

6- Calculate stress in longitudinal reinforcement from strain.

7- Calculate resultant of longitudinal stresses and check equilibrium of axial force. If equilibrium is
not satisfied, adjust €, and go back to Step 3.

8- Calculate moment from longitudinal stresses and check equilibrium of moments.

Step 4 is further detailed as follows:

a- Assume principal tensile strain €, .

b- Calculate principal tensile stress o, from €, and concrete stress-strain relationship.

c- Calculate the inclination 6 of o, and ¢, with respect to the longitudinal axis from equilibrium in the
transverse direction. From equilibrium, the stress in the transverse steel is:

5 = _oybws _ b,s
¥ A, A, (o, -7, tanb)
where 4, = area of transverse steel,
s = spacing of transverse steel,
b, = width of web,

o, normal stress in y direction.
On the other hand, from compatibility and the stress-strain relationship of the transverse steel:

fy = Eye, = E_[&, - (g, - ¢,) tan*0]
0 is solved by setting f,,=f°,, . This provides a quadratic equation in tan® before yielding of the
steel bar, or a linear equation after yielding.

d- Calculate the principal compressive strain €,, the transverse strain €, , and the shear strain vy,,
from Mohr circle.
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e- Calculate the longitudinal stress o, , transverse stress 0, , and principal compressive stress o, from
Mohr circle.

f- Calculate 0’, from &, using concrete stress-strain relationship.

g-If o, # 0°,, try another value of €, and return to Step a.

The solution algorithm used by Collins and Mitchell (1991) involves the convergence of €, and 6
for each layer, and that of the longitudinal strain distribution for the cross-section. In comparison, the
procedure described above only requires convergence of €, in each layer and €, for the cross-section.
Computation is therefore faster. Two possible ultimate states are attained as the curvature increases
under constant axial and shear forces:

1- flexural failure: the maximum compressive strain in the section reaches - 0.002 (strain at ultimate
concrete strength), or

2- shear failure: no solution satisfying equilibrium for the given ¢, and t,,, is obtained in at least one
layer, even if equilibrium of axial force is satisfied.

Stress-strain curve for concrete

In tension, stress increases linearly with strain up to the tensile strength. After that, Collins’s (1978)
equation is modified by a factor @, which accounts for the non-uniform distribution of the
reinforcement in the beam.

S
o, =
1+ a1/200 (g, -¢,)
where €, = cracking strain of concrete, and
Ji = concrete tensile strength.

In compression, the stress-strain curve is a quadratic parabola up to the compressive strength £,
which is a function of the principal strain €, as proposed by Collins (1978). However, following
Miyahara (1988, see § 4.3) f;,.., is assumed constant for g, >40¢,_, .

Verification
The analytical model is verified against Niwa’s empirical formula for shear strength:

V = 0.94(f)" (100p,)'? (4/100)™ (0.75 + 1.4dla) b, d

where f°, = concrete compressive strength,
Py = longitudinal reinforcement ratio,
d = effective depth,
a = shear span, and
b width of cross-section.

w

Collins’s (1978) equation (¢ = 1) overestimates the shear strength. However, & = 2 shows good
agreement with Niwa’s equation in the range of diagonal tension failure a/d > 3. Agreement is also
good with the moment capacity curve in the range of a /d > 6, and with the shear failure curve for
3 <a/d<6.For a/d <3 the strength is underestimated. This is due to the effect of compressive stress
in the transverse direction (arching effect).

30



Parametric Study
Size Effect

Good agreement is obtained with Niwa’s equation if the influence of effective depth on the shear
strength is modeled by:

o« = 3 (d16)"3

The shear strength obtained by this analysis is proportional to (p,)"* whereas Niwa’s equation is
proportional to (p,)"* . For the range of reinforcement used in practice, 0.3 % < p,, <3 %, the
difference between the two formulations is less than 10 %.

Longitudinal reinforcement stiffness
Results indicate that the effect of longitudinal reinforcement stiffness is similar to the effect of
longitudinal reinforcement ratio:

V=V, E[E)"

where E, = modulus of elasticity of non-steel reinforcement,
E, = modulus of elasticity of steel,
vV, = shear strength of steel reinforced beam,
V = shear strength of concrete beam reinforced with bars of stiffness £, .

Results of experiments conducted in the range 0.12 <p,, (E; /E,) < 0.22 show good agreement with
analytical predictions.

Concrete Strength

Shear strength is rather insensitive to f°, . However, it is approximately proportional to £*>.
Since £, is proportional to (°, )* according to ACI, or (f’, )** according to JSCE (Japanese
Society of Civil Engineers), this implies that ¥ is proportional to (f’,)** according to the ACI
formula, or (,)** according to the JSCE formula. This is close to Niwa’s equation.
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(b) Stirrup force

Y

Figure 2.15— Equilibrium condition for variable angle truss used in the compression field
theory (Collins and Mitchell 1991).
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Figure 2.16 — Strain compatibility for cracked web (Collins and Mitchell 1991).
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Figure 2.17— Compressive stress-strain relationships for cracked concrete (Collins and Mitchell 1991).
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(a) Calculated average stresses (b} Local stresses at a crack

Figure 2.20— Force transmission across cracks (Collins and Mitchell 1991).
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Figure 2.21 — Crack spacings in reinforced concrete (Collins and Mitchell 1991).
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Figure 2.22 — Parameters affecting crack spacing (Collins and Mitchell 1991).
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Figure 2.23 — Comparison of measured and predicted stirrup strains (Collins and Mitchell 1991).
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2.5 Other “Exact” Solutions where the Directions of Principal Stresses and Strains Differ
2.5.1 Analysis of Kupfer, Mang and Karavesyroglou

Kupfer, Mang and Karavesyroglou (1983) developed an “exact” theory for the shear resistance
of reinforced concrete beams that accounts for equilibrium, strain compatibility and stress-strain
relationships. The major difference between this theory and the modified compression field theory
is that here, the principal stresses and principal strains are not assumed to be parallel. In general, the
principal stress and strain axes do not coincide (and they also deviate from the crack direction), but
these deviations are small, as shown in Fig. 2.18.

The paper by Kupfer et al. (1983) is presented in its essential elements because it has had a major
influence on European concrete codes, and is not readily accessible to English readers. The following
notation is used:

i = short term, cylinder strength of concrete (B, in original paper),

bA = vyield strength of stirrup steel (J, in original paper),

A = long term strength of diagonal (cracked) compression field (3, in original paper),
J = tensile strength of concrete (B,, in original paper),

v,w = crack sliding (tangential) and opening (normal, crack width),

€ Y, = normal and shear strains of concrete between cracks,

€Y = normal and shear strains due to smeared-out crack displacements,

€54 = concrete shrinkage strain,

€, stirrup strain at diagonal crack,

g, = og, T Ag, +¢, = effective stirrup strain,
o, = stirrup strain averaged over crack spacing ,
Ae, = anchorage slip smeared over stirrup length,
c = normal stress in concrete web,

o, = principal compressive stress in strut,

T = applied shear stress,

T = bond strength of reinforcement,

T,» T4 = Shear stress of concrete in x-y and d-r coordinate system,

At, = 1,-0,cotd =shear resistance due to aggregate interlock,

At, = shear resistance due to strut bending,

M, = nd,/ (sb,) = geometric shear reinforcement ratio,
n-legged stirrups spaced at interval s, measured perpendicular to stirrups,

B = inclination of stirrup with respect to longitudinal axis,

0 = inclination of compressive strut with respect to longitudinal axis (o in original
paper),

¢ = inclination of crack with respect to longitudinal axis (¢, in original paper).

See also Fig. 2.24 for the notation of the dimensions and directions used in the derivations. Units
used are N and mm.

Equilibrium — At a joint between stirrup, concrete strut, and bottom chord ( Fig. 2.25 and 2.26):
Force:
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T

%7 sin ® (cot O + cot )
e J, = — z
sin“ B (cotP + cot6)
Moment:
) Az,
tan0 = L

A,
cotp + cotp —
T

For At; =0, i.e. no aggregate interlock, the strut angle 0 equals the crack angle ¢ .
Therefore,

P T-ArT
u =
*77 sin*B (cotP + cotd)
For a crack inclination of 45°:
T-ArT, T

< = CEB requirement
sin? B (cotP + 1)  sin®P (cotP + 1)

S, =

Thus, accounting for the shear resistance due to aggregate interlock reduces the stirrup requirement.

From Mohr’s stress circle and for a crack inclination of 45° (Fig. 2.27):

Ty =0, = T4 =~ 0, = AT
with o, = p, f, sin’p
and T, =T - K f, sinp cosp

Compatibility — When cracks form, the effective stirrup strain €, is greater than the
corresponding strain in the compression field, ¢,,; likewise, the longitudinal strain €_ of the panel is
often different from the strain ¢, of the compression field.

Aet = et - 8bt‘ and Aex = 8.7c - 8b:c (2-47)

For cracks inclined at 45°, the smeared strain due to crack sliding v is (Fig. 2.28):
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Also, for cracks inclined at 45°, the smeared strain due to crack opening w is (Fig. 2.28):

. 2]

nw

€ = 0
£ = = ny,w = Lid ﬁ
A G 2 2a

Two cases are considered:

Case a: €, = ¢, and f = 90° (stirrups are perpendicular to beam axis, Fig. 2.29).
This case assumes that the average strains of both flanges equal the longitudinal component of the
normal strain, €,,, of the compression struts. This situation arises in prestressed beams.

ny Yb,v * Yw,v ny’w

Ydr = Yb,dr + Ydr,v Ydr,w = Yb,dr +

a
-From Mohr’s circle, and because
€ ~ 8 T 6y 8§,
then ¥, = Yy = Yoar = Vo
8=8b+€ + & :b+V\/_ w‘/—_=1»3b+v_2 (2.48)
y y pid »w y 2 a 2a y a
From which
= 4 - =
v = G (g, - &) (2.49)
g, +¢ €
€, = —= 5 Mo 2P cos20 = ¢, ( l-v_1+v cos26] (2.50)

Case b: &, =0 and = 90°. In this case the average strain of both chords is 0 (Fig. 2.30).
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_ v 2+w 2= (2.51)

ex = eI»c * ex,v * ex,w 8bx 2a 2 a 0
vy2 w\/2

€ =g, + & + g =g

4 by $ 2 y.w by 2a 2 a

From Eqs. 2.47, 2.48, and 2.51:
a a
v=—w— (g +8¢, -8 )= —
v 27T Y2
a a
w=—1(, -¢, -¢)=—(Ac¢
vz 72
Substituting €,, from Eq. 2.50 and

€, T € € — € 1-v 1+v
= 2 b, 82 5 cos 20 =€bz( + 5 cos 20

€
bx 2 2

results in

<
n

a
— (&, - (1 + V) |g;,| cos26)
2
g_

(ey +(1 - v) ]ebzl)

Determination of crack spacing a (measured parallel to beam axis):

a., ¥t =14,

where # = circumference of stirrups,
A, = concrete area per stirrup, and
d, = stirrup diameter.
A » S bo 1 ds
u nmnd pn 4
/A N
oo, 4

The mean crack spacing a is approximately 1.5 a,,, . For ribbed stirrups £, /t,=0.4 and
a=0.154d,/ p,. For end-anchored stirrups with no bond, a < 0.75 z .

Constitutive relations of cracks — From experiments performed on concrete with compressive
strength of 25 MPa and for v > 0.20 mm:
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,1 = 0.117 - 0.085 v for case (a): (v = w)
fe
A, v
7 = 0.017 + 0.1 — - 0.085 v for case (b): (v # w)
w

Constitutive relations of concrete — For uniaxially compressed concrete with a crushing strain
of g, =-0.002

0,

-2x10% 11 - |1 -2
2

1l

&

f, = 08x085xf, -i- 7.

0.8 is a long-term load factor and 0.85 is an experimental factor.

Solution — Case a: ¢ =¢, and  =90°
For Poisson’s ratio = 0.25, using Eqgs. 2.49 and 2.50, and since the effective stirrup strain is:

e,=ey=ases+Ass+ebS

one obtains

=2 [as g, +Ag + |g, | + 0625 |g,| (0.6 - cos29)]
2

The solution is arrived at by iteration.

Caseb: €, =0and f=90°

<
t

Si= Sl

5

(¢, +Ae, + |g,| - 125 |¢g,,] cos 26)

(¢, 8 + Ag, + |g,| + 075 |e,])

The solution is also obtained by iteration.

Comparison with experimental results — Fig. 2.31 compares experimental data with predictions
for cases a and b using vertical stirrups (B = 90°) of diameters 10 mm or 6 mm. Code equations and
Mbrsch’s prediction are also shown. Satisfactory agreement is obtained between predicted and
measured values. Kupfer et al. observed that, at low shear, deviations from experiments are greater
than at high shear, and attribute this to the neglected bending of the struts and the lack of uniformity
of crack spacing at low shear. Also, experiments vary widely in beam depth, concrete strength and
stirrup yield strength.
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Estimation of influence of bending of concrete struts — For low applied shear and shallow
beams, strut bending further reduces the stirrup requirement by At, = 0.25 t (fora=0.75 z, $ =45°,
and p =90°).

Conclusion — In this paper, Kupfer et al. (1983) show that aggregate interlock across the
diagonal cracks of reinforced or prestressed concrete beams is responsible for carrying a portion At,
of the applied shear. This concrete contribution is separate from the concrete contribution in the
concrete compression zone and depends on the magnitude of the shear stress. For small shear
stresses, important parameters for At, are the beam depth and longitudinal strain, and the stirrup
strain, diameter and inclination. Furthermore, constitutive relations for cracks are obtained from
experiments and the bending stiffness of the concrete strut is neglected.

There results a uniform compression field whose inclination is somewhat shallower than that of
the shear cracks. Consequently, the aggregate interlock force crosses the cracks at a shallow angle.
The authors also derive strain compatibility from Mohr’s circle and estimate the influence of strut
bending. The resulting concrete contribution is somewhat higher than that given in the German (DIN
4227) or European (CEB) codes.

2.5.2 Analysis by Kupfer and Bulicek

Kupfer and Bulicek (1991) updated the work of Kupfer, Mang and Karavesyroglou (1983) by
incorporating improved constitutive relations for biaxial strength of concrete and shear friction. Also,
the shear reinforcement is limited to being vertical and only “case a” is treated, i.e., the longitudinal
strain in the web equals the average strains in the chords. As in the previous model, an important
feature is that the crack angle ¢ is different from the strut angle 0, which is also the direction of
principal compression in the web. The following notation is used, in addition to that defined at the
beginning of Section 2.5.1:
o, = normal stress perpendicular to cracks,

g, = normal stress in struts parallel to shear cracks,

o, = axial stress dueto load effect at onset of cracking,

o, = vertical normal stress in web concrete due to stirrup forces,
T, = shear stress parallel to cracks,

T, = shear stress due to load effect at onset of cracking,

o mechanical shear reinforcement ratio, w = 24,1,/ (bsf,)

[ = cube compressive strength of concrete.

In contrast to the previous paper, the crack spacing a is now measured perpendicular to the
cracks and the stirrup spacing s is now parallel to the beam axis.

Crack angle — Cracks initiate perpendicularly to the direction of principal tension in the
previously uncracked concrete. Under applied stress 0,.and t,= 0,,/n, the crack angle is found from
Mohr’s circle

2
+ 1+n_

cot = -
¢ 4

o X

Equilibrium — Horizontal and vertical equilibrium requires (Fig. 2.32a):
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2

o, = +27T cot2p + 0
7 sin2¢ € ® o,
o,=(t-t)tand + o,

From Mohr’s circle (Fig. 2.32b,c), the following relations are derived:

g, = -ttand + g,

(2] - Lo e

tan 29 =

The last relation gives the strut angle: 6 = ¢ - 8.

Kinematic conditions of strains — The overall smeared strain € of the web results from the pure
concrete strain €, and the smeared average strains €,, and €, due to crack opening w and crack slip v:

E=¢ +¢g +E§g

From Mohr circles and denoting the crack spacing by a, now measured perpendicularly to the cracks:

Y=g +e -8,-¢
2 =757 %0 f

.2 _ il 2 _ .26
L=-g cotd + g tand - g, sm_d) sin®8 20— $ - sin
a sin ¢ cos ¢ sin¢ cos ¢

where ¢, is either given or derived as:

€

_ 1
x“'j(ex,wpchord”’

x,bottomchord)

and €, &, are principal strains defined below. The overall vertical strain €, of the web is the factored
sum of the strain €, of the stirrup, anchorage slip Ae, and shrinkage strain €, <0.

e, = (g +As - )k
The factor & is due to tension stiffening.

Constitutive relations — The web is biaxially loaded by o, and o,. From experiments performed
with concrete having a uniaxial compressive strength of 40 MPa, the strength £, is given by:
f'
=f x08 x075|1- ==
L=r 250

where 0.85 = factor for sustained load,
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0.75 factor for irregular crack trajectory, and
(1-7£./250) = difference between cylinder strength and uncracked concrete prism.
The principal strains €,, and &, are given by:
o, *+ O, . 20, - 0,

€ =

9K 6 G,
o, + 0, 20, - 0,

€, = +

® 9K, 6 G,

where the secant shear modulus G, , the secant compressive modulus X, , and the octahedral shear
stress T, are as follows:

( (¢ \25)
G,=13000[1-35|=2| | MPa
\ kfz /
( (£ \18)
K, =17000| 1 - 16|-2| | MPa
\ \fZJ /

to=—é—§-‘/f+o§-oloz MPa

Shear reinforcement — The shear reinforcement yields at the cracks. The average concrete
tensile stress is assumed to be 0.20 £, along the stirrups, which leads to:

k=10-0200 1.1

pf S W
Assuming f,/f,=0.15, k=1-0.06/w.

Aggregate interlock — The relationships between crack stresses and displacements are from
Walraven (1981) and Walraven and Reinhardt (1981). See § 4.3.2.

f cube
0

T,= -2 4 (18 w4 (0234w - 020) £, )v 2 0

- (135w + (0191 w052 - 0.15) £,,,) v < 0

c

f cube

20
where the units are MPa and mm.

Shear crack spacing a — Factors influencing shear crack spacing a, measured perpendicularly

to the cracks, are the reinforcement ratio, the stirrup diameter d, and the inner lever armz. From
experiments:

Sp 2 _ 250k 2
ds z dsfy z

where p is the geometrical shear reinforcement ratio defined for a stirrup spacing measured parallel

Q|-
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to the beam axis.

Numerical evaluation — A numerical evaluation is made for crack angles 35°< ¢ < 55° and

average axial strain -0.001 < €, < 0.001. The results indicate that (Fig. 2.33):

» The plastic method (§ 2.2) represents an upper bound of the shear capacity.

» 0, is negligible.

* Axial tension decreases and axial compression increases the shear capacity.

* Practical designs -0.002 < g, < 0.002 fall between the Ritter-Morsch straight line and the plastic
solution quarter circle.

» The crack angle has little influence for moderate shear but a marked influence for small or
high applied shear. The authors propose a formula for the strut angle O that results from a
linear interpolation between tanf; =1 and tan0, in terms of &, by taking into account
unfavorable crack inclination ¢:

2-1000¢
tan6 =1 - — % (1 -tan0,) > -:1;
_ sl
and tanﬁztanﬂp=g-—-v—
A",

where v =2t/ f, is the acting shear stress ratio.
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Figure 2.24 — Dimensions and directions in beam web (Kupfer et al. 1983).

Figure 2.25 — Forces on a web element due to shear (Kupfer et al. 1983).
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Figure 2.26 — Forces acting along compressive strut neglecting bending (Kupfer et al. 1983).

Figure 2.27 — Mohr’s circle of stress for element in compression for ¢ = 450 (Kupfer et al. 1983).
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Figure 2.28 — Smeared strains due to opposing edge displacements v and w at a crack (Kupfer
et al. 1983).
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Figure 2.25 — Mohr’s circles of strain: (a) in strut and (b) in panel with smeared crack strains:
Case (a), ex = epx and ¢ = 45° (Kupfer et al. 1983).
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(a) Strains in strut

(b) Strains in panel
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Figure 2.30 — Mohr’s circles of strain: (a) in strut and (b) in panel with smeared crack strains:
Case b, ex = 0 and ¢ = 45° (Kupfer et al. 1983)
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Figure 2.31 — Comparison of shear reinforcement ratio calculated by various methods with
experimental data (Kupfer et al. 1983).
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Figure 2.32 — Stress state in web concrete (Kupfer and Bulicek 1991)
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Figure 2.33 — Shear strength versus reinforcement ratio (Kupfer and Bulicek 1991)
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2.5.3 Analysis of Dei Poli, Gambarova, and Karakog (1987)

Dei Poli , Gambarova, and Karakog (1987) developed an original version of the compression field
theory. The major difference between this theory and the Modified Compression Field Theory
(MCFT) is that here the principal stresses and principal strains are not parallel. The crack faces
transmit not only shear stress, as in the MCFT, but also normal compressive stress (confinement). Dei
Poli et al. adopted an approach similar to that of Kupfer et al. (1983) but used a different aggregate
interlock relationship. The following notation is used:

A, = area of stirrup per span length s,

b = web width,
d, = diameter of one leg of stirrup,
Jy = Yyield stress of shear reinforcement,

*
|

reduced concrete compressive strength,

f.. = concrete tensile strength,

Jf, = stirrup-concrete bond stress,
s = stirrup spacing,

z = lever arm of internal moment,
€° = concrete strain,

£, £,°, £’° = strain, principal compressive strain, and longitudinal strain in solid concrete,
£7,e,” = strain due to crack and longitudinal strain due to crack,

¢’ = smeared strain due to crack opening,
¢’ = smeared strain due to crack slip,
£*, e* = strain due to load and longitudinal strain due to load,

e = concrete shrinkage strain,

€,* = concrete strain at maximum compressive stress,
g = stirrup strain,
g, = Yyield strain of stirrups,

Ae* = anchorage slip of stirrups,
o, = shear stress on crack faces,
0,,= normal stress on crack faces (compressive),

Q
~
]

principal compressive stress in concrete strut,
t, = Vu/(bz) = ultimate shear stress,

At = aggregate interlock contribution to the ultimate shear stress,
v = Poisson’s ratio,

0 = strut inclination with respect to the longitudinal axis,

¢ = crack inclination with respect to the longitudinal axis,

p, = A,/(bs) = shear reinforcement ratio.

The theory includes the following components:
Egquilibrium — Refer to Fig. 2.34.

Along a crack:
T, = Pafycotd + At
where
At =0,-0, cotd
B n _sti iagonal
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In the longitudinal direction

tll
G, = —
sin@ cos©O

In the transverse direction

tan@ _ 1 - At

tan ¢ T,
Strain Compatibility —
Concrete strains:

Concrete strains, €°, are the sum of load induced strains, ", and shrinkage strains, £™:
e =g + &

The load induced strains are, in turn, the sum of strains in the solid concrete between cracks € and
the smeared strains € at the cracks.
g =¢° + &

The smeared strain due to cracks has components due to crack opening (normal) €’ and crack slip
(tangential) e'":
e = e/ + e//

The struts are in a state of uniaxial compression o, (for comparison the modified compression
field theory assumes a biaxial state of stress) and
81 €=y 82 s¢
Stirrup strains: The average stirrup strain is a fraction @ of its yield strain plus some anchorage
slip:
& =0 e, + A€

Compatibility: Two cases are considered:
1) Near the ends of the beam span, where shear-tension dominates, the longitudinal strain
contribution due to crack slip compensates that due to crack opening:
e =0
2) Near midspan, where flexure-shear dominates, the top of the web is in compression, the bottom
in tension and the average strain due to load is zero:

g =0
Constitutive Equations —
Congrete: A parabolic stress-strain curve is assumed:
02 82 s¢ 8230 2
roli il B
f [4 ecu ecu

The strength is reduced by 15% due to the presence of bonded bars in tension crossing the struts.
Therefore, some account of the biaxial state of stress is taken.
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Cracks: Aggregate interlock is a function of crack slip, crack opening, crack angle, aggregate
size and concrete strength. Two alternative theories are offered: the rough crack model and the two-
phase model. The latter accounts for the friction between the aggregate and the mortar. These
theories will be discussed further in Section 4.3.6.

Crack spacing:
5 Jo Aa
s = —_
8 7, Pu

Results — Iterative solution of the above equations for a crack angle ¢ = 45° shows that:

e  As the ultimate shear T, increases, so does the strut angle & which asymptotically approaches the
crack angle ¢ but is always less than it.

» Aggregate interlock contributes between 25% and 35% of the shear resistance of rectangular
sections. This contribution is larger at the ends of the span than at midspan.

» The shear resistance contribution of aggregate interlock is greater for 40 MPa concrete than for
25 MPa concrete. This obviously depends on the crack constitutive equations used and should
not be generalized.

» Comparisons with ACI and CEB code equations and with experimental data show satisfactory
agreement. A judicious choice of all the parameters in the theory is necessary.

Subsequent Refinement — The method outlined above was refined further by Dei Poli, Prisco and
Gambarova (1990) to account for the additional effects of bending stiffness and shear in the concrete
compression bands (in comparison, the modified compression field theory assumes the concrete struts
are in a state of biaxial tension-compression). The following notation is used, in addition to that
mentioned in the previous discussion:

f.” = cylinder compressive strength of concrete,

m = moment per unit length due to aggregate interlock,
N* V*= axial and shear forces in inclined bands,
x’ = eccentricity of axial force in inclined band of concrete web,
6,, 0 = principal compressive stress according to compression field theory and associated angle,
0,’, 0,'= actual principal stresses in web,
Atgyp = shear stress due to bending stiffness of band,
Aty = shear stress due to aggregate interlock.

The essential elements of this refined approach are:

Equilibrium:

Moment equilibrium. A web band that is bounded by two diagonal cracks inclined at angle ¢ to
the longitudinal axis carries a distributed moment m, shear V'*, and axial force N* (in contrast to a
concrete strut which is inclined at angle 6 and carries only uniaxial compression 0,). See Fig. 2.35.

N*
; e ps,f cotp +

T S L
bssm(l)

where
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N* x/

At =
BND bsz
m
At = ——m— =0, -0,_cotd
INT bS’Sil‘ld) nt nn

Force equilibrium: Equilibrium of the band requires that:
N*cosp =1, bs -V sind

where
V*=bssind (A‘cBND + A‘tm)

Equilibrium of a concrete band is calculated at its intersection with a stirrup (one stirrup per band;
stirrup spacing is not an input, but rather an output of the calculations):

Longitudinally:
Tl[
O, & e
2 sin6 cos®
Transversely:
tanb _ , _ Atyy Aty
tan ¢ T, T,

Strains and compatibility — The strain and compatibility equations are the same as in the
previous method (Dei Poli, Gambarova and Karokog 1987).

Constitutive laws:
Concrete: The same parabolic stress-strain curve for uniaxial compression is assumed as

previously ( Dei Poli, Gambarova and Karakog 1987). In addition, a linear failure envelope is assumed
for concrete in biaxial tension-compression:
/ /
o o
— = — - 085
P

This relationship is used for the concrete, which is in a state of impending failure at the tip of the
cracks near the compression flange, to calculate the eccentricity of the axial compressive force in the

concrete band.
Cracks: The same rough crack model is used as previously to model aggregate interlock.

0.62 _r___ Va"o"‘
nn

(4

28, a, +a,|r|
r

o, =71, 11 -
nt [} 4
d, 1+a,r

where
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8,,98, = crack opening and crack slip displacements,

d, maximum aggregate size,
a;, = 245/, a, = 244(1-4/ty)
r = 8,0, T, = 025f/

Crack spacing; The crack spacing is taken as the stirrup spacing, and is given by the following:
d
5= 0.133 —= cot

st

Bond-slip law: From chemical adhesion and mechanical interaction between the concrete and the
deformed stirrups, the average stirrup strain is obtained.

Results:

» The inclination of the uniaxial compression field, 0 , is significantly less than the crack inclination,
¢, for all practical designs, but tends asymptotically to ¢. The value of O is affected by aggregate
interlock, and at small values of shear, also by strut bending stiffness and stirrup-concrete bond.

o The diagonal compression field is a valid concept. The transverse tension in the concrete strut is
negligible.

o  Within the range of practical designs (0.2 > 1,/f". > 0.1), the contributions of stirrup-concrete
bond and strut bending stiffness to shear resistance are far from negligible (from 25-50% of
aggregate interlock contribution for £ *= €. to 10-15% for £.* = 0). The combination of bending
stiffness and bond is more than additive because it improves aggregate interlock.

*  Also, within the range of practical designs, the stirrups are subjected to tension-stiffening (i.e. the
surrounding concrete in tension helps) and displacements along shear cracks are greatly reduced.

— Further Refinement

Prisco and Gambarova (1995) further refined their method by accounting for the dowel action
of the longitudinal reinforcement, the non-uniform distribution of the crack displacements and the
plastic strain accumulation in the stirrups where they cross shear cracks. These effects are in addition
to the effects of cantilever, aggregate interlock, tension-stiffening in the stirrups and biaxial behavior
in shear compression present in the previous models. The framework is that of a truss, where the strut
angle is shallower than the crack angle, and which fails by ductile failure in shear based on the
simultaneous yielding of the stirrups and collapse of the end sections of the inclined struts.

Dowel action varies between a strong mechanism and a weak mechanism. In the strong mechanism,
the dowel bar pushes against the concrete core, while in the weak mechanism, it pushes against the
concrete cover and the stirrups. The behavioral model is that of a non-linear spring, which accounts
for the interaction between dowel force and tensile force in the longitudinal reinforcement, and is
limited by concrete splitting or the ultimate capacity in compression, bending and shear of the bottom
end section of the concrete.

Crack slip and opening are given reasonable but arbitrary formulations with no slip at the crack tip.
L ielding of sti rack

Stirrups are assumed to exceed yield but be less than 5 % over a length equal to one bar diameter
on either side of each inclined crack.
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Strength of struts

A different formulation is used than in previous models. To account for the effects of transverse
reinforcement in tension, the concrete strength is reduced to:

£ 0.75f!
097 !
or fc Je zi;“—

J/T+600¢,

where ¢, is the tensile strain perpendicular to the diagonal compression field (Hsu 1993).

m ion
The model requires the iterative solution of a 17 equation non-linear system:
- Eight equilibrium equations: one for the section, two regarding bending and interlock
contributions, two for the diagonal compression field, and three for the strut;
- Two compatibility equations;
- Seven constitutive equations: two for aggregate interlock, one each for solid concrete, tension
stiffening in the stirrups, crack and stirrup spacing, plastic strains in the stirrups, and dowel action.

Results

28 RC and PC beams were examined. The agreement between model predictions and tests is quite
good, both for normal and HSC. However, the model applies to shear sensitive beams developing a
truss-like mechanism and under-estimate the shear capacity when the arch mechanism comes into play
(direct strut from load to support). It should also be noted that the efffects of plastic strain in the
stirrups turned out to be negligible.

For t,/f,> 0.22, where T, is the ultimate shear stress, agreement is very good because, in this
region, the truss mechanism is predominant.

For t,/f’, < 0.22, agreement is satisfactory, provided the truss mechanism prevails. As a rule,
for stirrup ratios p, < 0.5 %, the proposed model falls short of the experimental shear capacity by 30-
35 %, because of the importance of the arch mechanism. However, for p,> 0.75 %, predictions are
very close to test data.

On the whole, the mean prediction of the proposed model is closer to test results (mean 89 %,
standard deviation + 12 %) than Euro-Code 2 predictions (mean 80 %, standard deviation + 17 %)
or ACI predictions (mean 62 %, standard deviation + 9 %).
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b s

Figure 2.34 — (a) Truss analogy; (b) forces present at diagonal cracks; and (c) equilibrium
at stirrup (Dei Poli et al. 1987)

Figure 2.35 — (a) Truss analogy; (b) displacements at diagonal cracks; (c) simplified
representation of band between cracks; and (d) free body diagram of band between cracks
(Dei Poli et al. 1990)
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2.5.4 Analysis of Reineck '

Reineck (1982,1991a) presents a variation of the modified compression field theory (MCFT).
The principal difference with Vecchio and Collins’s MCFT is that the direction of the principal strain
does not coincide with that of the compression field. Rather, the strut is at a shallower angle than the
crack, whose faces transmit shear and compressive stresses. This is similar to Kupfer, Mang and
Karavesyroglou (1983) and Dei Poli, Gambarova and Karako¢ (1987) except that here the
compression across the cracks is due to the biaxial state of stress in the web rather than a uniaxial
compression field at a flatter inclination than the cracks. Rather than determining the compression
field direction from an aggregate interlock consideration, Reineck and Hardjasaputra (Reineck 1989)
assume that the cracks open perpendicularly to the compression field direction. Thus, the crack
direction and compression field direction are characteristics of the strain field and the associated
principal directions bisect the angles formed by the cracks and the compression struts. Taking the
additional compressive strain in the concrete struts into account, Reineck concludes that the average
principal compressive strain direction is somewhat closer to the strut direction than the crack
direction. His analysis is similar to that of Kupfer et al. (1983).

Also, in contrast to the MCFT, the compressive strength of the struts is independent of the
transverse tensile strain and is limited to 0.80 f’. This is based on Kolleger and Mehthorn’s (1987)
work. The shear friction across the cracks is of the form ©,= t,, + no, where t,, is a cohesion term,
u = 1.7 is a friction coefficient and both t,, and o, depend on crack opening and sliding.

In Reineck’s (1991a) model, the tensile stresses occur in the concrete web due to the friction of
the crack faces, which is taken into account by assuming flatter inclinations for the struts than the
cracks. The dowel force of the longitudinal reinforcement is neglected for simplicity. See Fig. 2.36.
Equilibrium:

The appplied shear V is resisted by a steel component ¥, and a concrete friction component V}

V=VS+I/}

A
vV, = -—;’ﬁomzcotﬁ

w

Vf =b,z tfv+1:ﬁ,(1 —Eﬂ)]
B
Tt e T TpT RO,
p =coty = 1.7
where A,, = area of web reinforcement,

s, = spacing of web reinforcement,

z = distance between tension and compression chords,

B = crack angle,

p = concrete - concrete friction coefficient,

¢ = friction angle (p = coty),

o, = compressive stress normal to crack face,

o,, = stress in web reinforcement,

T, = shear friction across cracks,

Tro = cohesion term of friction,
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T, = friction teﬁn proportional to normal stress.
T, depends on the crack displacements. The rather high value of p comes from Walraven’s work
(1981).
The truss action shown in Fig. 2.37 develops from the stirrups and the uniaxial compression field
between the cracks. From equilibrium:

C = _A_sw_ o Ser
n w s
s, sin B
or ﬁ = - O &w_
/. sin* B £,
O =T, =0
where s, = crack spacing,
C, , 0, = strut compressive force and stress,
S, = yield strength of web reinforcement,
w, = web reinforcement ratio
_ Auty
w /
bs, 1

The stress fields due to friction (Fig. 2.38) are considered separately. The shear stress t,results
in a biaxial tension-compression field with the compression field inclined at /2 to the longitudinal
axis. The superposition of a normal stress ,, normal to the crack faces, results in a biaxial stress
field.
z,.stress field (Fig. 2.38a) :

- _ % -
0 =0 On = tanp T = Y
g, stress field (Fig 2.38b) :
T 2
co. = B - Cot'B -
0, =0, = —=— =1 . =0
13 I u n fo M &n
Superimposed stress field (Fig 2.38c):
The principal stresses 0, and 6, are oriented at :
tan p, = T
1
0,- 0,

The resultant stress field in the web (Figs. 2.37 and 2.38) shows a principal compression at an
angle shallower than the crack angle. This state of stress results in the two load paths that Schlaich
et al. (1987) referred to: the well-known truss model formed by a concrete uniaxial compression field
and the stirrups (Fig. 2.44a) and a truss model with concrete tensile ties (Fig. 2.44b).

Reineck shows that the “shear friction” theory leading to the concrete term ¥, (or V} here) is
statically equivalent to the truss analogy. In the truss analogy the discrete cracks are not modelled.
However, one must examine them in order to calculate the tensile stress in the web which only
depends on the friction stresses along the crack. Reineck’s model shows a clear transition from
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transversely unreinforced to transversely reinforced members and is therefore a consistent treatment
of both member types (see also Reineck 1991b,c¢).

The complete state of strain of a beam element in a B-region (see § 2.6.2) is :
- longitudinal strain in the middle of the web:

es - 80
g =
2
- curvature:
_ € +¢
K=Kz= c
2
- vertical strain = stirrup strain:
g =€,
- shear strain :
£ )
_ x cw
Y = + +g tanf

tanp sinf cosP

where €, and ¢, are the strains (both positive) in the tensile (steel) and compressive (concrete) chords
and €, is the stirrup strain.
The crack width » and the crack slip s in the middle of the web are:

-
an _ (e, +e,+¢_)sinf + k—cosp
s z
or
<2 _s T
As _ -g.cosP + (e, +e_) sim B, K —Zsinp - 2.4-LsinP
S, cosP z E,

Stress-strain relationships

The concrete struts behave elastically:

scw = 81'1 = _E___
The strength of the struts is not lower than
£, = 0.80f

The constitutive equations for the friction of the crack faces are derived by Walraven (1981):
T, T -
T _ % As-024An MPa, mm

fc/ fc/ 0.096 An +0.01

The cohesion friction stress T, is the limiting value without normal stresses o, on the crack face:

T
—‘13=0.45'£°§(1—A’1) MPa, mm
1 f 0.9
where f,, = concrete tensile strength. This is much lower than that given by Vecchio and Collins
(1986) and by Bhide and Collins (1986).
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With these formulations the whole response of the B-region in a member may be determined from
cracking until failure. Comparison with experimental results shows that the calculated values are very
conservative because the tension stiffening effect is not considered for the stirrup strains.

2.5.5 “ Fixed Angle” Model

Pang and Hsu (1996) assume that shear cracks are parallel to the principal direction of
compressive stress defined by the applied loads (the so-called fixed angie). This would only be true
in webs or shear walls with equal reinforcement in the longitudinal and transverse directions. Most
practical situations are, however, anisotropic. Shear cracks form in the direction of the principal
strains in the concrete (the so-called rotating angle) rather than the principal direction of applied
stress.

The motivation of Pang and Hsu’s (1996) paper was to derive a concrete contribution to shear
resistance. For this purpose, Pang and Hsu had to derive constitutive laws for shear in reinforced
concrete membranes from panel tests. Based on their model, they concluded that the concrete
contribution to shear resistance was caused primarily by the shear stress and secondly by the tensile
stress of concrete. If cracks were assumed to occur at the “rotating angle”, then the shear stress
contribution disappeared.

2.5.6 “Rotating Angle” Model

The re-orientattion of the principal strain direction is well observed in a sequence of pictures of
panel tests (Fig. 2.39) performed by Bhide and Collins (1987). The panel, which was reinforced in
the x-direction only, was subjected to tensile stresses in the x-direction and shear stresses. Initially,
cracks formed in a direction normal to the principal tensile stresses in the concrete (Fig. 2.39a). Upon
increased loading, the tips of the cracks turned into a new direction, the original cracks become
smaller and new cracks opened. When the ultimate strength of the panel was reached (Fig. 2.39c¢),
the original cracks were closed and the failure of the panel was governed by uncontrolled opening of
the new cracks. During the course of the test, the principal tensile strain direction rotated from 30°
to 74°.

Rotating Cracks Fixed Cracks
Panel Axial / Shear | Experiment | Weak Strong Weak
Load Ratio Dowel Dowel Dowel
Action Action Action
PB 29 2.02 1.49 MPa 1.34 MPa 1.78 MPa 3.47 MPa
PB 30 2.96 1.48 MPa 1.22 MPa 1.60 MPa 2.78 MPa
PB 31 5.78 1.15MPa 1.02 MPa 1.22 MPa 1.64 MPa

Table 2.1 Comparison of experimental and analytical failure shear stresses
(experimental results from Bhide and Collins 1987)

Kollegger and Mehlhorn (1990) showed that the rotating crack model was capable of reproducing

the actual behavior fairly well (Table 2.1), whereas the fixed-crack model considerably overestimated
the experimental failure loads. In the fixed crack as well as in the rotating crack models the first crack
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forms in the direction normal to the principal stress in concrete when the tensile strength is exceeded.
While this direction remains constant for the fixed crack model, the principal tensile strain direction
may change in each iteration step for the rotating crack model. Dowel action of the reinforcement was
modelled with a bar fixed at both ends, subjected to an axial force, and with an effective length of 20
mm (strong action) or 40 mm (weak action).

In the modified compression field theory the changing crack inclination is considered, since the
crack direction depends on the strains, which vary with the load level (Adebar and Collins 1996).
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b) forces due to friction

a) End support region and forces

Fig. 2.36 Free-body diagram of end support region of beam (adapted from Reineck 1991a)
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Figure 2.37 — Forces and concrete stress in strut between cracks due to truss action (adapted
from Reineck 1991a)
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Figure 2.38 — Stresses in strut between cracks due to friction (adapted from Reineck 1991a)
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Fig. 2.39 Shift of principal strain direction in panel test of Bhide and Collins (adapted from
Kolleger and Mehlhorn 1990)

66



2.6 Equilibrium Methods
2.6.1 Equilibrium Trusses

Due to their historical importance, relevance to present day codes, and usefulness in design, other
theories are presented here. They satisfy equilibrium and are sometimes referred to as “equilibrium
trusses” (Hsu 1993).

45 ° Truss Model — Ritter in 1899 and Morsch in 1902 developed a reinforced concrete shear
model that neglected the tensile stresses in the cracked concrete and assumed that the diagonal
compression stress would remain at 45° after the concrete cracked (Fig. 2.40).

Equilibrium: The equilibrium equations (Eq. 2.43) for the compression field theory are specialized
for 6 = 45°. Assuming a uniform distribution of shear in the web, the vertical component of the
diagonal compression field must balance the applied shear:

£ = 2V
2 b, jd

The horizontal component of the diagonal compressive force is balanced by tension in the longitudinal
reinforcement.
N, =V
The diagonal compression force has a vertical component that must be balanced by the tension in the
stirrups. From Eq. 2.44:
A4 _ ¥V

s jd

If the stirrups are assumed to yield, £, = £, , this last equation reduces to:
4,/ 14
vly _

- bsf! bjdf,

or
5o o

by T 2

foo L
which is represented by the Morsch-Ritter straight line in Figs. 2.31 and 2.33.

Variable Angle Truss Model — The variable angle truss model is a refinement of the previous
model and accounts for O being typically less than 45°. The equilibrium equations are the same as for
the compression field theory (see Section 2.4.1 and Fig. 2.15). Strain compatibility and concrete
tensile stresses are ignored. If the reinforcement or the concrete reach their “yield” strength, the
variable angle truss model is the same as the lower bound solution of the theory of plasticity
mentioned earlier.

Modified Truss Model — Ramirez and Breen (1991) proposed a variable angle truss model with

a concrete contribution term:

where v, is the shear stress capacity of the Modified Truss Model.
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The steel contribution v, derives from a variable angle truss:

v, =
b,s
where
¢ = inclination of truss model diagonals at failure,
A, = area of transverse reinforcement,
b, = web width,
J, = specified yield strength of reinforcement,

r = transverse reinforcement ratio, and
s stirrup spacing measured parallel to beam axis.
The concrete contribution v, varies with the intensity of applied shear v, but is independent of «;
uncracked state: v, = 2 fc/ for vs 2 jf,/ (psi)
v, = 017/f] for v<017ff  (MPa)
transition state: v, = (6/f_c/ - v)/2 for 2(f] <vs< 6ff (psi)
v, = (,/}Z/Z -v)/2 for O. 17\/_ £V< fc’/2 (MPa)
full truss state: v, = 0 for 6 \/— <vy (psi)
v, =0 for [/2 <v (MPa)
The strut angle must be within the limits 30°< « < 65°.
To prevent the concrete struts from crushing, the compression is limited by:
= —— < 30 si (2.5 MPa
Ja sina coso f psi. € \/_ )
The horizontal component H, of the diagonal compression requires additional longitudinal
reinforcement:

H, =7V, tana

where V, is the factored shear force at the section. The horizontal force is distributed equally to the

top and bottom chords. Thus, the required tension chord force becomes:

oA f M,. M, H
2
vy z z 2
where
o, = capacity reduction factor for shear,
A, = area of longitudinal reinforcement,
M, = factored moment in member due to factored loads, and
M,,.. = maximum factored moment in member due to factored loads.
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Comparison with ACI

The limiting compressive stress of 30 v/, psi (2.5 V7, MPa) and the lower angle limit of 30°
results in a maximum shear stress of 13 V°, psi (1.08 V*, MPa). In terms of V/(b,, d) with d=2/0.9,
where d is the distance from the extreme compression fiber to the centroid of the longitudinal steel
and z is the effective truss depth, this corresponds to v,,.. = 11.7 ¥/, psi (0.972 Vf’, MPa).

The current ACI shear provisions for members subjected to shear and flexure only limit the
maximum shear stress to:

V., = v (max) + v(max) = 2 fc’ + 8 fc/ = IOJ}‘Z (psi)
e = Vo (max) + v (max) = 0.17\/-]’—0’ + 0.66 fc' = 0.83 fc/ (MPa)

v

In practical situations, with v,= 2Vf”, psi (0.17 V’, MPa), the proposed upper limit would allow
the use of larger amounts of shear reinforcement, and hence somewhat smaller members.

1;)‘,', psi n test mean max. min. stand. dev.
(MPa) model
0-50 10 testMTM | 1.35 1.61 1.08 0.227
(0-0.34)

test/ACI 1.25 1.52 0.99 0.215
50 - 100 17 testMTM | 1.515 1.92 1.11 0.25
(0.34-0.69)

test/ACI 1.45 1.92 1.04 0.247
100 - 200 3 test/MTM | 1.87 2.25 1.33 0.48
0.69-1.38
( ) test/ACI 1.83 2.17 1.32 0.45
200 - 300 13 testMTM | 1.62 2.05 1.24 0.26
(1.38-2.07)

test/ACI 1.64 2.00 1.32 0.23
300 - 400 4 test/MTM | 1.13 1.19 0.99 0.094
(2.07-2.76)

test/ACI 1.23 1.39 1.09 0.223
400 - 500 11 test/ MTM 1.11 1.34 0.94 0.146
(2.76-3.45)

test/ACI 1.29 1.52 1.10 0.156
500 - 600 1 test/MTM | 1.09 — — —_
(3.45-4.14)

test/ACI 1.35 —_ —_ —_

n = number of specimens. All 59 specimens are reinforced concrete beams with a/d > 2.0.
Overall statistics: mean = 1.42, standard deviation = 0.32, 95% confidence = 0.081.
ACI shear strength calculated with v, = 2V£’, psi (0.17 Vf’, MPa). MTM assumes ¢ = 30°.

Table 2.2 Comparison between ACI and Modified Truss Model (MTM) predicted strengths
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In comparing results of tests of 59 RC and 77 PC beams versus ACI design provisions or the
proposed modified truss model (Table 2.2), one notes that:
for rf, < 200 psi (1.4 MPa), the modified truss model with & = 30° is slightly more conservative
than ACIT;
- for 200 <rf, < 300 psi (1.4 <7f, < 2.1 MPa), the two procedures yield similar results; and
- for 300 <7f, < 500 psi (2.1 <7£ < 3.4 MPa), the modified truss model yields better estimates
than ACI does.

2.6.2 Strut-and-Tie Model (STM)

The strut and tie model is strictly an equilibrium model and is based on the lower bound theorem
of the plasticity theory. In other words, there may exist other load paths which could carry a greater
load. The designer must identify at least one load path and ensure that no part of it is over-stressed.
If the designer can find, between the various elements of a member, an assumed distribution of load
which satisfies equilibrium everywhere, and the stresses are at or below the material strength, the
actual strength of the member will be at least as great as the calculated strength. This further assumes
that material selection and detailing are adequate to ensure that yielding can occur without premature
failure by over-straining, brittle fracture, or loss of anchorage.

The term “strut and tie” is reserved for disturbed or D-regions and the term “truss” is used for
beam or B-regions, although both terms designate an assemblage of pin-jointed, uniaxially stressed
compression or tension members. In B-regions, beam behavior is expected, i.e., plane sections remain
plane’ and a uniform compression field can be found in response to shearing loads. In D-regions,
complex load paths emanate from concentrated loads, converge towards supports, or flow around
openings. Arch action, as opposed to beam action, is exhibited. As far as shear is concerned, the
difference in behavior of the two regions can be expressed conveniently as follows (Park and Paulay
1975, MacGregor 1992, Fig. 2.41):

dM _ d aT dz

= =2(T2=2Z + T ££
dx dx dx dx

In B-regions, the lever arm remains constant and the tension force adjusts to provide the internal

moment:

4 _ 4 ad yv=2z9

dx dx

The quantity d77dx is the shear flow (shear stress multiplied by beam width) across any horizontal
plane between the reinforcement and the compression zone and is typical of beam behavior.
In D-regions, the tension force remains constant and the lever arm adjusts to provide the internal

moment:

T 6 ad V=729

dx dx

This behavior is characteristic of arch action. This happens, for example, near the ends of a beam,

'B can also stand for Bernoulli in reference to Daniel Bernoulli, an eighteenth century Swiss
mathematician associated with the hypothesis that plane sections remain plane under bending.

70



where shear flow is prevented by inclined cracks extending from the loads to the reactions.

Strut and tie or truss models provide a consistent design approach for B- and D-regions. For
example, the same kind of model can be used to calculate tensile splitting reinforcement for short
beams (D) or shear reinforcement for slender beams (B). If the level of accuracy and simplicity used
in the design of D-regions were considered satisfactory for B-regions, the “endless discussion on
shear can be put to bed” (Schlaich, Schifer and Jennewein 1987). Although the models are consistent,
the behaviors of short (or deep) beams and slender beams are different and it is important to account
for arching action where it exists (Fig. 2.42). As the slenderness (shear span to depth) ratios for
beams decreases, the role of web reinforcement changes from that of carrying primarily direct tension
to that of serving primarily as shear friction reinforcement, preventing a sliding failure along the
inclined crack. Figure 2.43 illustrates the different predictions from the truss model (or sectional
model) and the strut-and-tie model for various shear span to depth ratios.

Strut-and-tie models are discrete representations of statically equivalent distributed stress fields,
i.e., they condense the real stress fields by resultant straight lines and concentrate the curvature of the
stress fields in nodes. The elastic stress fields serve as a guide in defining the geometry of the strut-
and-tie model. Upon cracking of the concrete, a certain amount of stress redistribution occurs,
limited by the plastic deformation capacity of the concrete (ductility requirement). It is therefore
especially important in highly stressed regions to orient the strut-and-tie model along the internal
forces predicted by the theory of elasticity. In less stressed regions, significant deviations from
elasticity can be accommodated without exceeding the ductility of the structure. The selection of the
appropriate truss is more important than the selection of a value for v, the efficiency factor of
concrete (f,=vf .. See Section 2.2). This is because beams are typically under-reinforced and
much of the flexural steel yields before the concrete fails in compression. Thus the actual failure
strength of concrete is not nearly as significant as the correct determination of which steel yields.

Schlaich, Schafer and Jennewein (1987) suggest two guides in selecting a workable strut-and-tie
model:

1) The compatibility of deformations may be approximately considered by orienting the struts and
ties within 15° of the force systems obtained from a linear elastic analysis of uncracked members
and connections.

2) The most valid model tends to be the one that minimizes the amount of reinforcement since this
corresponds to the minimum strain energy solution.

Marti (1985) recommends three rules in the use of strut-and-tie models:

1) Draw truss models to scale.

2) Visualize the force flow using consistent equilibrium considerations.

3) Ensure that truss member forces can be developed and transferred at the required locations.

Nodal Zones — The last rule needs emphasizing, Indeed, the nodes require special care, in particular,
the angle between a strut and a tie entering a node should not be too small. The multi-axial state of
stress in the nodes requires that different values of concrete strength be allowed. For example, the
Canadian Code (CSA 1994) recommends:

For a compression-compression node (intersection of struts): f,=0.85 ® 1/,

For a compression-tension node (intersection of strut and tie ): £, =0.75 ® 7,

For a tension-tension node (intersection of ties): £,=0609f"
where @ = 0.70 is a material resistance factor.

On the other hand, Schiaich et al. (1987) , Mac Gregor (1988) and Bergmeister et al. (Yun and
Ramirez 1996) proposed values of effective stress levels of nodal zones listed in Table 2.3:

71



o (A,../As) fr: (1 'yd)z

v.f, (4/4,)"

Unconfined nodes without bearing plates

257,

Tri-axially confined nodes

Effective stress level (MPa) | Nodes Proposed by
0.85f, Compression-compression-compression nodes
Schiaich et
0.68 1, Nodes where reinforcement is anchored in or | 2l (1987)
crossing the node
085/, Nodes bounded by compressive struts and
bearing areas
. . Mac Gregor
0.65f, Nodes anchoring one tension tie (1988)
0.50 1", Nodes anchoring tension ties in more than one
direction
0.80 7, for f°,<27.6
(0.5-0.257.169)f% Unconfined nodes without bearing plates
for 276 <f’, <69
0.65f°, for f°, > 69 )
Bergmeister
v, (A/4, ) + Confined nodes et al.

A, A, and 4, = area of confined concrete, bearing plate, and confined strut, respectively;
Jia = lateral pressure = 2f A, /(ds) for f°,<48.3 MPa;or 2f, A, /(ds) for f’,>48.3 MPa;
s = pitch or spacing of confining reinforcement; d = diameter of confined core; v= 0.5 + 1.25/f",
. = 4.0 for spiral confinement, 2.0 for square closed hoop confinement anchored with longitudinal
reinforcement, and 1.0 for square closed hoop confinement without longitudinal reinforcement

anchorage.

Table 2.3 Effective Stress Levels in Nodal Zones (Yun and Ramirez 1996)

Based on test results of isolated 10 CCT and 9 CTT nodes (C = Compression and T = Tension),
Jirsa et al. (Yun and Ramirez 1996) concluded that, if the effective concrete strut stress is limited to
0.8 ., all predictions of nodal zones experiencing concrete failure were conservative. Adebar and
Zhou (Yun and Ramirez 1996) limit the maximum bearing stress in deep members without sufficient

reinforcement to:
f, < 0.6f/(1 +2aP) < 1.8f
where « = 0.33 (‘/A;,_/Al -1) <10
B=033MRb-1)<10
and h/b>10
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h/ b is the height / width ratio of the struts, o accounts tor the amount of confinement and B accounts
for the geometry of the compression stress field. A, and 4 represent the loaded area and the
supporting area respectively. If /7, is significantly greater than 34.5 MPa, the bearing stress limit is

f, < 0.6f) + 6\/f—c'aB MPa
Struts:

Effective | Concrete struts Proposed by
stress

(MPa)

0.857, Undisturbed and uniaxial state of compressive stress that may
exist for prismatic struts.

0.68 1, Tensile strains and/or reinforcement perpendicular to the axis of
the strut may cause cracking parallel to the strut with normal Schlaich et

0517, Tensile strains causing skew cracks and/or reinforcement at skew
angles to the strut axis.

0.34 1, For skew cracks with extraordinary crack width. Skew cracks
would be expected if strut-tie model departs significantly from
the flow of internal forces predicted by the theory of elasticity.

0.50 f°, Isolated compression struts in deep beams or D-regions.

Mac Gr.
0.25f°, | Severely cracked webs of slender beams with strut angle of 30°. (1328) cgor

0451, Severely cracked webs of slender beams with strut angle of 45°.

0.85f", Moderately confined diagonal struts going directly from point
load to support with shear span to depth ratio less than 2.0.

0751, Struts forming arch mechanism.

Alshegeir

0.507, Arch members in prestressed beams and fan compression
members.

0955, Undisturbed and highly stressed compression struts.

Table 2.4 Effective Stress Level in Concrete Struts (Yun and Ramirez 1996)

According to CSA 1994, concrete stress in struts must not exceed the crushing strength of
cracked concrete, f,.... , given by:

f/
=—%° <0857
S 0.8 + 170 ¢, fe

The principal tensile strain €, depends on the strain condition of the concrete and the reinforcement
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in the vicinity of the strut.
g =g + (g, + 0.002)cot’ 6

where 0, is the smallest angle between the compressive strut and the adjoining tensile ties and €, is
the tensile strain in the tensile tie inclined at 6, to the compressive strut. As 0, decreases, €, increases
and f,,.., decreases. In other words, a strut cannot be placed directly on top of a tie. This is the reason
for the rapid drop in shear strength predicted by the STM for a/d > 2.5 in Fig. 2.43.

However, the allowable stress in struts is not always thought of as a function of the principal
tensile strain €, . Yun and Ramirez (1996) reviewed the effective stress levels allowed in concrete
struts Table 2.4). Ramirez and Breen (1991) suggested 2.82 ¥*, (MPa) as an estimate of the
maximum diagonal compressive stress for beams and beam-type regions. Marti (1985) suggested an
average value of effective stress level equal to 0.6 f°, for all types of struts and nodes. Bergmeister
et al. (Yun and Ramirez 1996) proposed the following equation for the effective stress level of
concrete struts:

fc=[0.5+£§]fc’ for 20<f <8 MPa

W

Beam Shear — Truss models have formed the basis for beam shear design since the turn of the
century, as mentioned earlier. The plasticity model and the modified compression field theory are
truss models. What follows is a qualitative discussion adapted from Schiaich, Schifer and Jennewein
1987 and consistent with what was presented earlier, that adds further insight into the shear behavior
of beams

Fig. 2.44 shows a beam under shear loading. The web cracks after the principal tensile stress
reaches the tensile strength of the concrete. Individual pieces of the cracked web tend to fall down,
but are restrained by the stirrups. The compression C, in the concrete strut is balanced by the tension
T, in the stirrups and additional tension in the longitudinal reinforcement. This is the principal load
path 1 which disregards concrete tensile strength (Fig. 2.44a). In addition there exists load path 2
which takes into account concrete tension and aggregate interlock (Fig. 2.44b).

The relative movement of two pieces of web separated by a crack has two components (Fig.
2.44c): one perpendicular to the crack (opening) and one parallel to it (sliding). The sliding is resisted
by force R parallel to the crack and due to aggregate interlock. The force R has two components: a
concrete compression C, with inclination 8 < ¢ (¢ = crack angle) and a concrete tension T
perpendicular to C, (Fig. 2.44d). The chords (longitudinal reinforcement) are activated for
equilibrium.

The concrete tension perpendicular to the strut alleviates the tension in the stirrups, which are
required to carry only part of the shear load. Fig. 2.45 shows that the strut-and-tie model and the
truss model require less shear reinforcement than the plasticity method, which neglects concrete
tension. However, the tension also causes the concrete of the strut to be biaxially loaded, thus
reducing its compressive strength. Also, in strut-and-tie models used in practice of members with
transverse reinforcement, load path 2 is usually neglected.

Load path 2 (Fig. 2.44b) disappears when 0 = ¢. When this occurs, the concrete struts are
loaded uniaxially and can then develop their maximum strength. Therefore, the maximum shear
capacity of beams is achieved if the struts are parallel to the cracks and the required amounts of
transverse and longitudinal reinforcements are provided.

The above discussion agrees, then, with the modified compression field theory and is also
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confirmed by Dei Poli et al. (1987), who found that, as the shear strength increases, the strut angle
approaches the crack angle.

The applicability of the strut-and-tie model is limited to small values of the shear span-to-depth
ratio, a/d ( Fig. 2.43). For large a/d, shear failure is related to concrete tensile strength and aggregate
interlock, whereas practical strut and tie models only consider concrete in compression.

2.7 Summary

Great progress has been achieved since Morsch’s 45° truss, particularly in the last 20 years. The
solution of shear problems in beams (B-regions) has achieved a remarkable level of rationality. For
D-regions, strut-and-tie models provide designs which are rational and consistent with B-regions.
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Figure 2.41 — Shear in a beam
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Figure 2.42 — Strut-and-tie models of beams with increasing shear-span-to-depth ratios
(adapted from Schlaich et al. 1987).
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Figure 2.43 — Comparison of experimental shear capacity of beams with different shear-span-
to-depth ratios with predictions by strut and tie models and sectional models (adapted from
Collins and Mitchell 1991)
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(a) Load path 1 - No tension in concrete

/.

’fl"

Rl < Stirrup tie - Concrete strut
/

/j\ Concrete tie - Concrete strut
S

4
VPA

|

<

v = vertical displacement
w = crack opening
A = sliding

s

Tc = Resultant of tension field
Cc = Resultant of compression field
R = Force due to aggregate interlock

Figure 2.44 — Internai forces in beam due to shear (adapted from Schlaich et al. 1987).
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Figure 2.45 — Required vertical stirrups as a function of applied shear stress: comparison of
strut and tie model (¢ = 38°), simple truss analogy, plasticity theory and experiments (adapted
from Schlaich et al. 1987)
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3. Comparison of Design Codes

3.1 ACI Code 318-95 (American Concrete Institute Building Code, 1995)

In a series of reports, ACI-ASCE Committee 326 on Shear and Diagonal Tension (1962) and
its successor, ASCE- ACI Task Committee 426 (1973,1974, reapproved 1990) reviewed the
fundamentals of shear behavior. These reports form the basis of the ACI code. The main parameters
that govern the shear strength of beams, according to these reports, are summarized below.

3.1.1 Shear Strength Parameters
Beams without web reinforcement

Beams without web reinforcement fail when inclined cracking occurs or shortly afterwards.
The inclined cracking load is affected by five principal variables, some included in design equations
and others not.

1. Tensile strength of concrete

The stress state in the web of a beam involves biaxial principal tension and compression
stresses. Also, the flexural cracking which precedes the inclined cracking disrupts the elastic stress
field to such an extent that inclined cracking occurs at a principal stress, based on the cracked section,
of roughly £, / 3, where £, is the concrete tensile strength.

2. Longitudinal reinforcement ratio
Fig. 3.1 (MacGregor and Gergely 1977) shows the shear capacity of simply supported beams

without stirrups as a function of the steel ratio p, = A,/ (b,d).

3. Shear span to depth ratio a/d or moment to shear ratio M/ (Vd)
This is shown is Fig. 3.2 (ACI-ASCE Committee 326, 1962).

4, ize of beam

Fig. 3.3. (Collins and Mitchell 1991, Collins et al. 1996) shows the well-known size effect in
beam shear. The Modified Compression Field Theory does a reasonable job at predicting the size
effect, whereas the ACI provisions can be unconservative for large beams.

5. Axial forces
Axial tensile forces tend to decrease the inclined cracking load, while axial compressive forces
tend to increase it. This is shown in Fig. 3.4 (MacGregor 1992).

Beam with web reinforcement

6. ieldi he sti
Discussion of the truss model in the previous chapter shows this is an important failure mode.

7. Crushing of the web
Again the truss model explains this mode of failure. Some codes limit the ultimate shear stress
to 0.2 f°, in beams with vertical stirrups or 0.25 f°, in beams with 45° stirrups. The ACI limit for
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crack control

Venee = 8 J;’Z b,d  inch-pound system

V.

7 (ACI § 11.5.6.8)
e = 07 ‘/Z b,d  mm-Newton system

provides adequate safety against web crushing.
8. Failure of the tension chord

The truss model shows that tension in the longitudinal reinforcement at a given point in the
shear span is a function of the moment located approximately d (= effective depth) closer to the
nearest section of maximum moment. This is why the ACI code requires that flexural reinforcement

be extended a distance d past the point where it is no longer needed.

9. Failure of stirrup anchorage

Generally, the upper end of the inclined crack approaches very close to the compression face
of the beam. At ultimate load, the stress in the stirrups approaches or equals the yield strength f,
at every point where an inclined crack intercepts a stirrup. Thus, the portion of stirrup above the
crack must be able to anchor f,. The ACI Code requires that stirrups be closed loops or anchored
by hooks or T-heads.

10.  Serviceability failure due to excessive crack widths at service loads.
ACI guards against this by limiting the maximum shear that can be transmitted by stirrups to
that specified by ACI § 11.5.6.8 above.

3.1.2 Shear Resisting Mechanisms
The shear carried by the concrete, ¥, is the sum of :
-V, the shear carried by the compression zone,
-V,  the vertical component of aggregate interlock, and
-V,  the dowel action of reinforcement crossing the crack.
The relative magnitude of all shear carrying mechanisms is shown in Fig. 3.5 (MacGregor
1992).

3.1.3 ACI Code Equations For Shear In Beams
In the ACI Code, the basic design equation for the shear capacity of a concrete beam is.

V, < @V,

where V, is the shear force due to the factored loads, ® is the strength reduction factor, taken equal
to 0.85 for shear, and V, is the nominal shear resistance :

V,=V, +V, (ACI112)

V. is the shear carried by the concrete and ¥, , the shear carried by the stirrups, is based on the 45°

truss.
The number of vertical stirrups spaced s apart crossed by a crack is therefore /s , where d

is the beam effective depth. Assuming that all stirrups yield at failure, the shear resisted by the stirrups
is:
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(ACI 11.15)

where the stirrups have cross-sectional area 4, and yield strength £ . However, tests have shown
consistently that the stirrup stresses were considerably lower than those predicted by the 45° truss
model (Hognestad 1952), which therefore underestimates the beam shear strength (Fig. 2.45).

The ACI code assumes that V_ is equal to the shear strength of a beam without stirrups, which
in turn, is taken equal to the load at which inclined cracking occurs:

( v d
Vv, = 1.9‘/7: + 2500 Py " b,d< 3.54f b,d inch-pound system
\ M, /
(ACI11.5)
( / Py Vu d) /
V,=10164f, + 17 b,d <029 ‘/Z b,d mm-Newton system
\ u |/

where f°, = concrete compressive strength,
P. = longitudinal reinforcement ratio,
b, = web width,
M = factored moment at section and

M,/(V,d)  expresses the shear span to depth ratio a/d.
This equation was developed by ACI-ASCE Committee 326 in 1962 and is still in current use.
Taking V, equal to the shear at inclined cracking is based on empirical observations and is
approximately true if the truss angle 0 is assumed to be 45°. If 0 approaches 30°, as in the plastic
truss model, ¥, approaches 0, as assumed in that model (see Fig. 2.45).
The nechanism of shear failure of beams with shear reinforcement is totally different from
-beams without shear reinforcement. Yet, ACI and many other design codes, use the same V, for both
types of members. Thus, the shear resistance due to the concrete and stirrups are considered additive,
when in fact they form part of a complex interaction (Chana 1987).
Eq. ACI 11.5 is plotted in Fig. 3.2 with its experimental basis. The same data are plotted in
terms of reinforcement ratio in Fig 3.1, together with the following simplified version of Eq. ACI
11.5 allowed by the ACI code.

V,=2{fb,d  inch-pound system
V.= Jf! b,d/6 mm-Newton system

(4
3.1.4 Deep Beams
For deep beams with @/d < 2, the ACI Code accounts for the increased shear resistance by
the use of a multiplier:
( Mu \( / 4 d\ / .
Vv, =]35-25 1.9/ +2500p,—“_| b d < 6/f/b,d inch Ib
\ LAV M“}

(ACI11.3)

( M, \( V,d
v, =|35 - 2521 016/ + 17p,~| b,d < 05/7/b,d mm, N (ACI1129)

\ V.d )\ « )
_ M,

with 35 - 25 <25
Vd

u
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where M, and ¥V, are calculated at a distance a/2 but not greater than d from the face of the support.
a is the shear span or the distance between concentrated loads and support faces.

3.1.5 Proposed Revisions (1977)

Fig. 3.1 (MacGregor and Gergely 1977) also shows specifications from other codes (1977
or earlier versions) as well as revisions to Eqs. ACI 11.5 and 11.3 recommended by MacGregor and
Gergely in 1977. Among the suggested revisions, the basic shear stress is changed to:

Afl <v, = (08 + 120pw)lﬁz < 2.33.‘/7! inch-pound system
0.0834/7] < v, = (0.07 + 10p, ) A/ < 0.19A{ff]  mm-Newton system
where A = 1.0 for normal weight concrete, A = 0.85 for “sand-lightweight” concrete, and A =0.75

for “all-lightweight” concrete.
The shear force V, carried by the concrete is changed to:

v, = v b, d for %z 2
d i @3.1)
and V,=2-v,b,d2>v,b d for rk 2
a

The justification for Eq. 3.1 is presented in Fig. 3.6 (MacGregor and Gergely 1977). Further
justification is that the meaning of M/ (Vd) for continuous beams is unclear (Fig.3.7, from Fergusson
1973). Thus, the influence of a/d or M/ (Vd) is neglected for a/d > 2. Although these revisions were
not adopted, they are presented here because of their relevance to other national codes.

3.1.6 Axial Force

For axially loaded members, Eq. ACI 11.5 is modified as follows (Fig. 3.4, from MacGregor
1992). For axial compression N,> 0 and with A_denoting the gross area of the section, the simplified
method limits V, as follows :

N,
Vv, = 2(1 + ZOOSAg] \/Z’ b,d inch-pound system
N (ACI 11.4)
vV, = (0.166 + 0.012 A—“] f/b,d  mm-Newton system
P-4
whereas the detailed method specifies:
( )
P, V.4 7 N .
V.={19{f +250022"1b d< 35fbd|1+—— inch Ib
“ | ‘/7 M, | f“"\l 5004, b,
( &
p. V. d 7 N
V.=1016yf + 17 22 "|b d < 029yf b d |1+ —*
N\ Te M, | ‘/Z‘"\ 3454, o
with M, = M, - Nu(i”-ﬁ)
8 (ACI §113.2.2)
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For axial tension N,<O0:

V. =21+ N, Jj—" b d inch-pound system
¢ 5004, | '7° ¥

(ACI11.8)

N
V, = [0.166 + 0.048 —ji] /! b,d mm-Newton system
g

3.1.7 [, Limits and Minimum Shear Reinforcement
Fig. 3.8 shows the limits of ACI current shear design provisions versus f, :
For long, shallow beams:

vc—l.9JZ/ psi or O.l6,/f-c/ MPa

For short, deep beams:

v, 3.5\[f_c/ psi or 0.29‘/}3 MPa

It is seen that the tests that form the basis of the ACI equations were performed on members
with concrete strengths of /°, < 6000 psi (40 MPa). Experiments suggest that the inclined cracking
load of beams increases less rapidly than ¥'( /°, ) increases, for f°, greater than about 8000 psi (55
MPa). This is offset by an increased effectiveness of stirrups in high-strength concrete beams. Other
tests suggest that the required amount of web reinforcement increases as f°, increases. For these
reasons, the ACI code limits V( /. ) to 100 psi (8.3 MPa) unless the amount of minimum web
reinforcement is increased according to Clause 11.1.2.1 by the ratio

S (psi) /5000 <3 [f’, (MPa)/34.5 < 3].

The minimum area of shear reinforcement for normal strength concrete is:

s
A, = 50 —/— inch-pound system
b s (ACI11.13)
A, = 0345 = mm-Newton system
y

and for high strength concrete (ACI §11.1.2.1):

b,s 1 b,s b,s ;.
50 — < 4,=50 150 — , 10000 < f, inch-pound system
A 5000 f
y ¥
bws -fc/ bws /
0345 — < 4,=0010—5,s =< 1.035 — , 69 < f, mm-Newton system
5 5 5
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Figure 3.1 — Shear capacity of simply-supported beams (a/d > 2.5) without stirrups as a
function of steel ratio (adapted from MacGregor and Gergely 1977)
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Figure 3.2 — Shear strength (flexural-shear cracking) as a function of the shear-to-moment
ratio (adapted from ACI-ASCE 326, 1962)
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Figure 3.3 — Effect of beam size on shear stress at failure at distance d from support (adapted
from Collins and Mitchell 1991 and Collins et al. 1996)
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Figure 3.4 — Effect of axial force on shear force at inclined cracking (adapted from MacGregor
1992)
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Figure 3.5 — (a) Internal forces in cracked beam with stirrups; (b) relative magnitude of shear
carrying mechanisms (adapted from MacGregor 1992).
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Figure 3.6 — Effect of a/d on

shear strength of various beams
(adapted from MacGregor and Gergely
1977)
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Figure 3.8 — Limits of concrete strength underlying the ACI shear design equations (adapted
from ACI-ASCE 326 1962)
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3.2 CSA A23.3-94 (Canadian Standards for the Design of Concrete Structures, Dec. 1994)
The latest CSA Code applies to concrete of compressive strength up to 80 MPa (11600 psi).
3.2.1 General Design Method
The general design method for shear and torsion in flexural regions is based on the Modified
Compression Field Theory (MCFT). Adequate shear resistance is provided if :
V. >V
where V,, is the factored shear resistance and 7} is tl’fé fa({tored shear force at section.
The factored shear resistance is, for a non-prestressed section:

V=V *V, <0250, fb,d, (CSA 11.17)

The limit on V_ is intended to prevent concrete crushing in the web prior to yielding of the
transverse reinforcement. In the above equation:
| 4 = concrete contribution,

g
Ve =132¢.p \/J_‘Z b,d, mm-Newton system

Ve =131¢,(28) ‘/}wa d, inch-pound system

(CSA 11.18)

N
]

steel contribution,

_ ¢,4,f,d, (cotO+cota) sine

Vi = (CSA 11.20)
Y

L4

.
<

area of shear reinforcement within spacing s,

effective web width,

beam effective depth, or distance from the extreme compression fiber to the centroid
of the longitudinal tension reinforcement,

lever arm of resisting flexural moment > 0.9 d,

specified compressive strength of concrete,

specified yield strength of reinforcement,

spacing of shear reinforcement,

angle of inclined stirrups to longitudinal axis,

factor accounting for shear resistance of cracked concrete,

factor to account for low density concrete (A = 1 for normal density concrete),
angle of inclination of diagonal compressive stresses to the longitudinal axis of the
member, and

¢, P, = material factors for concrete and steel (¢, = 0.60, ¢, = 0.85).

The low value of ¢, is chosen to simplify the formulation of column design and is
compensated for by the factor 1.3. The factor B and the angle 0 are given in Tables 3.1 and 3.2 (11.1
and 11.2 CSA) and Figs. 3.9 and 3.10 (11.1 and 11.2 CSA) for sections with transverse reinforcement
(i.e. greater than minimum required) and for sections without (i.e. less than minimum required). For
B values in psi units, multiply the values in the tables by 12. The shear capacity of a member without
stirrups is limited by the shear transfer of diagonal cracks (Adebar and Collins 1996)

The minimum area of shear reinforcement is proportional to v (¥”,) :

o
3
o

n"ﬂ& _
Il

DR oSy
T | I
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vmin

b, s
= 0.06 ,/Z’ fL mm-Newton system
7 (CSA 11.1)

b s
A, =002 \/Z —}’— inch-kips system
y

The use of these tables requires knowledge of the maximum longitudinal strain €, . As well,
it requires knowledge of the spacing parameter s, for sections without transverse reinforcement:
_ 05N, + Vcot 0) + M/d,

€, EA < 0.002 (CSA 11.22)

where

N, = factored axial load normal to cross-section, occurring simultaneously with 7,
with tension positive and compression negative,

V; = factored shear force at section,

M >0 factored moment at section,

E, = modulus of elasticity of reinforcement,

A, = area of reinforcement in tension zone,

5, < 2000 mm is the lesser of d, and the maximum distance between layers of crack control
reinforcement.

3.2.2 Simplified Design Method
The simplified design method for shear and torsion also determines shear resistance as the
sum of a concrete and a steel contribution:

V,=V,+V,<V,+ 081, fb,d (CSA 11.5)
For comparison with the last term, ACI 318-95 limits the maximum shear carried by stirrups to
8 ,/Z' b,d pounds or 0.7 J}Z b,d Newton (ACI11.5.6.8)
The steel contribution is:
$.4,7,d

Vv, = ie. 0 =45°and « = 90° in Eq. CSA 11.20.

s

For members having either a) at least the minimum amount of transverse reinforcement given
by Eq. CSA 11.1 or b) an effective depth not exceeding 300 mm, the concrete contributiion can be
calculated as:

Vv, = 0.2l¢c‘/}2bwd = 1.3l¢c-122-‘/76’bwd Newton (CSA 11.6)

This is comparable to ACI 1989 simplified shear resistance:
7 2 [
V,=2 ‘/wad pound = ) [_wad Newton

For members with effective depths greater than 300 mm and with transverse reinforcement
less than that required by Eq. CSA 11.1:
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_(__260 ; ,
Ve (1000 ; d] A, flb,d 2 01014, {b,d (CSA 11.7)

3.2.3 Longitudinal Reinforcement

The factored resistance of the longitudinal reinforcement N, must be greater than or equal to
the stress that can be developed in that reinforcement at all sections. The longitudinal reinforcement
is designed to resist moment M, and equivalent axial tension N, = V' cot 8 due to shear:

Mf
N > - + 0.51\} + (Vf - 05 ng) cot O (CSA 11.23)

For disturbed regions near discontinuities, the Canadian Code recommends the use of strut-
and-tie models.

3.2.4 Strut-and-Tie Method
The strut-and-tie method may be used to dimension RC members. The limiting compressive
stress in the biaxially stressed strut is:

A /
z ———— < 0.85 CSA 11.30
T 0.8 + 170, £ ( )
where €, is the principal tensile strain in cracked concrete due to factored loads and is calculated as:
g =g + (g, + 0.002) cot? 6, (CSA 11.31)

6, is the smallest angle between the compressive strut and the adjoining tensile ties and €, is the
tensile strain in the tensile tie inclined at 0, to the compressive strut. As 0, decreases, g, increases
and f,, decreases. In other words, there must be some difference in orientation between a strut and
an intersecting tie, a strut cannot be placed directly on top of a tie.

Unless special confinement is provided, the calculated concrete compressive stress in the node
region shall not exceed the following:
a) 0.85 ¢, f . in node regions bounded by compressive struts and bearing areas,
b) 0.75 ¢,/ . in node regions anchoring a tension tie in only one direction, and
¢) 0.65 ¢_f . in node regions anchoring tension ties in more than one direction.

3.2.5 Beam versus Panel Tests

It is worth discussing at this point why the ACI has maintained its semi-empirical equations
since 1962 even when more rational methods exist, such as the Modified Compression Field Theory
(MCFT), which is now adopted, for example, in the Canadian, Norwegian and AASHTO LRFD
Codes. Clearly, the fact that a whole generation of engineers has learned and used the present version
(for shear) of the ACI code must be a factor. However, there is a fundamental difference in approach
as well. According to ACI-ASCE Committee 326 (1962), “diagonal tension is a combined stress
problem in which horizontal stresses due to bending as well as shearing stresses must be considered.”

In “The Use of Rational Design Methods for Shear” (Collins 1993), the author of the
Compression Field Theory (CFT) and the MCFT explains that this combination of flexure and shear
is what has made the shear problem so intractable. He contrasts the traditional type of shear tests
(beam), which are simple to perform, but difficult to analyze, with the more recent tests (panel) which
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are more difficult to perform but simpler to analyze. See Fig. 3.11 (Collins 1993). In tests of beams,
simply supported with two concentrated loads, the behavior of the member changes from section to
section along the shear span and also over the depth of the beam. In contrast, the state of stress in
a panel loaded in pure shear or a combination of shear and axial forces is uniform.

Because shear is studied independently of flexure, the shear carried by the compression zone
V., does not exist in the CFT or MCFT. V,, the shear carried by the dowel action of the longitudinal
reinforcement is also neglected, but V,, , the shear carried by aggregate interlock is accounted for.

V, is rather small (see Fig. 3.5b), but V_, can account for 25-30% of V, in beams with typical
longitudinal reinforcement ratios. Nevertheless, when the MCFT is applied to traditional beam tests,
it fares rather well as a predictor of strength and has an even smaller coefficient of variation than the
ACI equations do. See Fig 3.12 (Collins 1996). How can the results be so good ?

Vecchio and Collins performed a detailed analysis of a cross-section subjected to combined
shear and moment. Fig. 3.13 shows the distribution of shear stress over the cross section. It also
shows that the inclination of the principal compressive stress changes over the height of the beam.
In the Canadian code the choice of the location (mid-depth) of €, reflects the redistribution of shear
stress transferred from the most highly strained portions of the cross section to the less highly strained
portion. It would be conservative to use the highest value of €, , as an increase in €, decreases the
shear capacity. So, implicitly, the higher shear capacity of the uncracked or least strained region is
taken into account.
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Table 3.1 — Values of § and 6 for sections with transverse reinforcement (CSA 1994)

v, Longitudinal strain, g,
A, 5,
< < < < < < <

0.0000 | 0.00025 | 0.0005 | 0.00075 | 0.0010 | 0.0015 | 0.0020

<0.050 | P 0.405 0.290 0.208 0.197 0.185 0.162 0.143

6 27.0° 28.5° 29.0° 33.0° 36.0° 41.0° 43.0°

<0075 | B 0.405 0.250 0.205 0.194 0.179 0.158 0.137

0 27.0° 27.5° 30.0° 33.5° 36.0° 40.0° 42.0°

<0.100 | P 0.271 0.211 0.200 0.189 0.174 0.143 0.120

0 23.5° 26.5° 30.5° 34.0° 36.0° 38.0° 39.0°

<0.125 | B 0.216 0.208 0.197 0.181 0.167 0.133 0.112

0 23.5° 28.0° 31.5° 34.0° 36.0° 37.0° 38.0°

<0.150 | B 0.212 0.203 0.189 0.171 0.160 0.125 0.103

) 25.0° 29.0° 32.0° 34.0° 36.0° 36.5° 37.0°

<0.200 | B 0.203 0.194 0.174 0.151 0.131 0.100 0.083

) 27.5° 31.0° 33.0° 34.0° 34.5° 35.0° 36.0°

<0250 |B 0.191 0.167 0.136 0.126 0.116 0.108 0.104

0 30.0° 32.0° 33.0° 34.0° 35.5° 38.5° 41.5°

Table 3.2— Values of B and B for sections without transverse reinforcement (CSA 1994)

Longitudinal strain, €,
52 < < < < < <
0.0000 | 0.00025 | 0.0005 | 0.0010 | 0.0015 | 0.0020
<125 B 0.406 0.309 0.263 0.214 0.183 0.161
6 27° 29° 32° 34° 36° 38°
<250 B 0.384 0.283 0.235 0.183 0.156 0.138
6 30° 34° 37° 41° 43° 45°
<500 B 0.359 0.248 0.201 0.153 0.127 0.108
0 34° 39° 43° 48° 51° 54°
<1000 |P 0.335 0.212 0.163 0.118 0.095 0.080
0 37° 45° 51° 56° 60° 63°
<2000 (P 0.306 0.171 0.126 0.084 0.064 0.052
0 41° 53° 59° 66° 69° 72°
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Figure 3.9 — Values of § and 0 for sections with transverse reinforcement (adapted from CSA
1994)
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Figure 3.10 — Values of B and 6 for sections without transverse reinforcement (adapted from
CSA 1994)
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Figure 3.11 — Comparison of traditional beam tests with panel tests (adapted from Collins et al.
1993).

0 1 2 3 MN
8000 1 2 3 MN 800
T 171 T 1 T 1T T ,T 1
/ MN / MN
- — / -
Vexp Oy 18 2 8
600 |- Vealc 7/ 600 Vexi 4 Q
\) _ X Y N Z
o« l, N @ Vcalc\/ . - g
@ - / N 2 — / g’.\,’
= / . 42 = /. > -2
g 400 |- r _- R 400 ’/ R
>n> / A >m / * 7’ 7 -
— / 0)6/ - 7 7’
/ . -~ v . Ve
. . ” . 1 “eeo V' . 1
200 /s A Pl 200 ¥ %
/ . - . 5 7
7/ e 7%/ »
0 s -~ — - pu
[4 0,’/ / 7’
A » y/
0 ] 1 ! | I 1 0 0 ) | ! ] ! } 0
0 200 400 600 800 0 200 400 600 800
0 100 200 300 400kN 0 100 200 300 400KkN
100 i I/ ] 1 100 LI ) - i ]
7.3 ‘s e
80 - / - . 80 |- o/ g
" r o %0 . . .y“. :.. ~ 4
'g- 60 B { < ’ iy 8. 60 B » .'l 3 //
x Ledt) * . X *’i A Mean = 1.44
i . ¢ > LI = - | . (33 = 1.
X 40 - % o P l(\:ﬂ(e)ail/n_ 310.3;29/ g 40 'é-' /.r COV = 18.2%
> oo lSY * - =ov.iie >Q) s
20 AP 20 |- .,’
(4 ’
-~
) ] 1 i I 0 1 I l 1
0 20 40 QO 80 100 0 20 40 60 80 100
Vealc, kips Vealc: Kips

(a) ACI Method

Figure 3.12 — Correlation of calculated and experimental shear strengths for 528 beam tests; (2)
strength calculated according to ACI; (b) strength calculated according to modified compression
field theory (adapted from Collins et al. 1996).

(b) Modified Compression Field Theory
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Figure 3.13 — Distribution of shear stresses in (a) detailed analysis and (b) direct procedure
(adapted from Collins and Mitchell 1991)
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3.3 NS 3473E (Norwegian Standards, 4th. ed., Nov. 1992)

The Norwegian Code is applicable to concrete with strength up to 105 MPa = 15 200 psi (cube)
or 94 MPa = 13 600 psi (cylinder) and allows three methods of shear design of increasing complexity:
1. A simplified method similar to ACI's V_+ V, (Clause 12.3.2),

2. A variable angle truss method (Clause 12.3.3), and
3. A general method based on the Modified Compression Field Theory (Clause 12.5 and A12.5).

In addition, strut-and-tie models are allowed for regions of discontinuity in geometry or loads

(Clause 12.6).

Notation used in Norwegian Standards

Area of concrete,

Area of fully anchored tension reinforcement,

Area of shear reinforcement unit,

» =Area of longitudinal and transverse (vertical) reinforcement,

= Web width,

Distance from extreme compression fiber to centroid of tension reinforcement,
Maximum aggregate size,

Modulus of elasticity of concrete,

Design compressive strength of concrete,

f..a= Reduced compressive design strength at simultaneous transverse tension,
fa = Design tensile strength of concrete,

f.. = Reinforcement design strength,

f+ = Characteristic reinforcement strength defined as yield strength or 0.2 % proof test,
Jea .» = Longitudinal and transverse (vertical) reinforcement design strength,
f+ = Expected lower characteristic tensile strength of concrete,

I. = Moment of inertia of uncracked concrete section,

M, = Total moment in section acting in combination with shear force V7,
M,= -NW./A,

s,s,= Stirrup spacing,

S. = Static moment about centroidal axis of one part of concrete section,

s, = Depth of concrete web,

V._.,= Shear capacity at compressive failure of concrete,

V.;= Shear capacity at tensile failure of concrete,

V., = Basic concrete shear strength,

V; = Design shear force,

V, = Nominal shear strength of section,

Vaa

w

W

1>
non

S NN
a e -
I |

O~
]

o

T
!

= Contribution of transverse reinforcement to shear resistance,

= Mean crack width,

= Section modulus of concrete cross-section about extreme tension fiber or fiber with least
compression,

z = Internal moment arm of cross-section, z = 0.9 d if cross-section has a compressive zone,

z, = The greater of 0.7dand 1,/S,,

¢ = Angle of reinforcement with longitudinal axis,

Y. = Material coefficient for concrete,

€, = Principal strains in concrete,
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Assumed strain at cracking of concrete,
Longitudinal or transverse strain,

Mean compressive stress normal to cracks,
= Principal stresses in concrete,

Shear stress,
Shear stress transferred by concrete in cracks,

Compressive strain in concrete corresponding to maximum stress,

= Mean stresses in longitudinal or (vertical) shear reinforcement,

= Stresses in longitudinal or (vertical) shear reinforcement at cracks,

Maximum shear stress which can be transmitted in a crack,
Inclination of compression field to longitudinal axis.

3.3.1 Comparison of NS Simplified Method with ACI Method

NS 3473E §12.3.2 (Simplified Method)

ACI 318-95 (N, mm)

Members without Shear Reinforcement

Tensile Failure in Shear

kq
4,

as

reinforcement ratio but not of @/d, in a manner similar to
ACI-ASCE Com. 426 (1977) revisions.

kA As :
V=V, =033 f;+ 54 b,dk,<0.66f,b, dk, V. =yflb,dI6 (simple)
e W
=100 MPa,
= fully anchored tension reinforcement, * ACI assumes that flexural cracking occurs when the
10<k,=15-—9 <14 tensile strength reaches 0.5v7", MPa.
1 meter » ACI recommends that the principal tensile stress at

NS uses concrete tensile strength explicitly rather than | web shear cracking be taken as 0.33Vf, MPa.

a function of compressive strength (see Table 3.3 ).
NS accounts for the influence of the longitudinal

Tensile Failure in the Presence of Shear and Axial Compression

The additional term (0.8 V; M,/ M, ) depends not only
on the axial compression, but also on the ratio of shear to
flexure at the design section. The axial compression is
transformed into an equivalent moment.

0.25N,

Mo
Vcd = Vca +0.8 F I{fS -f;dkv - bwzl

'

(4

N,/ A,<04f,; N,<0 for compression.

N
V,= [0.166 +0.012 A_“] J7b,d  (simple)
g

N, > 0 for compression
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Tensile Failure in the Presence of Shear and Axial Tension

N v, 0166+0048—— b,d
Vcd=Vco(l- L ( F

1L.5f,4.

N, <0 for tension
N, >0 for tension

Where there is a bending moment associated with the

axial force, equation below should be used if it gives

greater capacity than equation above.

vV V. I1 2 0
= - 2
cd co I AJfI

Members with Shear Reinforcement

Vnchd‘PV;d Vn=Vc+Vs
In calculating V. ;, set , = 1.0. V,= (0.16 71 Pel d]bwds 029/, d
Asv-];d Mu
Vg = ——2z(1+cota)sina
* (general)
v . A.J, (sine +cosa) d
s s
In the presence of axial compression:
N,
[0 16,1+ v17Pelu? ]b 2029/ dl1+ YTy
with M, =M, -N, ( 4k -d ]
N, > 0 for compression (general)
Compression Failure In Shear
V., :=025f,b z(1 +cote) <045f ;b z No explicit provision. However

VsV, =07yf]b,d
This implies
for crack control, where V,= shear force carried by

0.20 stirrups.

cote<s —— or a>351°
0.25

The unfavorable effect of brittleness for the higher strength concrete is taken into account by
keeping the tensile strength, and hence the design shear strength, constant from C85 upwards (cube
strength 85 MPa, cylinder strength 74 MPa, in-situ tensile strength 2.70 MPa. See Table 3.3).

100



3.3.2 Variable Angle Truss Method (NS 3473E $12.3.3.1)

“The capacity for shear force only or in combination with other action effects can be calculated
based on an assumed internal truss model with compressive concrete struts at an angle 0 to the
longitudinal axis of the beam. The shear reinforcement acts as tension ties, and the tensile and the
compressive zones as chords in the assumed truss. A capacity portion V', like in Clause 12.3.2 shall
not be included in the capacity.”

3.3.3 General Design Method For Structural Members Subjected To In-Plane Force (NS 3473E
$125.1)

The Modified Compression Field Theory (MCFT) is also an acceptable design method.

“Design for forces acting in the middle plane of a structural member may be performed by a method
based on an assumed internal force model satisfying equilibrium conditions and compatibility
requirements for the local region to be designed.

The concrete is assumed to transfer compression by compression fields, and the reinforcement in
two or more directions transfers tension. Under certain conditions, a limited transfer of shear forces
parallel to the cracks and tension in concrete between the cracks may be assumed.

Strains and stresses shall be calculated as average values over a cracked region. The strain can be
assumed constant in local regions and through the thickness. Average strain in the reinforcement can
be assumed equal to the average strain parallel to the direction of reinforcement for the region.
Principal stress and principal strain of the concrete are assumed to have the same direction in the
assumed compression field.” (NS 3473E §12.5.1).

NS 3473E §12.5, A12.5 (General Method) MCEFT (Collins and Mitchell, 1991)
Uniaxial Compression

_r Bf,_% &)

o, —fme—“[z sco] for |e,| < || £ =fom |2 &/ _ _f]

sc sc
g, =-0.002; &, <0 for compression. £’,=0.002. See Figs. 2.17 ac
See Fig. 3.14
Biaxial Tension-Compression
f., Sk
Jera= m <Jea Sonex = 55 170¢, S
Principal Tensile Strain in Concrete Web
g, =€, + (g -¢,)co’0 g, =g, + (g, -¢&,) cot’®
For simplification e, =¢,=- 0.002; ¢, =0.002
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Principal Compressive Stress in Concrete Web

0., =0, - T(tan0 + cot6)

-f, = f; - v(tan6 + cot0)

Mean Reinforcement Strain

g, = & sin?6 +€,c0s%0

By=81 tE, &,

Mohr circle

E,=E &8

Mean Tensile Stress Between Cracks

ocl = 81 Ecd fOl' el < eot

6, =057, for ¢ 2¢, where

e,, = [,/ E,,; = assumed strain at cracking
Ecd =Ecn/Yc

See Fig. 3.15 a.

fi=¢,E, for g <¢,

=—"—"" for g>¢_

@, , &, account for bond characteristics of the
reinforcement and type of loading. See Fig. 3.15b.

Mean crack spacing < 0.8 z.

Shear Stress Across Cracks
T o, 0.18 /7
2 =1-082[1--Z Vc-=—'—[:—
Frm rm 0324
a+16
) 2fia
Tom= W
031 +24 —o
D o +16 o,
See Fig. 2.20.
See Fig. 3.16. If 0,, = 0, NS and Collins agree. cerIg
Crack Spacing
Crack spacing according to CEB-FIP.

, S, d;.
Sy =2 cx+T6 +0.25k, ?

X

d,
s .= 2(0‘, ¥ _%] +0.25k ¥
Py

Pt
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Stresses in Shear Reinforcement (Vertical) at Cracks:

J,=yield at crack

0,+0,-T,tan0 .
Oppr = Oy + : crp = S'f;‘dy with j;=v¢,tan9+p,,(j;, ~f) or
¥y
A Jf, -v_,tan0
p =____y__ = + ..L——ﬂ— With
k4 bwsy j:’y fv pv

AV
Py b,s

Since f, , = yield, this equation gives f; .

Stresses in Longitudinal Reinforcement at Cracks

J.=vyield at crack

o,+0, +1_cotd .
Or =0 ¥ 2 T < Joax with f + j; * [fi - pv(-):'y nf;')]cotz 6 Sf
Px sx o y
A x
p:= = o= A,
st X bwjd
This equation limits f; .

NS does not provide any guidance on calculation of 0 and is even more general than MCFT:
+ there may be compressive stresses perpendicular to crack interface, and
* reinforcement can be below yield at cracks.

3.3.4 Minimum Shear Reinforcement

Due to the higher tensile strength of high strength concrete, a HSC member will have a higher
cracking shear and hence will require a larger amount of minimum reinforcement than an identical
member made with NSC.

At least half of the shear reinforcement is to be provided by stirrups (Clause 12.3.1.5) whose cross-

sectional area must exceed (Clause 18.3.6):
A, 2 024, f,sina/f,

In North American notation and practice, 4,=d,.s, f;,=f, and ¢ =90°:

A4, = 0.2'& b,s

y
Concrete tensile strength f, is measured by the split cylinder test and is about 1.5 times smaller
than the beam rupture test: £, = 1.5 £, . NS does not give a formula relating f, to f’,, but rather a
table (Table 3.3).
Fig.3.17 compares concrete tensile strength as a function of compressive strength for various
national codes. It is also interesting to compare the minimum stirrup requirement of the Norwegian,
European, American and Canadian Standards for high strength concrete.
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NS, CEB  4,£,/(b,s) = 02f,
ACL  A,f,/(b,s) = 0.01f,
CSA  A,f,/(,s) = 0.06Vf,
AASHTO A.f,/(b,s) = 0.083VF]
[, (MPa) |36 44 54 64 74 84 94
f.» (MPa) |2.95 3.30 3.65 4.00 4.30 4.60 4.90
f.n (MPa) | 2.00 2.25 2.50 2.60 2.70 2.70 2.70
NS, CEB | 0.59 0.66 0.73 0.80 0.86 0.92 0.98
AASHTO | 0.50 0.55 0.61 0.66 0.71 0.76 0.81
ACI 0.36 0.4 0.54 0.64 0.74 0.84 0.94
CSA 0.36 0.40 0.44 0.48 0.52 0.55 0.58

Table 3.3 Concrete Tensile Strengths (expected f;, nominal f;,) and Minimum Shear Reinforcement
Ratios 4, 1,/ (b,, s) required by various Codes for various Compressive Strengths /°, .

The ACI requirements fall between the Norwegian and the Canadian requirements. Also the
increase in tensile strength is fairly linear versus the increase in compressive strength.

3.3.5 Strut-and-Tie Method § 12.6

In regions with discontinuity in geometry or loads, internal forces shall be calculated based on an
assumed force model of compression struts of concrete and tension ties of reinforcement. Calculated

concrete stresses in struts shall not exceed f,,:

If the reduced compressive concrete strength f,, is not derived from the strain condition, the
calculated compressive concrete stress in the assumed joints shall not exceed the following values:
1.1 £, in joints where no tensile reinforcement is anchored;

Je2a=

fu
0.8 +100¢,

0.9 £, in joints where tensile reinforcement in only one direction is anchored;

0.7 £, in joints where tensile reinforcement in more than one direction is anchored.
Tensile forces caused by possible deviation in the assumed compressive field shall be considered.

Examples of strut and tie models are provided in the Commentary of the Code.
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Figure 3.14 — Simplified compressive stress-strain curve for normal density concrete (grades
C25 to C55) according to. NS 3473E
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Figure 3.15 — Tensile stress-strain curves according to (a) NS 3473E and (b) modified
compression field theory
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Figure 3.16 — Basis for determination of equilibrium in cracked concrete according to NS 3473E
(compare with Fig. 2.20)
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Figure 3.17 — Comparison of concrete tensile strength parameter as a function of compressive
strength for different codes (adapted from CEB-FIP 1990)
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3.4 AASHTO’S LRFD BRIDGE DESIGN SPECIFICATION (1994)

AASHTO (American Association of State Highway and Transportation Officials), in its LRFD
Bridge Design Specification (1994), recommends the Modified Compression Field Theory as the
design method for shear, or shear combined with torsion, for reinforced concrete or prestressed
concrete members. For non-prestressed sections, a simplified procedure is allowed which results in
the expression for shear strength being essentially identical to the ACI traditional equations or the
1996 16th Edition AASHTO Standard Specifications for Highway Bridges (by using a strut angle
of 45° and coefficient § = 2.0 where v, = V", psi).

The minimum amount of transverse reinforcement is proportional to V77, :

/
b,s _

A4, = 0.0316y/f/ °_—_  inch-kips system
¥ ‘/-f_ 5, 1000 £, ps
b,s
A, = 0.0830/f = mm-Newton system
»

where b, is the effective web width. This is 38 % more than required by the Canadian 1994 Code. See
Table 3.3.
The concrete contribution to shear resistance is:

V_ = 0.0316p JZ’ b d, inch-kips system
V.= (p'/12) \/Z/ b,d, mm-Newton system

1

¢

where d, is the effective shear depth. Note that B’ x;rr0 = 12 B csa -
Designers may also use the strut-and-tie method, with provisions identical to the Canadian Code
of 1994.

3.5 Japanese Code (1988)

Aoyama (1992) explains the philosophy behind the 1988 Japanese Design Guideline for
Earthquake Resistant Reinforced Concrete Buildings Based on Ultimate Strength Concept proposed
by the Architectural Institute of Japan (ALl). Essentially, shear resistance is provided by a
combination of truss action and arch action. One remarkable feature of the Guideline is its
consideration of inelastic deformation capacity. It is otherwise an equilibrium theory with no
consideration of strain compatibility.

Arch action

A straight arch, inclined at an angle 0 with respect to the horizontal, and of vertical depth equal to
half of the beam depth is assumed. If the axial compression in the arch is o, , then the shear carried
by arch action is:
V =b -122 o, tan 0

a

3 2
where tan© = yL*+b’-L _ D
D 2L

and b, D, L are beam dimensions (Fig. 3.18).
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Truss action (variable angle truss)

The truss mechanism depends on the amount of web reinforcement; if no web reinforcement is
provided, this mechanism does not exist. As the amount of web reinforcement increases, the share
for the arch mechanism must be reduced.

Equilibrium of a joint in the upper chord gives (Fig 3.19):

_ PuCyy ) 3.2)
o, = —M = p,0,,(1+cot )
where o, = average diagonal compression,
p,, = web reinforcement ratio,
¢ = inclination of the compression strut, and
257 » o,, = yield strength of web reinforcement.
The shear carried by truss action is:
v, = bj,p,0,,cotd
where j, is the distance between the centroids of the axial reinforcement.
The total shear carried by the member is:
. D
V,=V, +V,=bjp,0,cotd + b—ioatanﬁ (3.3)

ToVisi -ductil mber
The ultimate shear ¥, is attained when the web reinforcement stress reaches the yield point o,,, and
the concrete reaches its maximum capacity, which is reduced from cylinder strength o, =f’, by a
factor v, because of diagonal cracking.
Ot + oa = vooB (3 4)

Note that the difference between the truss inclination ¢ and the arch inclination 0 is neglected here
for simplicity. The reduction factor is adopted from Nielsen’s shear tests of T-beams (Nielsen 1984):
v, = 0.7 - 0, /200 (MPa) = strength reduction factor for web concrete of non-ductile members.
The above equation gives increasing effective strength v,6; up to 6, = 70 MPa at which point v,0;
reaches a maximum of 24.5 MPa

Introducing
o o (1+cot?
p=—r =2 o L2 3.5)
vo o.B vo 0.B
Eq. 3.3 can be rewritten as
. D
vV, = b],pwowcotd) + bE(l—B) v, 0 tan6 (3.6)

where the truss angle ¢ is the only unknown.
Considering the possible limitation of aggregate interlock with increasing crack width, Thurlimann
(1979) sets the limit:
cotd <2 (or ¢ > 26.5°) 3.7
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From Eq. 3.4, 0, must be less than v,0,. FromEq. 3.2
vo ob

1 (3.8)

cotd <

With Eq. 3.5, Eq. 3.6 is a quadratic equation in cot¢. The solution of that equation is

where A = (3j,p,0,)* - bDp 0, tan6 [2V, - 5Dtan6 (v,0, - P, 0,,)]

Je

which leads to cot¢ > .
Dtan6 3.9

According to the lower bound theorem of the theory of plasticity, cot¢ may be taken to be the
largest value within the range of Eqs. 3.7, 3.8 and 3.9 in order to maximize the ultimate shear ¥, of
Eq. 3.6.

Figure 3.20a illustrates the relationship between the normalized ultimate shear and the normalized
web reinforcement for members in which Eq. 3.7 controls over Eq. 3.9, i.e. members of ordinary
length j,/ (D tan® ) > 2.

Eq. 3.6 can be rewritten as follows:

| 4 o
I ”cot¢+(1-B)Dta.nB (3.10)
bjt vo 0B Vo UB 2-] t

When p,, 0,,=0, =0 (Eq. 3.5), hence point A in Fig. 3.20a is obtained (which cannot be greater
than 0.25 due to the above-mentioned member length limitation j, / (D tan6) > 2 = D tan6 / (2, )
< 1/4). Between points A and B, Eq. 3.7 governs. Hence cot¢ =2.0 and § < 1, and the ultimate
shear consists of the truss mechanism of line OB and the arch mechanism of the shaded zone OAB.
Beyond point B, Eq. 3.8 governs:
cotd = %%

Py O,y

-1

FromEq. 3.5, B =1. The arch action term disappears from Eq. 3.10 and the first term gives a circle
centered at G. Let

V o
Y=—*_ and x=2%
bjtvooB voaB

Eq. 3.10 becomes the familiar plastic solution, Eq. 2.12:

_ 1 2 _ 2 1\% 5, 1
Y=x|Li-1 = r-x-x* = [x-1|.p2-1
X 2 4

In this range, shear is carried by the truss mechanism only. The upper bound for shear reinforcement
is given by point C, or p, 0,, =v,0,/2.
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Figure 3.21b illustrates a similar relationship for very short members (with j,/ (D tan6) < 2), for
which Eq. 3.9 controls over Eq. 3.7 .

Provisions for ductile members (Ichinose 1990)

Ductile members develop yield hinges estimated to be 1.5 D in length and characterized by a criss-
cross set of inclined cracks. Two modifications are made to the previous case to account for such
cracks.

First, the effective strength of web concrete v o, is lowered by the following equations:

v=(1- lSRP)vo for R, < 0.05
v=2 for R_> 0.05
4 4

where R, = expected maximum hinge rotation angle.
Secondly, the upper limit of cot¢p in Eq.3.7 is reduced as follows :

cotd = A
where A=2- SORP for RP < 0.02
A=1 for Rp > 0.02

The commentary of Chapter 4 of the Guideline recommends maximum expected rotations, from
which values of v and cot¢ can be derived.

1/R, v/v, cot ¢
Columns: 67 0.775 1.25
Beams: 50 0.700 1
Beams connected to walls: 40 0.625 1

Reduced cot¢ in the hinge zones corresponds to the reduction of aggregate interlock due to the large
rotations of the hinge zones. Beyond the hinge zones, cot gradually increases to a constant value
determined by Eqs. 3.7, 3.8 and 3.9.

Experimen nfirmation

Experimental data include beams of concrete strength 16.5 - 62.9 MPa, tensile reinforcement ratio
0.39 - 3.21 %, web reinforcement ratio 0 - 2.44%, web reinforcement yield strength 253 - 1470 MPa,
product of the last two variables 0 - 19.1 MPa and axial stress ratio to concrete strength 0 - 0.732.
The comparison between theory and experiments is satisfactory, in spite of the absence of axial force
in the theory. Also, experimental observations show that the design methods of the Guideline
generally provide sufficient deformation capacity for the yield hinges.

Figs. 3.21-3.24 from Takagi and Kanoh (1992) show test data versus the ACI and the A1J Code
equations. Also shown are Fukuhara’s formulas (Fukuhara 1985, Fukuhara and Kokusho 1982) for
shear tension failure:
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0.12(18 + £))

= " Jed bi
Q"’“ b kp a/D +0.12 T OPy Oy O
o= -5.1*10'40“5, + 1.7 mm, N

and for shear compression failure:
Q,. = (0124p o, +82p +014f yDia)bj mm, N

where

f’. = specified cylinder strength of concrete,
0,, = Yyield strength of web reinforcement,

D = total depth,

a = shearspan=M/Q,

b = section width,

j = 7/8 of effective depth 4,

k, = coefficient modified by d,

k, = coefficient modified by p,, ,

p. = longitudinal compression reinforcement ratio,
p, = longitudinal tension reinforcement ratio,
p, = web reinforcement ratio.

Fukuhara’s formulas fit the experimental data well. Logically, the shear-compression failure formula
should not depend on 6, . The dependence is, however, small. The ALJ formula also fits experimental
data well. However, the formula may overestimate the shear strength of heavily reinforced (high
values of p,0,,, ) columns under high axial stress.

Alternate method ( in Commentary of Guideline).

An alternate method developed by Minami and Kuramoto (1987) differs from the above by:

1. truss angle ¢ =45° at all times,

2. the strength reduction factor for web concrete is a function of the shear span ratio, and

3. shear design in the hinge zone is carried out by expressing the ratio of shear versus flexural
strength as a function of the expected maximum hinge rotation angle.

Authors’ note: Since HSC is more brittle than NSC, v may have to be adjusted in vf ( plastic
plateau). This has implications for the amount of ductility available in struts .
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Figure 3.22 — Comparison of experimental shear strength with calculated values by ACI
formula based on actual yield strength of transverse reinforcement (adapted from Takagi and
Kanoh 1991)

114



600 L

u
o
o

|

400 + [N

300 ’.

200 — $

Experimental shear force, kN
=
|

0 I l I I |
0 100 200 300 400 500 600

Calculated shear force, kN

Figure 3.23 — Comparison of experimental shear force with calculated values by Fukuhara’s
formula (adapted from Takagi and Kanoh 1991)

600
°
&
< 500 . o
@ '
o 'Y
ke 400 t+ o 0@ >
5 Ny
oe
(0] oy ®
300 |- Y
K [ ] ®
@ !'o &
o L)
T 200 |- & o
GE) B ® Beam test
= = o Column test
$ 100 [ g
X
L
0 | i 1 1 | i

0 100 200 300 400 500 600
Calculated shear force, kN

Figure 3.24 — Comparison of experimental shear force with calculated values by Architectural
Institute of Japan formula (adapted from Takagi and Kanoh 1991)

115



3.6 European CEB-FIP Model Code (1990)

Although it can be used directly by designers, the CEB-FIP Model Code is mainly intended as a
model for various national and international codes. For this reason it adopts a more theoretical
approach than typical national codes. The CEB-FIP uses a variable angle truss model (§ 6.3.3.1),
where the angle of inclination 0 of the struts is allowed to vary between 18.4° and 45° to the
longitudinal axis (18.4°< 6 < 45°or 3 > cot® > 1). No V, term is required, which would be
necessary to correct the © = 45° truss, as in the ACI Code. This is an equilibrium model with no
attempt at satisfying strain compatibility. In the following, for simplicity, load and resistance factors
are set to 1 and the angle of the stirrups is set to 90°:

Concrete compression (Fig. 2.15):
|4
-siTSg = f.;b,2c0s0
where b, = web width,
f..» = reduced concrete compressive strength due to transverse tension,
Vs, = design shear load, and

z = shear depth.
Tension in transverse reinforcement (Fig.2.15):
A
Veg = sw)sa z cotd
Ky

where A, = area of transverse reinforcement,
J,a = design yield stress of transverse reinforcement,
s = spacing of transverse reinforcement.

Chords (Fig. 2.15):
Tension due to shear (V,,/2) cot® must be added to the tension or compression due to axial load
and bending in the chords.

Reduced concrete strength (§ 3.4):
For cracking parallel to the direction of applied compression, the reduced design concrete strength
due to transverse tension can be taken as:
Jed

f“"? —1 +ke]/eo

where f,,= concrete design compressive strength,
€, = concrete strain (about 0.002) at maximum compressive stress,
&, = smeared tensile strain of cracked RC perpendicular to applied compression,
k = coefficient which depends on surface roughness and diameter of bars.
For medium deformed bars, £=0.1.

If cracks are not parallel to the compressive stresses, the latter will have to be transferred across

cracks by a combination of concrete - concrete friction (interface shear and compression normal to
cracks) and dowel action. This results in a further reduction of concrete strength. This reduction is
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greatest when cracks are at 45° to the applied compressive stresses, and smallest when they are
parallel to them.
The nominal concrete shear strength in the absence of shear reinforcement is:

T, = (1.6 - d)(1 +50p)ty,

where dis the section depth, p is the flexural reinforcement ratio, t,,,, which is proportional to (£,)?*,
is the concrete shear strength and f, is the 28-day cube strength of concrete.
For comparison, the Norwegian Code formula is:

T = (L5 - d)[l . %] 033,

tn

with £, =2 MPa for C45.

Strut and Tie (§ 5.6.3):

If a stress field is chosen which satisfies the equilibrium conditions, a lower bound solution of limit
analysis is considered. For the structure and its loads, an equivalent truss may be investigated,
consisting of concrete struts and arches as compressive members, and of steel ties, formed by the
reinforcement, as tensile elements, and their connections (nodes).

3.7 BPEL 91 (FRENCH PRESTRESSED CONCRETE CODE, 1991)

This code applies to concrete with strength up to 60 MPa (8700 psi). Shear design specifications
are based on a variable angle truss of f, > 30° with an additional concrete contribution v, =7, ;13
carried by the compressed part of the beam.

Notation for BPEL Code

A, = area of transverse reinforcement,
b, = net width of web,

n

Jf. = yield strength of reinforcement,
J.j = concrete compressive strength at j days,
J;; = concrete tensile strength at j days,

s, = spacing of transverse reinforcement,
Ys,Y. = material coefficients for concrete and steel,
T.q. = mean shear stress on uncracked section.

BPEL 91 §7.3.2 Collins and Mitchell, 1991
Stirrups Stirrups
4 . Af, v
e Je > [t,ed,u —Z"-] tanp, pal -gtanﬁ
b,s, ¥, 3 J:
> 0.4 MPa
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Concrete Concrete

0.85f1, )

—Zsin2B, > ¢ —5in20 =
Yb Bu redu 2

The design concrete compressive strength, according to BPEL 91, is:

3.8 BAEL 91 (FRENCH REINFORCED CONCRETE CODE, 1991)

This code also applies to concrete with strength up to 60 MPa (8700 psi). Shear design
specifications (§ AS.1,2) are based on the Mérsch-Ritter 45° truss with an additional concrete
contribution v, =7,/ 3 carried by the compressed part of the beam.

Stirrups

For stirrups at 90° to the longitudinal axis, the following is required for ultimate strength:

A, X Y, (T, - 0.3fg.k)
b,s, 0971,

with f, < 3.3 MPa

where 3, = total width of web and 1, = ultimate shear stress.
The coefficient 0.9 is an approximation to the ratio z/d where z = flexure lever arm and d = distance

from tension steel to the most compressed fiber. The coefficient % is:

k = 1 for pure flexure,

k=1+30,,/f,, forflexure combined with axial compression, where o, ,, = mean compressive stress
on entire concrete section,

k=1-100,,/f,; for flexure combined with axial tension, where o,,, = mean tensile stress on entire
concrete section.

Concrete
For stirrups at 90°, the concrete requirement is:

02f,
> T,
Ys

5MPa > T,

In severely cracked webs, the above expressions are further reduced to:
0.15 fq
—I >

T, ‘
4 MPa > 1,

For stirrups at 45 °, the requirement is relaxed to:
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0.27];:,.
Ys

7TMPa > T,

2T,

This last expression is consistent with the BPEL 91 Code.
3.9 Shear Friction

3.9.1 ACI Code 318-95 §11.7
In design, a crack is assumed along the shear plane and reinforcement is provided across that crack.

The amount of reinforcement is computed using (Fig.3.25):
¢V, 2V,

V,=Agf,u < 0214, (ACI 11.25)
< 8004, pound (554, Newton)

where V, is the nominal shear strength, V/, the factored shear force at section, A4, the area of concrete
section resisting shear transfer, 4,, the area of shear-friction reinforcement, ¢ = 0.85 for shear and
u the coefficient of friction taken equal to:
a) p= 1.4 A for concrete placed monolithically,
b) p=1.0 A for concrete placed against hardened concrete with the surface intentionally roughened
to an amplitude of approximately 1/4 inch,
c) u=0.6 A for concrete placed against hardened concrete not intentionally roughened, and
d) u = 0.7 A for concrete anchored to as-rolled structural steel by headed studs or reinforcement
bars, where A =1.0 for normal weight concrete,
0.85 for “sand-lightweight” concrete, and
0.75 for “all-lightweight” concrete.
The values of p = 1.4 and 1.0 are larger than the true coefficient of friction which is given by Eq.
4.23 (§ 4.3.1 of this report) as about 0.8.
When shear friction reinforcement is inclined to the shear plane, the shear strength becomes:

v, = A‘ffy (u sinaf+ cosaf) (ACI 11.26)

where ¢, is the angle between the assumed crack plane and the shear friction reinforcement. In the
above equation, only the normal component is multiplied by p since it causes friction. Only those bars
that are stressed in tension by the sliding motion can be included in 4,,. Permanent net compression
across the shear plane can be added to the clamping force provided by the reinforcement in the above
equations.

3.9.2 Canadian Standards CSA A23.3-94 §11.6
Relative displacement along the shear plane is resisted by cohesion and friction maintained by the
shear friction reinforcement crossing the crack. The factored shear stress resistance of the plane is:

v, = A (c+po) + §,p, f cosa,

with Ad,(c+po) <025 ¢cfc/
7.0, MPa

<
<
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where ¢, is the angle between the shear friction reinforcement and the shear plane, ¢ the cohesion,
p the friction coefficient, £, the yield strength of the reinforcement, ¢, and ¢, material factors for
concrete and steel and A a factor to account for low density concrete.

The normal stress is:

e N
o = p,f,sine, + T
4 b4
where p, = . 4
ACV
and N is the unfactored permanent load perpendicular to the shear plane, positive for compression
and negative for tension. 4, is the gross area of the section, 4, the area of concrete section resisting
shear transfer and 4,,the area of shear friction reinforcement. The following values are taken for ¢
and p:
a) u=0.60, c=0.25 MPa for concrete placed against hardened concrete with the surface clean but
not intentionally roughened,
b) p=1.00, c=0.50 MPa for concrete placed against hardened concrete with the surface clean and
intentionally roughened to a full amplitude of at least 5 mm,
¢) u=1.40, ¢ =1.00 MPa for concrete placed monolithically, and
d) u= 0.60, ¢ =0.00 MPa for concrete anchored to as-rolled structural steel by headed studs or by

reinforcing bars.

An alternative based on Loov’s work (see § 4.3.7) is also allowed:

v, = Ad)ck\/ofc' + ¢spvfycosaf

: , (CSA 11.33)
with Ad kyfof <0250 f or 7.0p, MPa
where k= 0.5 for concrete placed against hardened concrete, and
k = 0.6 for concrete placed monolithically.

3.9.3 Norwegian Standards NS 3473E 1992 §12.7.2
The shear force capacity parallel to a construction joint with an effective area 4_ and reinforcement
area A, through the joint surface is taken as:

V,=1,4, +f A, (cosa +pusine) ~po, < 0374,

where
o is the angle between the reinforcement area and the contact surface, where only reinforcement
with an angle between 90° and 45° to the direction of the force is taken into account,
J..1s the design compressive strength of concrete,
J.. is the design tensile strength of concrete,
1., is the design shear strength of concrete (cohesion term),
u is the friction coefficient, and
o, is the lowest simultaneously acting concrete stress perpendicular to the contact surface.
The combination of values, listed below, that gives the minimum capacity is used in design:
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Contact YA, >00014, or 6,<-04MPa

surface Combination 1 Combination 2
Tea B Tea H

Smooth 0 0.70 0 0.70

Rough 0 1.50 0.6 1, 0.80

Toothed 0 1.80 157, 0.80

3.9.4 CEB-FIP Model Code 1990 §$3.9.2
Smooth interfaces

The shear resistance of an interface due to concrete-concrete friction may be evaluated by:
Tea = 0400,

where 0, is the averaged normal compressive stress acting on the interface.
The shear slip needed for the mobilization of t,, , may be calculated by:

s, = 015 fo_,
Rough interfaces

The shear resistance of an interface due to concrete-concrete friction may be evaluated by:
= 213 13
Taa = 040 fy (0,0,

where £, is the design value of the compressive strength of concrete, £,; the design yield strength of
the reinforcement perpendicular to the interface, o, the average normal stress acting on the interface
and p the reinforcement ratio. The shear stress given by the above equation corresponds to a shear
slip of about 2.0 mm.
Where the slip is less than s, , the mobilized shear stress t,, corresponding to the actual slip can be
calculated as follows (Fig. 3.26):
For s <0.10 mm T = Stﬁ"d s

T, |4 T, |3
For s > 0.10 mm _f"—) - 0.5(—&) = 0.35-0.03
Yhd Tha
The shear slip along a rough interface is accompanied by a crack opening w = 0.6 s°. The CEB-FIP
rules are more complicated than those of other codes.

3.10 Summary

From this brief review of several national codes, it is clear that the concept of shear being resisted by
a truss formed by concrete struts and steel ties is used widely. Whereas ACI uses a 45° truss and thus
requires a ¥, term, CEB -FIP uses a variable angle truss with 18.4°< 8< 45°. In addition a number
of codes have moved ahead to more rational methods, such as the Modified Compression Field
Theory (Canada, Norway, AASHTO).
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Figure 3.25 — (a) Variation of shear strength with reinforcement ratio (adapted from Hofbeck,
Ibrahim, and Mattock 1969)
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Figure 3.25 — (b) Comparison of test results and design equations (adapted from MacGregor
1992)
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4. Research Results

Results of tests of beams and panels made of HSC are reported here, as well as experimental
and theoretical results on shear friction, and some work on size effect..
4.1 Beam Tests
4.1.1 Cornell University Tests

reinfor n

Nilson (1987) and Elzanati, Nilson and Slate (1986) tested 9 reinforced concrete beams with £’
> 9500 psi (65 MPa) for shear strength and compared the results with 6 beams with £,” < 5800 psi
(40 MPa). As Figs. 4.1 and 4.2 show, the ACI Code equation (ACI 11.5) is unconservative by 10
to 30% for many of the test beams, notably those combining high strength concrete with medium to
high shear span ratios and typical or low longitudinal steel ratios.
Beams with web reinforcement

One beam with £’ = 9100 psi (63 MPa) was tested for shear strength and the results compared
with two beams with £, ’< 5800 psi (40 MPa). As Fig. 4.3 shows, the ACI Code equation (ACI 11.5)
is safe because the increase in the steel contribution ¥, more than compensates for the decrease in the
concrete contribution ¥V, as f,’ increases. The use of HSC tends to prevent shear-compression failure
and to insure a diagonal tension failure instead, thus increasing the effectiveness of shear
reinforcement. The concrete contribution V, is lower than calculated by ACI Code equations.
Figure 4.3 shows clearly the gain in V, =V, + FV/ as concrete strength increases. The transverse
reinforcement index for these beams is v, = p, f,= 94 psi (650 kPa). In addition, test results for 34
prestressed concrete beams with 6 000 < f,’< 12 000 psi (41 < f.’< 83 MPa) were reported.

4.1.2 University of Connecticut Tests

Beams without web reinforcement
Mphonde and Frantz (1984) tested the following beams for shear under a load at midspan and
simple supports:

Number of tests
a/d . .
f.’< 6500 psi (45 MPa) L.’ 2 9500 psi (65 MPa)
3.6 4 5
2.5 2 3
1.5 2 3

Table 4.1 Test Specimens

Results of the tests with a/d = 3.6 were compared with ACI Eq. 11.5 and Zsutti’s (1968)
equation, where p is the ratio of tension reinforcement. See Fig. 4.4.
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fc/ pg inch-pound system
4.1)

v, =23 fc' P a mm-Newton system
a

The ACI equation is conservative, less so at high strengths than at low strengths. The regression
equations

<
n

3
10.10 \/Z’ + 71 inch-pound system

0.366 3\/—’ 0.49 N
’ . [+ 0. mm-Newton system

<
I

1.52 fc/ + 135 inch-pound system

<
1

or

0.126 \/Z’ + 0.931 mm-Newton system

<
{}

best describe the test results.
Test results for short beams are also compared with ACI Eq. 11.29 and Zsutti’s equation (Figs.

4.5 and 4.6).

3
2.5 ) , d .
v =] =159 ad inch-pound system

3

2.5\ | ; d

v = =121 _ mm-~-Newton system
* (a/d) \fcpa y

As complete arching action cannot be guaranteed in all deep beams, design values must be a lower
bound of the test results. At a/d = 2.5 both the ACI and Zsutti’s equations predict the inclined
cracking loads well. At a/d= 1.5, both the ACI and Zsutti’s equations significantly under-predict the
ultimate shear strength, which is approximately proportional to the concrete compressive strength.
Results are consistent with the Cornell work (Nilson 1987).

Beams with reinforcemen

Mphonde and Frantz (1985) also tested 12 reinforced concrete beams with shear reinforcement
index v, =4, 1/ (bs) of 50, 100, or 150 psi (0.34, 0.69, 1.03 MPa) and { ’ ranging from 3500 to
13000 psi (24 to 90 MPa). Only 3 of these beams had £, < 6000 psi (41 MPa).

Figure 4.7 shows that the ACI Code equations (ACI 11.2, 11.5 and 11.15) are conservative for
all values of f.’. The ratio of measured to predicted shear strengths varies from 1.11 to 1.61. The
scatter in the data is such that no trend can be detected in the variation of this ratio with £, or with

v, . These conclusions differ from the Cornell results (Elzanaty, Nilson and Slate 1986).

A design equation is proposed, based on regression analysis:
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A
v, = 151 il + 90 + 16 I‘;—f” inch-pound system
s
4, 1,
= / vy -
v, = O.IZSJZ +0.62 + 1.6 b mm-Newton system

Notice that the shear resistance of stirrups is more than additive to that of concrete (coefficient
1.6 > 1). The average ratio of measured shear strength to that predicted by the above equation is
1.006 with a standard deviation of 0.085.

4.1.3 Measurement of Components of V.,

Mphonde (1988) tested 24 beams to quantify the effect of high compressive strengths on the
various shear transfer mechanisms which add up to ¥V, (the concrete contribution), namely:
a) the shear carried by the concrete in the uncracked compression zone above the crack tip, V, ,
b) the interface shear or aggregate interlock across the crack face V, , and
c) the shear carried by the dowel action of the longitudinal flexural steel V.
(The shear not carried by the concrete is carried by the stirrups. So:

V.=V, +V, with V,=V_+V,+V,).

The concrete compressive strength ranges from 3 000 psi (21 MPa) to 13 600 psi (94 MPa).

Three series of beams were tested: Series A has no stirrups, whereas series B has transverse
reinforcement ratio 4, £,/ (bs) = 50 or 100 psi (345 or 690 kPa). Series C has the same reinforcement
as series B, but in addition has two pre-sawed diagonal cracks, one on each half of the span. (The
beams are loaded at midspan). The pre-sawed cracks are based on observed cracks in beam series B.
The difference in shear capacity between series B and C is the aggregate interlock V/, .

The steel contribution is measured by strain gaging the stirrups. It is always less than the
difference between the shear capacity of series B and A.

The V_ contribution requires elaborate measurements. The shear stress carried by the
compression zone is
g (% doe oM

T = —_—

v °Jo oM ox

where € (X)) is the strain, x the span direction, y the depth direction measured from the most
compressed fiber, M (x) the moment, 4, (x) the depth of the uncracked compressive zone and E, the
concrete modulus of elasticity. € is measured at one x and five y’s for various values of M.
Finally, the dowel contribution V, is obtained by subtraction. The measurements show that:
a) ¥ is rather insensitive to . This is the result of two opposing trends: as f,’ increases, the strain
in the uncracked concrete decreases but the modulus of elasticity £, increases. V_/V, = 25%.
b) V, is significant at low concrete strengths: for 3 000 <f,” < 6 000 psi or 21 <f,” <41 MPa,
V./V,=53-25% for A,f,/(bs)= 50 psi or 0.35 MPa, and
V,/V.=46-22% for A,f,/(bs) =100 psi or 0.69 MPa
but is virtually non-existent at higher concrete strengths (£,” > 9000 psi or 62 MPa).
¢) The dowel contribution more than doubles as £’ increases from 3 000 psi (21 MPa) to 13 000 psi
(90 MPa). (V,/V, increases from 30 to 75%).

4.1.4 Roller and Russell’s Tests

Roller and Russell (1990) reviewed 150 tests and confirmed the validity of the ACI Code
equations for shear (Fig. 4.8). The same conclusion holds if only tests of beams that meet all ACI

127



318-83 design requirements are used (Fig. 4.9). They performed 10 more tests of beams with £’
ranging from 10 500 psi (72 MPa) to 18 000 psi (124 MPa). The new tests confirm the
appropriateness of ACI 318-95 §11.1.2.1 that requlres an increase in the minimum amount of web
reinforcement for concrete with £, > 10 000 psi (69 MPa).

4.1.5 North Carolina State University Tests

Ahmad et al. (1986) presented the results of an experimental program that examined the effect
of concrete of high strength (£,’= 10 000 psi or 69 MPa) with various longitudinal steel ratios, on the
diagonal cracking capacity and the ultimate shear capacity of 36 beams without web reinforcement.
The tests were performed for 6 shear span/depth ratios a/d ranging from 1 to 4.

Results showed that the then current ACI Code provided a conservative estimate of the shear
capacity of HSC short beams (1 < a/d < 2.5). For slender beams (@/d > 2.5) of HSC, the ratio of
measured to predicted capacity dropped to about 1.0. Also, for slender beams, the Code provisions
did not accurately estimate the effect of longitudinal steel on shear capacity, especially for low ratios
of reinforcement.

4.1.6 Purdue University Tests

Johnson and Ramirez (1989) tested 8 rectangular beams in shear with concrete strength in the
range of 5 000 - 10 500 psi (34 - 72 MPa) and with web reinforcement ratios v, of 0 to 100 psi (0.69
MPa).

Results indicate that the overall reserve shear strength after diagonal cracking Vi - V. diminishes
with the increase in concrete compressive strength for a constant v, = 50 psi (0.35 MPa). The data
were used to justify ACI §11.1.2.1 which limits £,” to 10 000 psi (69 MPa) or increases the minimum
amount of reinforcement by a factor equal to £,” / 5000 psi (34.5 MPa) but less than 3 times the
amount provided for concrete with £,” < 5000 psi (34.5 MPa).

4.1.7 Norwegian Institute of Technology Tests

Thorenfeldt and Drangsholt (1990) tested 28 reinforced concrete beams without shear
reinforcement in shear by two-point loading. The concrete strengths ranged from 54 to 98 MPa, the
shear span to depth ratio ranged from 2.3 to 4.0 and the longitudinal reinforcement ratio was either
1.8% or 3.2%.

For members made of concrete with f°,> 80 MPa, the diagonal cracking strength remained largely
constant (with a minor decrease), in spite of the increasing tensile strength of the concrete. (This is
why the Norwegian Standards keep the in-situ tensile strength constant for concrete with £’ > 74
MPa). Surprisingly, the ultimate shear strength decreased as the concrete compressive strength
increased above 80 MPa, probably because of the increasing brittleness with increasing strength. No
difference between the roughness of the shear crack surfaces of concrete of different strengths could
be detected visually. Also, as expected, the ultimate shear strength increased with decreasing shear
span to depth ratio and with increasing longitudinal reinforcement. The diagonal cracking strength
increased significantly with the longitudinal reinforcement ratio, but was practically independent of
the shear span to depth ratio. The authors recommended that future research should be aimed at
explaining the decrease in ultimate shear strength with increasing concrete compressive strength
above 80 MPa and the greater dependency on scale of the shear strength of HSC beams versus NSC
beams.
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4.1.8 Nanyang University of Technology (Singapore) Tests

Tan et al. (1995) tested 19 reinforced concrete deep beams with compressive strengths ranging
from 41 to 59 MPa (6 000-8 000 psi) under two-point loadings. The beams were tested for 7 shear
span to depth ratios a/d ranging from 0.27 to 2.70 and 4 effective span to depth ratios /,/d ranging
from 2.15 to 5.3 (J, is the distance between the two centers of support).

Test results indicate that 7, /d has little influence on the magnitude of the failure load. They also
show that the ACI deep-beam provisions, although based on concrete strengths less than 40 MPa
(6000 psi), will insure safe and rather conservative designs for higher- strength deep beams.

4.1.9 Darmstadt University of Technology Tests

Konig et al. (1993) tested 14 beams without stirrups in shear. In a first series, small beams with
various shear span ratios (2.3 < a/d < 4.0) and reinforcement ratios (p = 1.87, 4.09) were tested.
The concrete strength was 85 MPa. In a second series, the beam depth was varied while a/d and f°,
were kept nearly constant (3.8 and 92 MPa respectively).

The observed crack pattern was used as input to a finite-element model which modeled concrete
as a linear elastic material with discrete (as opposed to smeared) cracks. The finite-element results
showed that the tensile behavior of concrete was the most important factor governing the shear
behavior of beams without stirrups. The influence of aggregate interlock and the dowel action of the
longitudinal reinforcement were very small. Results from 150 tests produced the following empirical
relationships:

£ =212In (1+0.1f)
where f,, = concrete tensile strength

fl

G 65In (1+0.1 f )
where G = fracture energy (N/m)

concrete compressive strength

ExG

l, = - I = characteristic length
Jor
where E = 10000 (f))** = modulus of elasticity
3 ] p
and finally v = 1.1 -%—- J,, = shear capacity

where p = reinforcement ratio
d = beam depth

4.1.10 Italian Tests

Marro (1987) tested 10 beams in shear, of which 4 had £,”=35 MPa, 5 had £.’ = 70 MPa and one
had f,’= 120 MPa. They were loaded by 2 concentrated loads at the third points.

All beams exhibited stirrup yielding. The crack angle ranged from 34 to 38°. Post-yielding
strength was often considerable: 1.17<V,./V,<1.58.

Marro concluded that:
*  Early diagonal cracking occurs because the opening of cracks is associated with tensile strength

129




which increases only slightly with increasing compressive strength. However, the ratio of shear
stress at diagonal cracking to mean tensile strength 7., /£, is always greater than 0.25, which
is the value specified by the Model Code for members without stirrups.

*  The standard method of the Model Code, which assumes a 45° truss, is always on the safe side,
but the accurate  method when used with the minimum allowable crack angle (31°), is
unconservative.

4.1.11 Nordic Concrete Research

Bernhardt and Fynboe (1986) reported test results of 11 beams failing in shear. The 28-day cube
strength is 104 MPa corresponding to a cylinder strength of 90 MPa (13 000 psi). One beam was
reported to have a 570-day cube strength of 123 MPa (18 000 psi). Six of the beams had no shear
reinforcement. Analysis of the results and comparison with Code values were not presented.

4.1.12 Korean Tests

Kim and Park (1994) reported the results of 20 beam tests and compared them to various code
predictions. The beams tested used a concrete strength of £’ = 53.7 MPa, had no web reinforcement,
and were loaded by two equal concentrated loads. The following design equations were studied:

1004 )13 1/4 13
British Standards 8110 v_= O ( . d‘] ( 430) [%J for ald > 2.0

¥ “4.2)
d a
v, =20 — *Eq42) for — <20 MPa
a d
/ Vud ln
ACI v, = 0.1578/f, + 17.25 p,, for — > 50 MPa
M, d
4.3)
M l
v, =(35-25 —|* Eq (43) for 2 <50 MPa
v.d d
13
CEB-FIP v =015 [3—‘1) 1+ ’2—00-] (100pf,)® MPa
a \ d
; d\ 173
Zsutti v, = 2.1746 (j;p— for a/d > 25 MPa
a
‘ 4.4)

v, =25 2 4Eq (44) for ald<25 MPa
a

Note: In Eq. 4.4 the coefficient in front of the cube root ought to be 2.3 (as in Eq. 4.1) for ultimate
stress or 2.2 (as in Eq. 4.9) for diagonal tension failure stress.

1+ /50872
Baiant v, = 0.543‘/5[@’ + 249 ’ P ] < MPa
(@dy) JT+dI(25d)
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Notation:

area of tension reinforcement,

shear span,

effective depth,

maximum aggregate size,

characteristic compressive strength of concrete,
cube compressive strength of concrete,
cylinder compressive strength of concrete,
clear span, measured from face to face of supports,
ultimate moment,

ultimate shear force,

ultimate shear stress,

material factor = 1.25

ratio of flexural tension reinforcement.

Test results of this study (Figs. 4.10, 4.11 and 4.12) indicate that the CEB-FIP Model Code
equation predicts the shear strength of test beams relatively well; the BS 8110 equation is excessively
conservative, the ACI equation is unsafe for large beams (d = 915 mm); the effects of p and @/d on
the shear strength of beams are not significantly influenced by the concrete strength; and the effect
of size on shear strength is the same for NSC as for HSC.

| (I |

DRI NRIOISDRRAAA

4.1.13 Sarsam and Al-Musawi’s Tests

Sarsam and Al-Musawi (1992) reported the test results of 14 beams with stirrups failing in shear
and also reviewed the results of 107 beam tests from the literature. These included NSC (f,” <41
MPa or 6000 psi) as well as HSC (f,’ up to 83 MPa or 12 000 psi). They evaluated the predictions
of six design equations in light of these test results. SI units are used, except where indicated.

ACI 7, = 085 (,/f_’ +120 pqud/Mu)bwdH + 085 A,fdls 4.5)

INCH-LB  V,,,

0.85 (1.9\/Z’ +2500 pqud/Mu) b,d + 085 A, fdls (ACI1L5)

CANADA Vg0 = o.so(o.zo £l bwd) + 085 A,f,dls (4.6)
NEW-ZEALAND 7, = 0.85(0.07 + 10 p)/f! b,d + 085 A,fd/s @7

3
BRITISH ¥, = 0.79 \[T00p, {/£./20 YA007d b,d/1.25 + 0874, fdls  (43)

with  (cylinder) f, = 0.8 £, (cube)

3
ZSUTTI V,, = 0.85 ( 22 ,/fc’pwd/a) b,d+0854 f,dls (4.9)
SARSAM V. = 0.85 + 1.8(f,p, V,dIM,)** b d +0854 f,dIs (4.10)
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Ratios of measured to predicted strengths are listed in Tables 4.2 and 4.3 for HSC beams and for all
beams. Also, the influence of f°, on the predictions is shown in Fig. 4.13. Sarsam and Al-Musawi
concluded that the ACI design equation is adequate even up to f°, = 83 MPa (12 000 psi).

Ratio Vigsr! Vaer | Vegsr ! Vesa | Vigsr ! Ve | Vigsr ! Vas | Vigse ! Vasr | Vigsr ! Var
Equation |4.5 4.6 4.7 48 4.9 4.10
Mean 1.77 1.93 1.54 1.74 1.41 1.63
Stan. Dev. | 0.523 0.586 0.490 0.535 0.401 0414
cov 0.296 0.304 0.318 0.308 0.285 0.254
Maximum | 3.16 3.57 2.85 3.13 235 2.57
Minimum 1.00 1.09 0.84 0.93 0.81 1.00
Max /Min |3.16 3.29 3.40 3.37 2.89 2.57
Number <1 | 0 0 2 1 4 0

Number < 1 indicates the number of specimens (out of 33) for which Vyger < Vpggon -

Table 4.2 Comparison between Vigg, and Vypgey for 33 HSC Beams

Ratio Vigst I Vaer | Viesr ! Vesa | Vigsr ! Ve | Vigse ! Vas | Viesr ! Vasr | Vigse ! Vaar
Equation 4.5 4.6 4.7 48 49 410
Mean 1.63 1.78 1.48 1.47 1.32 1.56
Stan. Dev. | 0.391 0.441 0.361 0.389 0.297 0.322
Cov 0.239 0.248 0.245 0.265 0.224 0.207
Maximum |3.16 3.57 2.85 3.13 235 2.68
Minimum 1.00 1.09 0.84 0.93 0.81 1.00
Max/Min {3.16 3.29 3.40 3.37 2.89 2.68
Number<1 | 0 0 4 3 12 0

Table 4.3 Comparison between Vg and Vg .y for 121 Beams

4.1.14 Sakaguchi and others’ tests

Sakaguchi et al. (1990) tested 6 beams and 10 columns with and without shear reinforcement to
determine their diagonal cracking strengths and ultimate shear capacities. Most of the members
tested were made of HSC (f,’ up to 90 MPa) and reinforced with high strength steel (HSS with g,
up to 1000 MPa). The shear reinforcement quantity p,,0, varied from 0 to 11.2 MPa, the axial stress
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in the columns had values of 0, 18.4 or 36.8 MPa, and the depth ratio was 1.0 for beams and 1.14
for columns.

Notation:

b,d = width, depth of section,

F, = nominal compressive strength of concrete,

Jf’. = compressive strength of concrete,

f.. = allowable tensile stress in shear reinforcement,

Jj =7d/8 = distance between centroids of tension and compression steel,
K, =size coefficient (= 0.72 here),

M = maximum moment in member,

M’ = moment occurring simultaneously with shear force at critical section,

V, = allowable shear force,

V, = shear strength provided by concrete,
V, = ultimate shear force,

o = coefficient due to shear span/depth ratio,
© = angle of critical shear crack,

p, = tension reinforcement ratio,

p,, = shear reinforcement ratio,

0, = axial stress,

o, =yield strength of shear reinforcement,
T, = allowable shear stress, and

T, = ultimate shear stress.

The following design equations were compared to experimental results:

Diagonal Cracking Strength
ACI:
A
7 Vc oo /
—_T = = 2 1+ S1
8 ° bd ( 2000 . ®
(ACI11.9)
\
7 _ Vc _ o /
-1, =—=0166|1+ f, MPa
8 ° bd 13.8 )
with the cracking shear stress :
[ Vc
T = e T e
¢ bj b(7d/8)
The factor 7/8 serves to reconcile the ACI definition and this study.
ACI equation for deep beams:
7. V. | M) | vd
Lo = —2=135-2520 | [19/f + 2500p, 22| psi
8 bd \ vd) \ M’
(ACI 11.29)
7. V. | yall , vd
—t, =—2=35-25—]|[0.158yf +172p,—| MPa
8 bd \ vd) \ M
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v, 0.085K, 1 g, 9.1 f/)
T, = — = + d+
© bj M 14.7 ¢ (4.11)
— + 1.7
vd
Ultimate strength:
ACIEq. 11.2,11.4,11.15:
7 Vo o Yo [ fom Eq ACI114] + 4.12
—_T Z em— = om . . O .
8 Y bd bd 9 P O *12)
ACI 426R-74 Deep Beams (Eqs. 4.9 and 4.11a p.1157 Joint ASCE-ACI Com. 426).
7 V V 5
—t, =L = £ [from Eq. ACI11.29] + p_o_tan¢ cos*0 4.13
KNy bd[ q ]1+p,0,tand (4.13)

where © = shear crack angle (= 30° here),
and tan ¢ = apparent coefficient of friction between concrete surfaces (=1 here).

AlJ (Architectural Institute of Japan):

V F, 0.74 051 ( 0.002)
T =—=0|—+0. + 0. -0.
9 bj 67 w Py
4 (4.14)
where a = and 1 <a<?2
—_+1
Vd

For ultimate shear stress, based on experimental data, Sakaguchi et al. modified Eq. 4.14 as follows:
Sakaguchi et al. :

y y
T, = Zi = q [% + 0.78] +08p,0, + 0.10, (4.15)
J

Results are shown in Figs. 4.14 -4.22 .

1. The diagonal cracking strength is underestimated by ACI Eq. 11.4, but better predicted by Ohno-
Shibata Eq. 4.11. For the specimens without axial load, ACI Eq. 11.29 is the best predictor.

2. Eq. 4.12 from ACI underestimates the ultimate shear capacity of members having a low p_0, and
high axial load.

3. Eq. 4.13 from ASCE-ACI, used with a crack angle of 30°, predicts well the ultimate shear
capacity of members without axial stress.

4. The ultimate shear capacity of the HSC beams reinforced with HSS is best predicted by the
proposed Eq. 4.15.
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4.1.15 Comparison between ACI Method and MCFT

Shahawy and Batchelor (1996) performed full scale tests of 20 AASHTO Type II pretensioned
concrete girders and compared the measured shear strength with the values predicted by the 7989
AASHTO Standard Specifications, which use the ACI method, and the 1994 AASHTO LRFD (Load
and Resistance Factor Design) Specifications, which uses the Modified Compression Field Theory
(MCFT).

The main variables of the study were the amounts of shear reinforcement, shear span and strand
diameter. Six girders were designed according to the provisions of the /989 Standard and were
provided with the required (R) shear reinforcement. The other 14 girders had various shear
reinforcement p, from O to 3R. 13 girders were 12.5 m (41 f) long, 2 girders were 7.62 m (25 ft) long
and the other 5 girders were 6.40 m (21 f) long. Both the girder and cast-in-place concrete slab were
designed for a 28-day cylinder concrete strength of f°, =41 MPa (6000 psi).

Results are shown in Figs. 4.23 - 4.25. From Fig. 4.23, it is clear that the 7989 Standard provides
excellent predictions for girders having shear reinforcement R < p, < 3R and conservative estimates
for girders with 0 < p, <R. On the other hand, the LRFD Code considerably overestimates the shear
strength of over-designed girders (2R < p, < 3R) and grossly underestimates the shear strength of
under-designed girders (0 < p, < R/2). The latter suggests that the LRFD estimate for V, is too low.
For p,= R, the 1989 Standard also provides better estimates than the LRFD Code (Fig. 4.24). The
effect of a/d is also accounted for much better by the 7989 Standard than by the LRFD Code (Figs.
424 - 4.25).

Note that as p, increases from R to 3R, the shear strength only increases slightly. This justifies the
imposition of a cap on shear reinforcement. The code requires the upper limit to prevent the concrete
in the web from crushing prior to yielding of the shear reinforcement. However, the maximum amount
of shear reinforcement was significantly exceeded without any sign of concrete crushing in the webs
at failure. When the maximum specified shear reinforcement is imposed, the /989 Standard compares
very well with test results, but the LRFD Code significantly overestimates the shear strength,
suggesting that the LRFD limit is too high.

In regions near supports, the LRFD Code predicts higher values of shear strength than does the
1989 Standard, because the LRFD Code assumes smaller strut angles than does the /989 Standard,
which uses 6 = 45°. However, away from the support regions, the concrete contribution V7, is
relatively small compared to the shear reinforcement contribution V,, and 0 approaches 45° in both
codes. The LRFD Code underestimates ¥, in these regions, thereby resulting in lower predicted shear
strength than provided by the /1989 Standard.

The authors recognize the appeal of the greater rationality of the MCFT but question if the
increased complexity and the greater discrepancy with test results justify the extensive changes to the
code.

4.1.16 Strength of Nodes and Struts

Yun and Ramirez (1996) used the results of a finite-element analysis (FEA) to guide them in the
dimensioning of a strut-and-tie model of the D-region of a beam with a/d = 2.15 and loaded at the
third points. Of particular concern was the allowable stresses and dimensions of the struts and the
nodal zones.
Struts — Yun and Ramirez used the biaxial stress failure envelope of Kupfer and Gerstle: the effective
stress level of a concrete strut in a biaxially stressed web is a function of the ratio of the principal
stresses. This ratio was evaluated from the FEA of a plain concrete model of the beam. If the strut
angle deviates by an angle ¢ > 10° from the direction of principal compression, then the effective
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stress is scaled down by cosa.

Nodal Zones — Detailed FEA of nodal zones were also performed. Ties anchored into a node were
modeled as compression applied through a bearing plate from the opposite face. Because the struts
intersecting at a node were loaded to different stress levels, the end faces of the struts did not have
to be perpendicular to the struts. Again, the strength envelope of Kupfer and Gerstle was used.
Results — Two different strut-and-tie models were tried for the same load. Tension in the longitudinal
reinforcement predicted by the models compared reasonably well with experiments.

4.1.17 High Strength Shear Reinforcement
Takagi and Kanoh (1991) investigated the effectiveness of high strength web reinforcement (up

to 800 MPa). They concluded that:

* Asthe concrete strength f°_increases and / or the amount of stirrups decreases, the stresses in the
shear reinforcement increases. The use of high strength stirrups is efficient for HSC.

o It is doubtful, however, whether high strength shear reinforcement is as effective as normal
strength shear reinforcement when used in reduced quantities. This is due to the splitting bond
failure of longitudinal bars, caused by the reduction in confinement.

4.1.18 Summary

A great number of beams have been and continue to be tested, resulting in almost as many
empirical equations as investigators. In general, code equations do a reasonably conservative job of
predicting the shear strength of beams. However, extrapolation beyond the range of test variables can
sometimes be unconservative.
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Figure 4.1 — Effect of concrete strength on shear strength of reinforced concrete beams
(adapted from Nilson 1985)
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Figure 4.2 — Effect of steel ratio and shear span-to-depth ratio on shear strength of reinforced
concrete beams (adapted from Nilson 1985)
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Figure 4.3 — Effect of concrete strength on shear strength of web-reinforced concrete beams
(adapted from Nilson 1985)
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Figure 4.4 — Comparison of shear strength predictions using ACI and Zsutty equations
(adapted from Mphonde and Frantz 1984)
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Figure 4.5 — Test results by Mphonde and Frantz (1984) for a/d=2.5
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Figure 4.6 — Test results by Mphonde and Frantz (1984) for a/d= 1.5
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Figure 4.7 — Ratio of measured to predicted shear strength (based on ACI equation) as
a function of concrete strength (Mphonde and Frantz 1985)

140



N
o

40 60 80 100 120
l

239 Y
:o‘»““o °
® o

o -

I
200
]

Vtest s
vn ' ® ]

WwFp— — —&— — — — — — — — —

oL N T T I
0 5000 10 000 15 000 20 000
Compressive strength, psi

Figure 4.8 — Test results from beams that failed in shear, 7}, according to ACI (adapted from
Roller and Russell 1990)
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Figure 4.9 — Test results from beams that failed in shear and met all the requirements of ACI
Code including minimum web reinforcement provision, ¥}, according to ACI (adapted from

Roller and Russell 1990)
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4.2 Panel Tests

The web of concrete beams under shear is in a state of biaxial tension-compression. The presence
of simultaneous transverse tensile strain leads to a deterioration of the compressive strength of the
cracked concrete (Fig. 4.26). The main cause is probably that concrete cracks are irregularly shaped,
resulting in irregular shapes of the concrete between the cracks. This engenders eccentric loads and
stress concentration in the concrete struts. This behavior is investigated in panel tests.
4.2.1 Vecchio and Collins (1993) reviewed various models of compression softening of cracked
reinforced concrete panels due to transverse tension. A softening parameter [ is defined as the ratio
of the compressive strength in biaxial tension (direction 1) - compression (direction 2) £, .. to the
uniaxial cylinder compressive strength /. .

ﬁ = J::Zmax
A
1) Vecchio and Collins (1982) expressed [ as a function of the ratio of the principal strains:

B = !
0.85 -0.27¢,/¢,

They used Hognestad’s (1951) parabola, Eq. 4.21, as the cylinder stress-strain curve. Both peak
stress f, and its associated strain €, were multiplied by . Good agreement was found with 178
experimental data points (mean ratio = 1.01, coefficient of variation = 0.15).

2) Vecchio and Collins (1986) simplified the expression for J to:

B = 1 - 1
080 +034¢,/e, 08+170¢€,

for 80 = 0.002 (4. 16)

The latter expression is now used in the Canadian Code (CSA 1994). Again good agreement with
experiments was obtained (mean ratio = 0.98, coefficient of variation 0.16).

3) Kollegger and Mehthorn (1990) concluded that the effective compressive strength did not reduce
beyond 0.8 1.’ and that the prime influencing factor appeared to be the principal tensile stress £, rather
than the principal tensile strain €, . They based their conclusions on 55 panel tests which had the
tension-compression loads applied parallel to the reinforcement on most of them, but with some
applied at 45°. All reinforcement crossing the cracks yielded before large tensile strains were attained
and hence, significant softening could not be achieved. Kollegger and Mehlhorn (1990) stated that
the low strength of Vecchio and Collins’s (1986) panels was actually due to yielding of the
reinforcement and not crushing of the concrete.

4) Miyahara (1988) proposed a softening model also based on the principal tensile strain:

=10 £, <0.0012
B=1.15-125¢,  0.012 <g, <0.0044 4.17)
B=0.60 0.0044 < g,

The degree of softening is much less than that predicted by Vecchio and Collins. It should be noted,
however, that this model is used together with a shear transfer model. In cases where appreciable
levels of shear transfer act on the crack plane, the reduction effect is greater than predicted by the
compression model alone.
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5) Shirai and Noguchi (1989) and Mikame (1991) proposed the following softening parameter:
1

0.27 +0.96 (¢, /e,) %17

(4.18)

They noted that the softening is greater for HSC than for NSC.

6) For HSC, Ueda (1991) proposed the following:

6 - 1

0.8 +0.6 (1000 g, +0.2)**

7) Belarbi and Hsu (1991) used Hognestad’s parabola as a basis and suggested one softening
parameter for stress and another for strain:

0.9 1
Bo = —" and Be =
‘/1 +K g, \/1 +K g,
where K, and K, depend on the orientation O of the cracks to the reinforcement and the type of

loading as follows:
Proportional Loading ~ Sequential Loading

) K, K K, K
45° 400 160 400 160
90° 400 550 250 0

Balarbi and Hsu (1995) updated their model in a recent paper. See § 4.2.2 of this report.

8) Vecchio and Collins (1993) updated their model as follows:

Their base curve is now the Thorenfeldt (1987) curve, which is more appropriate for HSC (more
linear in its pre-ultimate response) than Hognestad’s parabola. The Thorenfeldt curve was calibrated
by Collins and Porasz (1989). See § 4.2.3 and Fig. 4.27.

n(-¢,/t))
~fc2base = _f;a n-1 +(-82;8p)"k (419)
where n = 0.80 + f,/17 (MPa)
k= 10 for -g, <g <0,
k = 067 + f,/62 (MPa) for g <-g,, (4.20)
J, = maximum compressive stress in softened concrete, and
g, = strain corresponding tof, .

The base curve is modified in two poss:ble ways:
Model A: strength and strain softening:

b= 10+K.K,
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e 0.80
where K = 0.35[-—-—1 - 0.28] >10 for g <eg,, and
)

K, = 0.1825 ‘/fc/ (MPa) > 1.0.

€, is the limiting tensile strain in the concrete at which the reinforcement at a crack begins to yield
and the concrete suffers little additional cracking.

For -g,<fe,, f, is calculated from Eq. 4.19 with £, = Bf,” and &= e,

For -&,>B¢,, f.2=Bf26ae With f;4,, calculated from Eq. 4.19 using £,=1," and €,=¢, .

For the 443 data sets considered, the ratio of experimental to calculated stress has a mean of
0.996 and a coefficient of variation (COV) of 0.188. If only the ultimate load stages of the 45
specimens failing by concrete crushing are considered, then the mean is 1.06 and the COV is 0.178.

Model B uses strength only softening:

B = L where K, = 0.27 [ g 0.37)
1+K, g,

Note that Eqs. 4.19 and 4.20 are used with £, = B £, and €, = g, = strain in concrete cylinder at peak

stress f,”. No correlation could be found with £, and thus a K, factor was not included. Considering

all load stages, the ratio of experimental to calculated values of principal compressive stress has a

mean of 1.022 and a COV of 0.211. Considering the ultimate stress conditions of the panels failing

in concrete crushing, the stress ratio has a mean of 1.018 and a COV of 0.227.

In a later update, Vecchio, Collins and Aspiotis (1994) conducted 12 shear tests of panels 890
mm x 89 mm x 70 mm made of 55 MPa (8000 psi) concrete. The panels were reinforced by two
orthogonal grids at 45° to their edges. Results show that the compression-softening formulation
developed for normal strength concrete elements apply equally well to HSC elements. Now Model

B also has a X factor:
K, = 2.55 - 02629/, (MPa) < 1.1

Both models agree well with experiments, with Model B being slightly superior.

9) Parametric study

Influence of f,’:

Of 443 experimental data points, more than half correspond to 20 <£,’ < 30 MPa. Ofthe 16 data
points above 70 MPa, the prediction with or without the X, factor is not as good as for NSC. (The
theory overestimates strength and the scatter is large). In general, though, the inclusion of K,
improves the prediction at all strength levels.

Other parameters were investigated and found to have minor effects:

- type of loading (proportional or not),

- inclination of stress field to reinforcement,

- crack rotation,

- type of reinforcement (deformed or mesh), and
- size of panel.
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10) Comparison of models
Model A gave the strongest correlation. The Mackawa (see § 4.2.5) and the Noguchi (Shirai and

Noguchi 1989) models also gave good predictions of the mean stresses, but with a somewhat higher
scatter (COV = 0.23). The Hsu model (Belarbi and Hsu 1995) showed weaker correlation, over
predicting the softening effect and producing higher scatter (COV = 0.26). Limiting the softening
to 0.80 .’ or ignoring it, produces poor resuits.

11) Prediction of element behavior

Analyses of overall element behavior by non-linear FEA showed an accuracy better than the
compression softening models used. The dependence of the element behavior on the reinforcement
tended to reduce the error in predicting response.

4.2.2 Belarbi and Hsu (1995) tested 22 panels 55 x 55 x 7 in. (1400 x 1400 x 178 mm) under
biaxial tension-compression. The panels had a concrete strength of 6000 psi (40 MPa), minimal
reinforcement (0.54%) in the compression (transverse) direction and various reinforcement ratios in
the tension (longitudinal) direction. The purpose of the tests was to determine the principal
parameters and the constitutive equations of cracked concrete in biaxial, orthogonal tension-
compression. The following conclusions were reached:

1) Two planes of loading jacks are recommended to prevent bending of the panels.

2) LVDT’s attached to rods spanning the length of the panels are recommended to measure average
strains. A minimum of eight (four on each side) is recommended for the compressive strains, which
can vary widely depending on whether the rod is between cracks or approximately on top of a crack.
3) Itis the tensile strain, and not the tensile stress, that affects the orthogonal compressive softening.
In one series of tests, the tension was released afier the concrete had cracked and before the
compression was applied. The compression behavior was similar to the tests in which the tension was
-maintained while the orthogonal compression was applied.

4) The load path makes little difference. Sequential loading (tension followed by orthogonal
compression) produces the same behavior as proportional loading. However, significant differences
in behavior are observed when a small release of tensile stress occurs just prior to failure.

5) The amount and spacing of the longitudinal reinforcement has only a minor effect on the behavior.

The following notation is used:

f.” = cylinder compressive strength,

o, = principal compressive stress of concrete under orthogonal biaxial tension-compression,
g, = cylinder strain corresponding to cylinder strength 1.’

€, = average principal compressive strain under orthogonal biaxial tension-compression,

€, = average principal tensile strain of concrete under orthogonal biaxial tension-compression,
f = softening coefficient, and

K, 400 for proportional loading,

250 for sequential loading with some tension release just prior to failure.
The following stress-strain relationship is proposed for cracked reinforced concrete under
orthogonal biaxial tension-compression (see Fig. 4.27a):
For a non-softened, standard cylinder, strength is a parabolic function of strain:

AT -




The softening is of the form:
[ 2
€ €
For ¢,<Pe, o, =Pf 2( Bzo] —( B:o] ]
& 2
Pe
For gd > Bgo od = Bj;, 1- 20 (422)
=-1
p

0.9
1/I +K &

6) This softening is less severe than that proposed by Vecchio and Collins (1986). This may be
attributed to the orientation of the reinforcements: 45° to the principal directions for Vecchio and
Collins and parallel to the principal directions here. The amount of reinforcement, especially
transverse, is therefore also different between Vecchio and Collins and here. A comparison with
other softening coefficients is shown in Fig. 4.28.

7) It would be interesting to pursue this kind of tests further for HSC (7.’ > 40 MPa).

Hsu (1991) also developed a general method to perform non-linear analysis of concrete
membrane elements.

4.2.3 Collins and Porasz (1989)

The modified compression field theory (MCFT), in its normal strength concrete (NSC) version, is
slightly unconservative when applied to high strength concrete (HSC). This conclusion was reached
from test results of four panels 1.6 m x 1.6 m x 2.9 m, made of 70 MPa concrete and reinforced with
two orthogonal grids of reinforcement oriented at 45° to the edges of the element. The authors
suggest abandoning the parabolic stress-strain curve of NSC, Eq. 4.21, in favor of the one proposed
by Thorenfeldt, Tomaszewicz and Jensen (1987):

/. n(e,l/¢e))

£ om-1+ (e,/e, )™

where f’, = peak stress obtained from cylinder tests,
€, = strain corresponding to f,=f",,
n = 08+f, /17 (f,in MPa) = curve fitting factor and
k = 1.0fore, < ¢, (ascending branch),

0.67+f°./ 62 for €,> ¢, (descending branch).
Test results indicate that HSC is somewhat more sensitive to transverse straining than lower
strength concrete. The authors suggest the following adjustments to the stress-strain curve:
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[o.s -0.34 _) (0.9 +0.00455/) > 1
€
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4.2.4 Stroband
Stroband (1995) tested rectangular concrete panels reinforced longitudinally under longitudinal

tension and transverse compression. The range of cube strength is 30 MPa (4 panels), 65 MPa (4

panels) and 110 MPa (12 panels). He found that:

1. The biaxial compressive strength is, on the average, 70% of the uniaxial prism strength (100 x
100 x 400 mm prism).

2. Taking into account the fairly high standard deviation of the results, there is no indication that
behavior under biaxial loading is dependent on the concrete compressive strength.

3. The ultimate compressive strength is almost independent of the level of the tensile stress. This
contradicts Kollegger and Mehthorn’s (1990) conclusions. It should be noted that the maximum
crack width did not exceed 0.4 mm and thus the yield strength of the steel was not reached.

4. The panels typically fail with the formation of an inclined shear failure plane. With increasing
concrete strength, a more brittle failure occurred.

4.2.5 Tanabe and Wu (1991)
Tanabe and Wu (1991) presented some Japanese experimental results for biaxial tension-
compression and corresponding softening coefficient.

1) Maekawa and Okamura proposed the following softening coefficient, based on measurements on
cylindrical specimens under axial compression and internal pressure.

B =10 g <¢g,
g - ¢

p=10-04_21 "¢ €, <€ <¢g
eb-sa

B =06 g, < g

where €, = transverse tensile strain, €,= 0.0012 and g, = 0.0044.

2) Sumi and Kawamata tested panels with equal reinforcement in two perpendicular directions and
proposed a softening of the form:

O—f = f(g,) (1.5 + 5‘35] - (—S-?-JZ
‘f;. e0 80

where o, stress in transverse direction,
0,,8 compressive stress and strain of cracked element, and
€, = compressive strain in cracked element at initiation of transverse strain.
They also tested panels with unequal reinforcement in directions 1 and 2, for which they proposed
the following softening:
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Surprisingly, this equation gives higher compressive strength when the orthogonal tensile stress is
increased.

Shirai performed tests of small panels and proposed:
B, = - (%} tan” (4820 ¢, - 11.82) + 0.84

o
B, =-59 — + 10
fe

B, * B,

B

4.2.6 Tension Stiffening

So far, we have only looked at the softening of the concrete struts due to transverse tension. Hsu
and Zhang (1996) improved on the modeling of the biaxial behavior of concrete membranes under
biaxial tension-compression by also accounting for the tension stiffening of the reinforcement bars
due to the tensile resistance of the concrete between cracks. Indeed, the behavior of a steel bar
embedded in concrete is quite different from that of a bare bar. To properly account for this behavior,
Hsu and Zhang modeled the concrete tensile stress-strain curve by:

o =E¢, e <¢g,
e )04
orzfcr(ﬁ] er>ecr
8"
where E, = 47000 Vf, (psi) =3 900 Vf’, (MPa) = concrete elastic modulus,
f. = 3.75YF. (psi)= 031V, (MPa) = concrete tensile strength,
f. = principal tensile stress averaged from a crack to midpoint between cracks,
g, = 80 x 10°= average tensile strain at which concrete begins to crack, and
€, = principal tensile strain averaged over a length that traverses several cracks.
Also, they described the stress-strain curve of an embedded bar by a bilinear model:

[, = E.¢g, for e <e¢,
y
fs=j;=fyCD for € >¢,

where C = (0.91 - 2B) +(0.02 + 0.25B) e/,
Do 2T%l45
B 1000p
€, = £,(0.93 -2B)D
1.5
and B = 1 ’-&
Pl
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Factor C accounts for the averaging of steel stresses in the post-yield branch; D is a “kinking” factor
and is equal to 1 when &, = 90°; o, is the angle between the most compressive principal applied
stress and the longitudinal reinforcement; and €, is the average strain at the intersection of the two
straight lines in the bilinear model. Also,

E, = elastic modulus of steel,
€, = average tensile strain of reinforcement bar,
J, = Yyield strength of bare steel bar,

S, = average yield stress of bar embedded in concrete = a linear function of €, , and
p = reinforcement ratio.

These material relations were used with the concrete softening Eq. 4.22. Hsu and Zhang obtained
good agreement with experimental results over the entire load-deformation history. The results were
much improved compared to either ignoring the tensile strength of concrete or using the stress-strain
curve of bare steel.

This conclusion agrees with earlier finite-element results by Kollegger and Mehlhorn (1990) who
obtained equally good agreement with experiments by considering tension stiffening in the material
model of the reinforcement or the concrete, as a function of the strain in the reinforcement direction
(as opposed to the principal tensile strain direction). However, if tension stiffening is associated with
the reinforcement, then the concrete compressive stresses are overestimated by the amount which
should be carried by the concrete in tension. The agreement with experimental results is much worse
when tension stiffening is ignored. Tension stiffening is also present in the models of Dei Poli, Prisco
and Gambarova (1990) and Prisco and Gambarova (1995). See § 2.5.3.

4.2.7 Summary

From this review, it is seen that the behavior of concrete panels in biaxial tension-compression is not
a settled issue. There is substantial disagreement on the extent of softening due to transverse tension.
Hsu (1992) identifies the following reasons for these differences:

1) The concrete principal tensile strain is less than the yield strain of the reinforcement in some
experiments, and exceeds it in others. The larger the principal tensile strain, the lower the softening
coefficient.

2) The reinforcement is at 90° to the cracks in some experiments, and at 45° in others. Because 45°
bars tend to kink at a crack, they result in a lower softening coefficient.

3) Load sequence also has an effect. Sequential loading with a small release of tension just prior to
failure tends to produce a higher softening coefficient than does proportional loading.

4) The reinforcement ratios in the two orthogonal directions, equal or unequal, are also important.
When the ratios are unequal, shear stresses develop between the concrete struts, thus weakening
them and causing a lower softening coefficient. (For unequal ratios, the fixed crack angle differs from
the rotating crack angle. The fixed angle is defined by the applied membrane stresses, whereas the
rotating angle is the angle between the longitudinal steel and the actual principal compressive stress
in the concrete. Cracks initially form in the fixed direction, but because of their formation, the stress
field changes and future cracks form in a new direction. Thus, the name rotating angle.)

5) The concrete strength, the extent of restraint at the edges, and possible out-of-plane bending may
also be significant parameters.
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4.3 Shear Friction Studies
4.3.1 Mattock (1972)

By transmitting normal and shear stresses across their faces, shear cracks contribute to shear
resistance. This process is called aggregate interlock, interface shear transfer or more generally, shear
friction. Hofbeck, Ibrahim and Mattock (1969) and Mattock and Hawkins (1972) carried out
extensive tests on uncracked and precracked sections. They performed push-off, pull-off and modified
push-off tests (Fig. 4.29). The latter combined a shear force Pcos@ with a normal compressive force
PsinO transverse to the shear plane. The concrete strength varied from 21 to 37 MPa (3100 to 5400
psi).

In comparing the results of push-off tests to those of pull-off tests, Mattock et al. concluded that
direct tension stress parallel to the shear plane reduces the shear transfer strength of initially
uncracked concrete, but not that of initially cracked concrete.

In comparing the results of push-off tests to those of modified push-off tests, Mattock et al.
concluded that an externally applied compressive stress, acting transversely to the shear plane, is
additive to the compressive stress provided by the stirrups, assumed at yield, in calculations of the
ultimate shear transfer strength of both initially cracked and uncracked concrete.

In initially cracked concrete, the concrete strength sets an upper limit value for the reinforcement
ratio p f, , below which the relationship between the shear strength v, and p f, is independent of
concrete strength. Above this value of p f,, the shear transfer strength increases at a much reduced
rate for lower strength concrete and is equal to that of similarly reinforced, initially uncracked
concrete (Fig.4.30).

The shear transfer mechanisms of initially cracked concrete and initially uncracked concrete are
completely different. In initially uncracked concrete, the shear transfer strength is developed by a truss
action after diagonal tension cracking. Failure occurs when the inclined concrete struts fail under a
combination of shear and axial force. In initially cracked concrete with moderate amounts of
reinforcement, the shear transfer strength is developed primarily by frictional resistance to sliding
between the faces of the crack and by dowel action of the reinforcement crossing the crack. When
large amounts of reinforcement, or sufficient externally applied compressive stresses normal to the
shear plane are provided, then the crack in the shear plane “locks up” and shear transfer strength is
developed as in initially uncracked concrete. A pre-existing crack along the shear plane will both
reduce the ultimate shear transfer strength and increase the slip at all levels of load (Fig. 3.25).

If the transverse reinforcement is perpendicular to the shear plane, Mattock et al. suggest that the
shear strength of a precracked surface is:

V, = 084,.f,+A4.K,

with  p,f, = A,f,/4, > 138 MPa (200 psi) (4.23)

where
A, = area of reinforcement crossing the crack,
A, = area of the concrete surface resisting shear friction,

K, = 2.76 MPa (400 psi) for normal weight concrete,
1.38 MPa (200 psi) for “all-lightweight” concrete,
1.72 MPa (250 psi) for “sand-lightweight”concrete.
The first term of Eq. 4.23 represents friction, with the coefficient of friction taken as 0.8 for
concrete sliding on concrete. The second term represents the shear transferred by shearing off surface
protrusions and by dowel action. A simplified version of this equation is adopted by the ACI Code
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(see § 3.9.1 of this report).
It should be noted that a linear shear friction was first introduced by Mast and was later developed
further by Birkeland, Anderson and their co-workers:

v, = Hp.J,

where p is the coefficient of friction. This equation is very conservative for low clamping stresses and
unsafe for high clamping stresses (Loov and Patnaik 1994).

4.3.2 Delft University of Technology Tests on NSC (1981)

Walraven (1981) and Walraven and Reinhardt (1981) performed some fundamental and
convincing work on aggregate interlock, dowel action and axial tension of the reinforcement at a
shear crack. The work combines experiment and theory and shows good agreement between the
two. It also shows how to use the results in a finite-element analysis of cracked reinforced concrete
members.

Pure shear tests with no bending were conducted on precracked, push-off, rectangular specimens
400 x 600 x 120 mm with a shear area of 300 x 120 mm, similar to Mattock’s specimens. The two
applied loads were collinear with the crack, and wedges on the upper and lower faces of the specimen
channeled the loads to either side of the crack (Fig. 4.31). The specimens were either internally or
externally reinforced. The concrete ranged from 20 to 56 MPa cube strength (f,. ) and included a
lightweight concrete and one mix with a discontinuous grading of gravel size (no aggregate between
0.25 mm and 1.00 mm). The reinforcement ranged in ratio from 0.56 to 3.35% and in inclination
from 45° to 135° to the crack plane. In one series of experiments, the reinforcement bars were
covered with soft sleeves extending 20 mm on both sides of the crack to eliminate dowel action.

The analytical study assumes the concrete to be a mix of rigid, perfectly plastic mortar and rigid
spherical aggregates of various sizes (Fig. 4.32). Knowing the volumetric ratio of aggregate to
concrete and the size distribution of the aggregate, one can work out the average number of
aggregate particles encountered by a crack of a given length. The portion of the mortar that
interferes geometrically with the aggregate when the crack faces open and slide with respect to one
another is assumed to yield, thus engendering normal and shear stresses which are related by a
coefficient of friction. Equilibrium is related to frictional sliding and crushing of matrix material along
the contact areas @, and a,. These depend on the crack displacement &,, J, (tangential and normal)
or on the mix proportions (maximum aggregate size and volumetric percentage of aggregate).

The constitutive equations of the cracks are:

6,=0,d.-pd) ad <t,=0,4-+ nA4.)
where 4, =}Ya, and 4, =) a, depend on the crack width, the shear displacement, the maximum
particle diameter and the total aggregate volume per unit volume of concrete. The strength of the
mortar ¢, and the coefficient of friction p between mortar and aggregate are found from fitting
curves to the experimental results.

R=t,/0, =040 and o, =6.39f > (elastic-perfectly plastic).

Physically reasonable values can be found that fit all experimental curves well, thus lending
credibility to the theory. (The indeterminacy of fwo parameters means that two curves can always be
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fitted well. The credibility of the theory lies in the good fit of a/l the curves.)
Some of the conclusions of the study follow:

1) For reinforced cracks, the crack displacement path (sliding versus opening) is approximately
constant, irrespective of the reinforcement ratio. For cracks in plain concrete, the crack
displacement path depends clearly on the stiffness of the external restraint.

2) In reinforced cracks, variation of the bar diameter for a constant reinforcement ratio has no
significant influence on the behavior.

3) Variation of the aggregate composition (doubling the maximum diameter from 16 to 32 mm or
removing all particles between 0.25 and 1.00 mm) does not significantly influence the behavior.

4) The normal and shear displacements in reinforced cracks subjected to an external shear force
decrease with increasing reinforcement ratio and concrete strength. The ultimate shear resistance
is increased by higher concrete strength.

5) The efficiency of the reinforcement increases as its inclination with respect to the crack decreases,
i.e. a bar at 45° to a crack is put into tension by the shear displacement, whereas a bar at 135°
tends to kink.

6) Dowel action is of minor importance compared to aggregate interlock.

7) For light-weight concrete (LWC), cracks cross the aggregate. For a given shear displacement,
the shear stress, normal stress and crack width are smaller in LWC than in a normal-weight
concrete (NWC) of similar strength.

4.3.3 Walraven and others (1987)
From 88 push-off tests of specimens with compressive strengths ranging from 17 to 60 MPa,
Walraven, Frénay and Pruijssers (1987) developed the following empirical expression:

Vom = Ci(p, fy)cz (4.24)
in which C,= 0.822£.°% and C,=0.159 £.%*® inMPa
or C,=15.686 £.%%% and C,=0.0353 £, in psi.

£, is the concrete compressive strength of 150 mm (5.9 in) cubes, and f’,=0.85 1, .

Concrete strength does not appear to influence Eq. 4.23, according to Walraven and others
(1987), because the strength of Mattock’s specimens varied between narrow limits (21 < f°, <37
MPa) and therefore a possible effect of the concrete strength is hidden by the natural scatter of the
experimental results. Mattock (1988) recognized this fact, and carried out further tests on specimens
made from 41 MPa (6000 psi) concrete. Based on these, he proposed a refinement to Eq. 4.23 which

accounted for the effect of concrete strength:
0.545

v, = 0.467(f/)*** + 08(0.8p, 7, + 0,) < 03f mm-N system
v,= 45 ( fc’ )0'545 +0.8(08p,f, +0,) <03 fc/ in-Ib system (4.25)
v, < 03f]

Comparison between experimental and theoretical values of v, according to Eq. 4.24 is given in
Table 4.4.
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Reference Number of Mean Standard
Specimens Deviation

Hofbeck, Ibrahim and Mattock (1969), 55 0.991 0.105

Walraven and Reinhardt (1981)

Frénay (1985) 20 1.032 0.135

Pruijssers and Liqui Lung (1985) 13 0.999 0.084

All tests 88 1.001 0.109

Table 4.4 Ratio of measured to ultimate shear stress

A 5 % lower bound expression is obtained by:
v =082v,, (4.26)

# 5%, th

Design charts based on Eq. 4.26 area shown in Fig. 4.33.

As shown in Fig. 4.32b, the mechanism of shear transfer across cracks depends predominantly
upon the interaction between aggregate particles and the concrete matrix at the opposing faces of the
crack. It is therefore essential that the major part of the particles does not break through. An
inspection of the crack faces after precracking showed that the percentage of broken particles in the
tests considered was always lower than 30 %.

Ratios of experimental results to predictions from the following equations are plotted in Figs.
4.34,4.35 and 4.36:
ACI - PCI Equation (Fig. 4.34):

Vll

o4 = 1l4p,f, where ¢ =085 (ACI 11.25)
[4

for normal-weight concrete placed monolithically. The expression is a safe lower bound, but the

scatter is large. There is a tendency towards increased conservatism for HSC.
Mattock’s equation (Eq. 4.23, Fig. 4.35):

Vo _08p.f +276 MP
= V. + 2. a
oa, Pl

Vv
or - = 08p,
¢4,

4.27)

f, + 400  psi

For concrete strengths up to f°, = 35 MPa (5000 psi), a good lower bound with low scatter is
obtained. With increasing concrete strength, however, more conservatism is observed.
Finally, Fig. 4.36 uses Eq. 4.26. Over the whole range of values,
035<p,f, <15.17 and  17<f’ <68 MPa
(50<p,f, <2167 and 2416 <f, <11474 psi),
very good agreement with low scatter is obtained.
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4.3.4 Delft University of Technology Long Term Tests (Frénay 1990)

This is a study of the behavior of cracked concrete subjected to in-plane, sustained (long term)
shear loading. The shear resistance mechanisms of interest here are aggregate interlock and dowel
action of the reinforcement. Comparison of Walraven’s push-off tests for two concrete cube strengths
J.. =31 MPa and f, = 56 MPa shows a significant decrease in shear force carried by aggregate
interlock for the same crack slip and the same reinforcement ratio as concrete strength decreases. See
Fig. 4.37. However, the crack width (or opening) is rather similar for the two cases, since cracks go
around the aggregate in both cases.

Frénay’s work has to do with sustained or long term shear load. For our purpose, the results at
time = O are of interest. Fig. 4.38 compares shear friction stresses for two concrete strengths £ =
51 MPa and f.=70MPa. All other things being equal, Fig. 4.38 shows greafer shear stress for the
higher strength concrete. This theoretical result is supported by experimental observations. Based on
push-off tests performed on concrete with cylinder strength ranging from 43 to 60 MPa, Frénay and
others observed that for these strengths, concrete exhibited crack surfaces that are similar with regard
to the percentage of aggregate fractured in the crack plane. However, this no longer holds true for
higher concrete strengths.

Tassios and Vintzéleou (1987) confirmed Walraven’s experimental values and the increase in
shear stress with an increase in concrete strength (16 < f,. <40 MPa).

4.3.5 Delft University of Technology Tests on HSC (Walraven 1995)

Since crack surfaces are smoother in HSC than in NSC (cracks tend to go through the aggregate
in HSC whereas they go around the aggregate in NSC), one would expect a decrease in shear friction
as the concrete strength increases. This is indeed the case, as was borne out by shear friction tests
on precracked, push-off experiments made of concrete with a cylinder strength of 100 MPa (14 500
psi) or a cube strength of 115 MPa (16 700 psi).

In unreinforced concrete, shear-friction at a given crack slip and opening is reduced by 35% for
HSC (say 100 MPa) compared to NSC (say 40 - 60 MPa). See Fig. 4.39. For reinforced concrete,
the reduction is about the same, in the range of 25-45%.

Mau and Hsu’s formula (1988) works well for the shear capacity of cracks in NSC:

v
— = 066y <03 with m=fé.
e Je

When applied to all the test results of Table 4.4, it performs almost as well as Eq. 4.24 and is much
simpler to use (mean = 1.019, standard deviation = 0.127).
Authors’ note: For HSC, a 35 % reduction of this equation gives:

v
— =043 o .
A
4.3.6 Bazant and Gambarova
Based on tests by Paulay and Leober (1974), Bazant and Gambarova (1980) suggested the
following formulas for shear (0°,, ) and normal compressive stress (0°,, ) in cracks of concrete
members, as functions of crack opening (8,) and slip (8,) :
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a a,+a,|r]?
Ofm =-— (az |0‘;’"|)p and ofn =17 L—LI_I—
8, 1+a,r*
) a
with r==; T, =T, — = p=130]1- 0.231 -
5, a,+ 8’ 1+0.1858, +5.638]
where
a,=0.01 D} a, = 0.000534 N/mm a,= 145 mmN
a, = 2.45/t, N/mm’ a,=2.44 (1- 4/ T, N/mm?) 1,=0.245f’
T, = maximum shear stress d,, 8, = crack opening (0, > 0) and slip

1.’ = cylinder compressive strength D, = maximum aggregate size.

Application of these relations to reinforced concrete shows that the principal axes of stress and
strain increments are not parallel because of coupling between shear and normal stresses. This is to
be expected since cracked concrete is not isotropic.

Frénay (1990) reviewed other mathematical models:

Paulay and Loeber’s (1974) expression, which is based on variable crack width but constant stress
to crack width ratio:

T, = 0.51 + 7.07,f3,

where t, is the shear stress due to aggregate interlock.

Houde and Mirza (1974) performed similar push-off tests and found that t, is almost
proportional to v, and (8, )"* where &,, is the initial separation. A more complete review of
various mathematical models of shear friction and dowel action can be found in Gambarova and
Prisco (1991).

4.3.7 University of Calgary Tests

Loov and Patnaik (1994) tested 16 composite concrete beams with a rough interface to measure
their horizontal shear strength. 12 of the beams were made of concrete of compressive strength f°,
= 35 MPa (5000 psi) , two had £, = 20 MPa (2900 psi) and two had f’, = 45 MPa (6500 psi). Loov
and Patnaik proposed the following design equations:

= kM/ 0.1 "< 025f MP
vn ( +pv.f;:).f;; < _f;; a (4.28)
,,=k)~\/(15+pvj;)fc/50.25fc psi

where v, = nominal shear strength,

k 0.6 for concrete placed monotonically,
0.5 for concrete placed against hardened concrete with a rough surface, and
p, = A,/(b,s) = transverse reinforcement ratio.

This is an extension to unreinforced joints of a previous equation also proposed by Loov:

. = ko, L1 (4.29)

This equation was the first to account for the influence of concrete strength. A value of £ = 0.5 was
suggested for uncracked shear interfaces.
These equations fall into a family of parabolic equations which started with Birkeland:
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v, = 278,/p,F, MPa

v, = 335/p,f, psi
For f°,= 30.9 MPa, Loov’s Eq. 4.29 is identical to Birkeland’s equation.
The present PCI equation, which is based on Shaikh’s work, is also parabolic:

vu = d>pv-):;l’”e
2
with g, = 82% s
Yy (PCI6.7.1)
_ 1000 A% .
or u, = pst
A4

u

where ¢ = 0.85 for shear and A accounts for the effects of concrete density:

A = 1.0 for normal weight concrete,

A = 0.85 for sand-lightweight concrete, and

A = 0.75 for all-lightweight concrete.

The above equation is a specialized version of the PCI equation, obtained by setting the
coefficient of friction p equal to 1.0 A for friction between concrete and hardened concrete with a
roughened surface. If the last three equations (PCI 6.7.1) are combined, a parabolic equation for v,
with respect to the clamping force is obtained:

v, = A J69¢p,f, <025£A% and 6917 MPa
v, = A,/T000$ p, 7, < 025f,A* and 1000A? psi

Figs. 4.40 and 4.41 compare test data with various design equations. The ACI provisions are a
combination of special provisions for horizontal shear from §17.5 (1 to 3 in the following list), along
with shear-friction provisions from §11.7 (4 and 5 here):

1) o < pf,< 033 MPa . =06 MPa
0 < pfo< 50 psi v, =80 psi
2) 033 <p,f,< 28 MPa v,=18+06p,f MPa
50 < pf,< 400 psi ,=260+0.6p,f, psi
3) 283 <p,f,< 35 MPa v,=3.5 MPa
400 < pf,< S00 psi v, =500 psi
4 35 =<pf,< 55 MPa = P MPa
500 < p,f,< 800 psi = Py psi
5) 55 <pf, MPa =55 MPa
800 < p,f, psi v, =800 psi.

Figs. 4.42 and 4.43 compare Eq. 4.28 with results of push-off tests for uncracked and precracked
specimens. The proposed equation represents the test data better than do previous shear-friction
equations. For a concrete strength exceeding about 30 MPa (4350 psi), it will result in designs with
less stirrup reinforcing than those obtained using the current ACI or PCI equations. The authors also
observe that:

- Slip and stirrup stresses in the test beams were insignificant until the beams attained a horizontal
shear stress of about 1.5 to 2 MPa (220 to 290 psi).

- For beams designed with the proposed equation, a slip of 0.5 mm is likely to yield the stirrups if
the yield strength is less than about 440 MPa (64 ksi).
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4.3.8 University of Warwick Tests

Millard and Johnson (1984) studied experimentally shear transfer across cracks in reinforced
concrete due to aggregate interlock (19 specimens) and dowel action (7 specimens). Concrete cube
strength f,. ranged from 28 MPa to 54 MPa. In the aggregate interlock tests, dowel action was
removed by placing the reinforcement in oversize ducts in the concrete so that only an axial restraint
normal to the plane of cracking was provided. In the dowel action tests, aggregate interlock was
eliminated by the artificial creation of a smooth crack.
Aggregate Interlock :
- Test results do not support the local/global roughness model (Laible, White and Gergely 1977).
According to this theory, local roughness causes interlocking of the fine aggregate particles,
principally a bearing or crushing action, and global roughness causes interlocking of the coarse
aggregate particles, principally a sliding and overriding action. The demarcation between local
roughness behavior and global roughness behavior is thought to occur at a crack width of 0.25 mm.
However, test results show no radical difference between the behavior of specimens with an initial
crack width less than 0.25 mm and those with a greater initial crack width.
- Test results do not support either the theory that the resistance to shear is provided principally
by a bearing/crushing action of the local asperities of the crack faces. These surfaces have been
represented by a sawtooth shape (Jimenez, Gergely and White 1978) and by a series of parabolic
segments (Fardis and Buyukozturk 1979).
- Fairly consistent agreement is found between test results and the simplified two-phase aggregate
interlock model (Walraven and Reinhardt 1981. See § 4.3.2).
Dowel Action

The non-linear shear stiffness of the dowel action specimens was attributed to:
- crushing or splitting of the concrete supporting the bar, and/or
- plastic yielding of the reinforcement.

The beam on an elastic foundation model was used to predict the initial shear stiffness X of each
dowel action specimen: \

F, =0.166 As GJ?-75 PL7 Eso.zs

where E, = elastic modulus of steel,
F, dowel force,
G, foundation modulus of concrete,
As = shear displacement across crack, and
¢ = bar diameter.
The plastic moment M, of a bar with an axial force of ¢, is:

M, = $*f,(1- a?)/6

where f, is the bar yield strength.
The ultimate dowel force F,, in a bar with an axial force is:

F, = 130¢? 1/fwfy(l—ozz)

The measured dowel force at various stages of loading is fitted well by:

F, = F, [1- exp(-K,As/F )]
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Millard and Johnson (1985) performed 13 more tests where aggregate interlock and dowel action
were both present. They concluded that there is an interaction between the two modes of behavior.
Aggregate interlock causes additional tensile forces in the reinforcement due to overriding of the
crack faces. This causes a reduction in the dowel action shear stiffness and strength. Likewise, local
bond between the reinforcement and the concrete, which is absent from the aggregate interlock tests,
produces a higher tensile stiffness normal to the plane of cracking. This results in an increase in the
aggregate interlock shear stiffness and strength, but this is sensitive to deterioration of the local bond.
When the tensile stiffness of the reinforcement normal to the plane of cracking is known, the two-
phase aggregate interlock model and the elasto-plastic dowel action model can be used to predict the
behavior of cracked RC specimens. The limit of applicability of these results may be reached when
the in-plane shear transferred across a set of parallel tension cracks becomes high enough to cause
additional diagonal shear cracking to occur between these cracks. The flexibility due to widening of
these diagonal cracks may exceed that due to shear slip across the original tensile cracks (Perdikaris,
White and Gergely 1980).

4.3.9 Cornell University Tests
White and Holley (1972) conducted friction tests on unreinforced, externally clamped, precracked

specimens measuring 457 mmx 610 mm x 915 mm (18 in. x 26 in. x 36 in.). Concrete strength was

about 20 MPa (3 000 psi). The shear area was 1810 cm? (280 in?) for specimens 1-6, and 1550 cm?

(240 in®) for specimens 7-16. Following cyclic loading, each specimen was loaded to a maximum (not

ultimate) load. The conclusions were:

1. Crack slip and opening both increased under cyclic shear loading.

2. The clamping forces remained low during cycling (about 30 - 50% of applied shear).

3. The most significant damage to the shearing surfaces occurred during the final load application,
and not during the cyclic loading.

4. With two exceptions, the increase in crack width after 25 cycles was less than or equal to 0.25

mm (0.010in).

Crack slip did not return to zero during unloading of the specimen.

6. Slip decreased with increasing aggregate size, increasing size of the clamping rods (stiffness
effect) and decreasing initial crack width.

7. A specimen with variable crack width across its thickness exhibits less slip than a similar specimen
with a uniform crack width equal to the average of the variable crack width.

bl

4.3.10 Impact Shear Friction Tests

In a very original paper, Krauthammer (1992) examines the ACI 318-89 minimum shear
reinforcement requirement 4,=0.35 b, s/f (mm-N system)or 4, =504, s/f (in-Ib system),
which is intended to require reinforcement to resist 0.35 MPa (50 psi) shear stress.

Analysis

The shear resistance V, provided by a bar crossing a shear crack at an angle o is:

v, = Avfj;(p sinaf+ cosaf) (4.30)

where A,,= bar area,
J, = baryield strength, and
p = concrete-to-concrete friction coefficient.
The minimum requirement ensures that ¥, equals the full shear transfer due to concrete friction
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(aggregate interlock).
V,=ufb,s 4.31)

where b, s = contact area and f, = externally induced normal stress across shear interface.
Equating (4.30) and (4.31) gives:

A, =K,b,slf, (4.32)
where _
K, = H
s =Jn TETRTT (4.33)

Krauthammer also defines a factored coefficient K,’ = K, / 0.85. By taking derivatives of Eq.
4.33 with respect to o, he finds that K, and consequently 4, ,, reaches a minimum for tan ;= p.
If u ranges between 0.6 and 1.4, «, ranges between 30 and 55°.

Experiments

The goal of the experiments is to determine £, . Two normal weight concrete slabs 762 mm x 762
mm x 152 mm (30 inch x 30 inch x 6 inch) are used to model an unreinforced concrete-to-concrete
interface. The two slabs are placed side by side on a 305 mm (one foot) deep sand bed for support.
Various in-place compressive forces N are applied to the system to simulate different conditions of
shear transfer between the two slabs. A vertical, dynamic load is generated by dropping a 133 N (30
Ib) weight from a height of 914 mm (3 ft) on one side of the interface. Acceleration histories are
recorded for both slabs and analyzed by fast Fourier transform. A first peak occurs at 244 Hz for all
values of compression N. However, the second peak varies with NV for low values of N. For N > 53.4
kN (12 000 Ib), the second peak remains at 1098 Hz and the two slabs behave as one unit. Thus:

f, = 12290 _ 6667 psi (460 kPa)
6+30

Minimum shear requirement
The crack angle of ¢, is unknown
1. Assume o,=45°. Then241 <K, <379kPa (35 <K, < 55psi) and
287 <K,’<446kPa (42 < K,;’< 65 psi).
2. Assume30 < e, < 55°. Then236 <K, <378kPa (34.3 <K, < 54.8 psi) and
278 <K’ <445kPa (40.4 < K, < 64.5 psi).
3. Assume e,=90°. Then K, =460 kPa (66.7 psi) and K’ = 540 kPa (78.4 psi).

Recommendation Assume a,= 45°.
According to ACI, p = 1.4 for monolithic construction, leading to X,;,” = 448 kPa (65 psi).
So 4,=045b,s/f, (mm-N system) or 4,=65b,s/f, (in-Ib system) is recommended.

4.3.11 Summary

As demonstrated by the various research results mentioned above, the relationship between
compressive stress across a crack and the shear which can be transmitted as a function of crack
displacements is more complex than the simple shear friction model suggests (see Eq. ACI 11.25 §
3.9.1 of this report). Fig. 4.44 (Collins and Mitchell 1991) compares various results.
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Figure 4.31 — Push-off test specimens to study aggregate interlock in cracked reinforced
concrete: (a) geometry ; (b) reinforcement (Walraven and Reinhardt 1981)
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Figure 4.31 — Push-off specimen with (c) external reinforcement and (d) internal reinforcement;
(e) cross-section of internally reinforced specimen (Walraven 1995)
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material; (b) deformation at crack; (c) contact areas as functions of crack width and slip; and (d)
normal and shearing stress as functions of crack width and slip (adapted from Frénay 1990)
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Figure 4.39 — Shear stress, v, normal stress, ¢, and shear displacement, J, at different constant
crack widths for unreinforced concrete at two strength levels: (a) 59 MPa and (b) 115 MPa
(Walraven 1995)
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4.4 Fracture Mechanics - Size Effect

4.4.1 Jenqg and Shah (1989) used fracture mechanics to explain the size effect of RC beams,
without stirrups, failing in shear. They found that an important factor in the model is the bond
strength of the longitudinal reinforcement to concrete. Also the relative shear resistance v, /V7,
decreases as f,’ increases. For example, for a reinforcement ratio of 0.015,

v, =322 |ff for f/=2500  psi

v, = 0267yf for f, =17 MPa
and v, = 2.17 |[f] for f/=10000 psi
v, = 0.180\/f/ for f! = 69 MPa.

4.4.2 Gustafson and Hillerborg (1988)

The ratio of the slope of the ascending branch of the stress-strain curve (in the entire specimen)
to that of the descending branch of the stress-displacement curve (in the fracture zone) in a tensile
test of concrete produces a characteristic length which is a measure of concrete brittleness.

l,=2EG, | f}
where £ = modulus of elasticity,
f tensile strength, and
G, = fracture energy = area under descending branch of stress-displacement curve.

G; is determined experimentally by the energy required to break a notched three-point bend
specimen into two pieces. Typically, HSC would have shorter characteristic lengths (~ 0.5 m) than
NSC (~ 1 m), indicating that HSC is more brittle than NSC.

“A key to a rational approach with respect to ductility is the fracture energy, as measured by a
characteristic length which expresses the widening of the fracture zone in tension. The characteristic
length varies over a large range from about 1000 mm for very ductile concretes and about 600-100
mm for a normal case, to 70 mm for a concrete unit with a cube strength of 170 MPa manufactured
by high pressure steam curing.”

The characteristic length is incorporated into a finite-element program which assumes an a priori
chosen crack path to calculate the shear strength £, of beams of various depths without stirrups.
Various crack paths were investigated to minimize the strength. Results show the following trend:

Z‘Z _ i -0.25
j; lch

where & = proportionality coefficient and d = beam depth.

This formula quantifies the size effect and links it to the characteristic length, 7, . Although the
exponent agrees with the Weibull strength theory, it is merely a coincidence. The Weibull theory
does not provide an explanation of the size effect in shear strength.

4.4.3 Hillerborg (1989) presents a convincing case of the use of the fracture energy G as a
measure of the tensile toughness of concrete. The characteristic length Z,, ,which can be derived from
the fracture energy, provides a good scaling factor which can explain the size effect in the tensile
failure of concrete (shear or cracking strength of beams).

The shear strength £, of a beam without stirrups is:
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Agreement with experiments is good. The author notes that the CEB 1978 Model Code takes
more explicit account of the size effect than does the ACI code.
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S. Future Research

5.1  Analytical Work

Great progress has been made, especially in the last 20 years, in the analytical solution of shear
problems in reinforced concrete, since Morsch and Ritter laid the foundation at the beginning of the
20th century. Research tools of great sophistication have been developed (e.g., Prisco and
- Gambarova 1995), but their implementation into design codes would require considerable
simplification. Of particular note is the Modified Compression Field Theory which combines
“rationality”, in the sense that it satisfies equilibrium, compatibility and stress-strain relationships, with
certain simplifying assumptions (principal stresses and strains are parallel, verify the ability of cracks
in the direction of principal compression to transmit shear) that make it amenable to Code
formulation. In addition, extensive verification with experimental results (Fig. 3.12) has led to the
adoption of the MCFT in a number of Codes (Canada, Norway, AASHTO LRFD, although with
some reservation for the last one. See § 4.1.15).

Further progress will no doubt be achieved, to mention a few examples: in simplifying and
implementing some of the German work into Code provisions (e.g., Kupfer et al. 1992, Reineck
1991); in developing computer programs that track the “rotating” crack angle to predict shear
behavior even more accurately (Kollegger 1992); in accounting for arch action to the same level of
accuracy as truss action (e.g. Prisco and Gambarova 1995). However, Schlaich’s (1987) remark
ought to perhaps be kept in mind, that the shear problem for B-regions is probably overworked
already, and surpasses in exactness the solutions available for D-regions.

Regarding D-regions, there is a need for greater automation of the design of strut-and-tie models.
Presently, the process is a manual one, which has the advantage of allowing the designer to visualize
the flow of forces. In practice, however, multiple load cases create a daunting challenge. Whereas
procedures exist for B-regions to select governing load cases and to ensure that the design meets all
criteria for strength and serviceability for all load cases, such procedures remain to be developed for
D-regions. Relying on experience and judgement, designers would select a few critical load cases and
dimension accordingly. Practical detailing considerations sometimes govern and the resulting strut-
and-tie model may be quite different from the stress flow obtained by an elastic finite-element analysis
of the remaining load cases. There is often no easy way to ensure that the concrete has adequate
ductility, or that the ensuing crack widths will meet serviceability requirements. Some of this work
is being undertaken at NIST in collaboration with Cornell University.

5.2  Experimental Work

More experimental research needs to be done on the strength of struts and nodes. Consensus has
been difficult to achieve because several strut-and-tie models are usually possible to match an
experiment.

The strength of concrete under biaxial tension-compression is common to D- and B-regions and
is an essential element of all modern theories of shear. Again, more work needs to be done to achieve
consensus on a softening model.

An important mechanism of shear resistance is the capacity of cracks to transmit shear, or shear
friction. In the MCFT, concrete tension is limited by shear across cracks. Transverse reinforcement
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provides a clamping force, restrains crack width, and thus influences interface shear capacity. For
members with little or no transverse reinforcement, the dowel action of the longitudinal steel limits
the crack width. Loss of dowel action allows the crack to open up rapidly and lose its interface shear
capacity, thus triggering splitting along the longitudinal reinforcement and failure.

Although both the strength of concrete under biaxial tension-compression and shear friction are
important, the research priority for HSC ought to be shear friction. Tests at the University of Delft
(§ 4.3.5) have shown a decrease in shear friction of 35 % for HSC compared with NSC, because HSC
fractures along much smoother surfaces than NSC. This affects shear strength adversely and could
be the reason why the shear strength decreases as the compressive strength increases above 80 MPa,
as observed at the Norwegian Institute of Technology (§ 4.1.7). On the other hand, tests at Delft (§
4.2.4) show no marked difference between HSC and NSC as far as biaxial tension-compression
behavior is concerned. In addition, shear friction tests require a much smaller capital expenditure than
biaxial panel tests and fewer centers are presently investigating shear friction than biaxial behavior.

For these reasons we recommend that NIST initiate an experimental research program to improve
our knowledge of shear transfer across cracks of HSC, and a parametric study of the shear strength
of beams, using the MCFT, to determine the influence of shear friction and various biaxial softening
models.
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