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Melnikov Process for
Stochastically Perturbed, Slowly
Varying Oscillators: Application
to a Model of Wind-Driven
Coastal Currents

The stochastic Melnikov approach is extended to a class of slowly varying dynamical
systems. It is found that (1) necessary conditions for chaos induced by stochastic
perturbations depend on the excitation spectrum and the transfer function in the
expression for the Melnikov transform; (2) the Melnikov approach allows the estima-
tion of lower bounds for (a) the mean time of exit from preferred regions of phase
space, and (b) the probability that exits from those regions cannot occur during a
specified time interval. For a system modeling wind-induced currents, the determinis-
tic Melnikov approach would indicate that chaotic transport cannot occur for certain
parameter ranges. However, the more realistic stochastic Melnikov approach shows
that, for those same parameter ranges, the necessary conditions for exits during a
specified time interval are satisfied with probabilities that increase as the time interval

increases.

Introduction

The Melnikov approach is a technique providing necessary
conditions for the occurrence of chaos in a class of dynamical
systems. Until recently it was considered to be applicable only
to deterministic systems: deterministic chaos and stochastic mo-
tions were viewed as distinct and were analyzed from different,
indeed contrasting points of view.

Beigie et al. (1991) extended Melnikov theory for a class of
single-degree-of-freedom systems from the case of periodic to
the case of quasi-periodic excitation. Their work allowed a fur-
ther extension to the case of stochastic excitation (Frey and
Simiu, 1993; Simiu and Frey, 1996). This extension used the
representation of Gaussian excitations by Shinozuka processes
(Shinozuka, 1971; Shinozuka and Deodatis, 1991), which have
two properties needed for the application of Melnikov theory:
uniform continuity and uniform boundedness. One result of this
extension is that, under certain conditions, a motion can be both
stochastic (i.e., induced by a realization of a stochastic process)
and chaotic (i.e., sensitive to initial conditions).

Necessary conditions for chaos indicate the range of system
parameters for which exits from preferred regions of phase
space cannot occur. The Melnikov approach can thus help to
study the exit problem for certain types of nonlinear stochastic
systems to which no other analytical tools are applicable, e.g.,
multistable systems with dichotomous noise (Simiu and Hag-
wood, 1994). Examples of applications of the Melnikov ap-
proach include the rocking response of rigid objects to earth-
quakes ( Yim and Lin, 1992) and the prediction of vessel capsiz-
ing in random beam seas (Hsieh, Troesch, and Shaw, 1994).
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Necessary conditions for the occurrence of chaos in a class
of slowly varying oscillators were obtained by Wiggins and
Holmes (1987) and Wiggins and Shaw (1988) for the case of
small periodic perturbations. This paper extends these authors’
theory for perturbations that, rather than being periodic, are
quasi-periodic or stochastic. Our results are based on arguments
similar to those used by Beigie et al. (1991) and Frey and
Simiu (1993) for single-degree-of-freedom systems, and on the
application of the averaging theorem to systems with quasiperi-
odic perturbations ( Verhulst, 1990).

We then consider a model of coastal currents over topogra-
phy. We adopt the hydrodynamical model studied by Allen et
al. (1991) for the ideal case of harmonic wind forcing, and apply
our results to the more realistic case of forcing by randomly
fluctuating wind.

Dynamical Systems
The systems we study are of the form

a

i=—
dy

Hix,y,z) + eg1i(x, ¥, 2, s )

. d
y=-HEy D ey 6w

(LD

where ¢ is small, the right-hand side is C’ differentiable (r =
2),H(x,y, z) is a Hamiltonian with parameter z, & is a vector
of parameters, and g; (i = 1, 2, 3) are the perturbation functions.
It is assumed that there exists an open interval J C R such that,
for every z € J, the unperturbed system possesses a homoclinic
orbit to a hyperbolic saddle point. In the full three-dimensional
phase space the unperturbed system has a normally hyperbolic
invariant one-dimensional manifold, y(z), assumed to be con-
nected, and given by the union of saddle points of the one-
parameter family of planar systems. y(z) has two-dimensional
stable and unstable manifolds (denoted by W*(y), W*(y),

Z=¢€g(x,y,2,t; p)
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respectively ), such that their intersection W*(y) N W*(y) =
T is the union of the homoclinic orbits of the planar systems.

Functions g; (i = 1, 2, 3) With Common Period T

In this section we review pertinent material from Wiggins
and Holmes (1987) and Wiggins and Shaw (1988). Let T! be
the circle of unit length, and write Eq. (1) in the form

0
X = a_y H(x,y,z2) + eg1(x,y, 2,0, 1)

0
y == .é;H(x, ¥, 2) + egx, v, 2,68 )

= 683(35, ¥, 2, 0; ”’)
f=w

(2.1)

where w = 27/T. The normally invariant set at ¢ = O is denoted
by M = (y, 8) = vxT', or

0
M = (v(2), Dy(2) = (x(2), ¥(2), 2), é;H(x, ¥, 2)

9(3H/3y, — dH/dx)
o(x, y)

d
=—-=—H(x,y,2) =0,
% (x,v,2)=0

7(2)

<0,49€T‘,z€]}. (2.2)

Persistence Theorem. There exists €, such that for 0 <
< € = 1 there exists a normally invariant manifold

M, = {(¥(z,6,¢),0)
=(y(z) + O(e), OO €T,z €T} (2.3)

where y(z, f; €) is a C" function of z and €. M. has local stable
and unstable manifolds Wi .(M.), W{.(M.), which are C'-
close to the local stable and unstable manifolds of M, denoted
Wi (M), Wi (M), respectively.

Flow on M.. For the perturbed vector field restricted to M.,
Egs. (2.1) and (2.3) yield

Z = €g3(¥(2), 8) + O(e?). (2.4)

{p is omitted for simplicity). Consider the averaged system

T
Z=egly(2)], glv()] = %f gl v(z), 8)db. (2.5a, b)

]

If there exists zo € J such that

& (V) =0, dlgs(y(z))]/dz #0, (2.6a b)

then (y(z0, 8: €), 8) = (y(2) + O(e), 8) is a hyperbolic
periodic orbit on M, with period T. The orbit restricted to M,
is stable or unstable for, respectively,

dlgs(v(2)))/dz <0 or digs(y(2))]/dz>0. (2.7a b)

Distance Between Stable and Unstable Manifolds and
Necessary Condition for Chaos. We define the cross section
through the unperturbed vector field £ = {(x, y,z, 8)|8 = 6,
€ (0, 1)} and the Poincaré map of Z into itself, P: £ — Z. If
there exists zo € J satisfying Eqs. (2.6), the Poincaré section
through the hyperbolic periodic orbit on M., is a hyperbolic fixed
point ¥(zo, &o; €) having: a two-dimensional stable manifold
and a one-dimensional unstable manifold if Eq. (2.7a) holds;
or a one-dimensional stable manifold and a two-dimensional
unstable manifold if Eq. (2.75) holds. To first order, the distance
between the stable and unstable manifolds of the perturbed
system is proportional to the Melnikov function
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m(s, 8y) = J; (VH- g)(g(1), wt + (ws + Hp))dt

- %‘:—I (1/(20))_[0 8:(gd (1), wt + (ws + 6p))dr (2.8)

where VH = (9H/dx, 0H/dy, 8H/3z), g = (g1, &2, 83)> Lo
satisfies Eqgs. (2.6), g3°(¢) is the homoclinic orbit in the unper-
turbed system connecting the saddle point y(z,) to itself, and
(s, o) specify a point on M and are therefore constant in the
integral expression (Wiggins and Holmes, 1987). The Melni-
kov function can be interpreted as the sum of the outputs of
three linear filters with inputs g,, 8., g5, respectively.
If there exists an s such that, for fixed ,,

m(s,6) =0 and (8/9s5)[m(s,8)]+*0 (294 b)

then for sufficiently small € near this point the stable and unsta-
ble manifolds of the fixed point y(zo, &p; €) intersect trans-
versely. This implies the existence of transverse homoclinic
points. The dynamics of the perturbed system can then give rise
to a three-dimensional mapping with Smale horseshoes. This
mapping has the same dynamics as a shift map acting on the
space of bi-infinite sequences of 0’s and 1°s. The fact that the
shift map has chaotic dynamics establishes that Egs. (2.9) are
a necessary condition for the perturbed system to be chaotic.
This result is a special case of the Smale-Birkhoff theorem.

Quasi-Periodic Functions g; (i = 1, 2, 3)
We now consider Egs. (1.1), and assume that the perturba-
tions are quasi-periodic in ¢, that is,

gi(x,y,z,1)
1.

=go(x,y,2) + X

J=lentl

(i=1,2,3;lo=0<11<12<1351’22)

gs(x, ¥, 2) cos (wit + )

(3.1

(wjt + 85 = 6;), where in general w;, wy, . . , w, are incommen-
surate. To study this system we follow the approach used by
Beigie et al. (1991) for second-order systems with quasi-peri-
odic vector fields. For Eq. (1.1) with quasi-periodic functions
g&: the flow is no longer characterized by a Poincaré map, as is
the case for periodic vector fields, but by a bi-infinite sequence
of nonautonomous maps; where the maps are functions of time
that change at each iteration.

Associated with the nonautonomous system involving ! fre-
quencies is the (! + 3)-dimensional autonomous system

.4
= a—yH(x, y.2) +egi(x,y,2, 61,85, .., 0 )
0
=~ —H(x,y,z2
y o (x,y,2)
+ €82(x, ¥» 2, By, Benazys < -5 O25 1)
= egs(x,y, 2, Qpa+1y> Oas2ys - - » Os )
91 = W

(3.2)

91 = wy.

The autonomous system’s phase space for Egs. (3.2) is R® X
7', where T" is the I-torus. The expression

(X(t), )’(t), Z(t), 91(’), L] el(t)} = (¢(t’ IO

= 09 x(O)’ }’(0), Z(O))9 wit + 9103 ces Wit + 610) (33)
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solves Eq. (3.2) and is referred to as the trajectory of Eq. (3.2)
through (x(0), y(0), z(0), 6, - ., 61) at time ¢ = 0. For the
unperturbed counterpart of Egs. (3.2) the autonomous phase
space contains for every z € J an /-dimensional normally hyper-
bolic invariant set M' = (v, 8y, .., 8) = yxT', or

Ml = {(x’ ya Z, 91’ IR gl)l(‘xv y3 Z) = '}’(Z)aZ € J} (3'4)

whose (! + 1)-dimensional stable and unstable manifolds, de-
noted W*(M") and W*(M'), coincide along the (I + 1)-dimen-
sional manifold given by

ws(MH N W“(M')
={(x,y,2,01, .., W(x,y,2) = g§(¢), t ER}. (3.5)

Persistence Theorem. There exists ¢, such that, for 0 < ¢
< € = 1, there exists a normally invariant manifold

Mi = {(’Y(Z, 013 927 LI 91; 6)7 01, L] 01)
= (‘Y(z) + 0(6)3 els e 9[)'
X91,..,0,€Tl,z€.l} (3.6)

where v(z, 8, 62, .., 6;; €)is a C” (r = 2) function of z and
€. M! has local stable and unstable manifolds W {. (M) and
W i.(M!), which are C’-close to the local stable and unstable
manifolds of M!, Wi (M") and W &.(M'), respectively. The
proof of the theorem is independent of whether g; are periodic
or quasi-periodic; it is the same as in Wiggins and Holmes
(1987).

Flow on M.. For the perturbed vector field restricted to
M there follows from Eqs. (3.2) and (3.6)

Z. = 583('}’(2)’ 917 LR 91) + 0(62)- (37)
We now consider the averaged system
Z = egs[y(2)], (3.8a)

1
Gyl = X

j=ly+1

1 (%
T f g(v(2), 6,1, ..,08)d9; (3.8b)
iveo

(T; = 2n/w;). If there exists zop € J such that

8:(¥(2)) =0, dlg:(y())/dz+0 (39a, b)

[hen (‘}’(ZO’ 9]5 oy 91; E), 015 “vs 91) = (')’(Zo) + 0(6), 01’ D)
8,) is a hyperbolic T'-torus on M!, and the orbit restricted to
M: is stable or unstable for, respectively,

dlg3(¥(20))}/dz <0 or d[gs:(¥(20))}/dz>0. (3.10g, b)

The proof of this proposition follows exactly the same steps as
its counterpart for periodic functions g;, with one exception:
instead of the classical averaging theorem, in which averaging
is defined as in Eq. (2.55), the proof uses the averaging theorem
as applied to quasiperiodic perturbations, where averaging is
defined as in Eq. (3.8a) —see, e.g. (Verhulst, 1990, p. 154).

Distance Between Stable and Unstable Manifolds and
Necessary Condition for Chaos. A global cross section of
the autonomous phase space is defined by

U (x,y,2,61,..,0)18, =0} 1=j=1 (311)
The associated Poincaré map is
P L0 - 340 (3.12)

(x,¥,2, 600 + 2rnw/w;)) = {[27/w)(n + 1),
2nfwpn, x,y, 2)], 0 + 2mRe/w;}  (3.13)

where 6, = (0, .., 9(,'—1)0’ 9(j+1)o, ), 0= (w, ..,
Wj—1, Wjels - - » Wy). Since this map is obtained from an autono-
mous system, it is independent of 7. The Poincaré map is equiv-

Journal of Applied Mechanics

alent to sampling the trajectories of the system (3.2) at time
intervals 27/ w;. For each z the Poincaré map of the unperturbed
system has a normally hyperbolic (! — 1)-torus

To = TO n ZQYO: {(xl y; Z, 91’ '-sel)l(x$y9 Z) = ’Y(Z)’

0 =65} (3.14)
with an /-dimensional homoclinic manifold
We(To) N Wi(ro) = {(x,y, 2,61, .., 0)|(x,y,2)
= g§(2), 6; = 6, t € R}.
We now consider the generalized Melnikov function

m(s, 6,, 6, ..,0)
= J: (VH-g)(g8 (1), wyr + (wis + 64),
Wat + (was + 85), .., wit + (ws + 8))dt
- %{(‘Y(zo)) J: 83(g(2)), wit + (wys + 6y),

wot + (W25 + 92), Loy wit + (W(S + 91))dt (315)

where VH = (dH/9x, 0H/3y, dH/3z), € = (&1, &2, &) 2
satisfies Eqgs. (3.9), g&°(¢) is the homoclinic orbit in the unper-
turbed system connecting y(zo) to itself, and (s, 8,, 6,, ..,
6 4-1), 6;) specify a point on the manifold W* (M) N W*(M')
of the unperturbed system and are therefore constant in the
integral expression. In the Poincaré section, the generalized
Melnikov function has the same expression as in Eq. (3.15),
except that §; takes on the fixed value 6. Like the Melnikov
function for periodic g;’s, the generalized Melnikov function
may be interpreted as the sum of the outputs of three linear
filters with inputs g;, g, g3, respectively.

For @ = (8, B2, .., Bi-1), Byenys - -» 0) € T, we refer
to the plane x(x, y, z; ) = {x, y, z, 8|0 = @) as a three-
dimensional phase slice of the Poincaré section Z%°. If
there exists a point (s, 6y, 62, .., 8¢G-1), O+ - -, ;) such
that

m(i,glagz,--,Q(j-l),ejosg(jﬂ),-~,Q_1)=0, and (3.16a)

(8/9s)[m(s, 6, Qz, < 8G-1s

Bios Bij+1ys - -» 81 %= 0 (3.16b)

then, for sufficiently small e, near this point the generalized
Melnikov function in the Poincaré has simple zeros, that is, the
stable and unstable manifolds of the Poincaré section of M
intersect transversely, i.e., there exist transverse homoclinic
points. A phase slice in the quasiperiodic perturbation case dif-
fers from a Poincaré map for the periodic case in that the phase
slice changes at each successive time 2m/wj, whereas the
Poincaré map repeats itself at successive times 27/w. This ob-
servation allows the extension of the Smale-Birkhoff theorem
from the case of periodic perturbations to the case of quasi-
periodic perturbations (Beigie et al., 1991). As is the case for
the periodically perturbed system studied by Wiggins and Shaw
(1988), the dynamics of the quasi-periodically perturbed sys-
tem having a Melnikov function with simple zeros can give rise
to a mapping with Smale horseshoes which is equivalent to a
shift map acting on the space of bi-infinite sequences of 0’s
and 1’s. This establishes that Egs. (3.15) are a necessary condi-
tion for the system with quasi-periodic perturbation to be cha-
otic.

Necessary conditions for the occurrence of chaos follow im-
mediately from Egs. (3.15) for (a) perturbation functions g,
82, &; with incommensurate periods T, T,, T3, respectively; (b)
one quasi-periodic function and two periodic functions having
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different or equal periods; (¢) two quasi-periodic functions and
one periodic function; (d) any set of perturbation functions that
may be approximated by finite sums of harmonic terms.

Stochastic Perturbations

We now assume g; (i = 1, 2, 3) are additive Gaussian pro-
cesses with specified spectral densities. Such processes may be
modeled effectively by ensembles of harmonic sums. Since the
proof of the persistence theorem—a prerequisite for Melnikov
analysis—requires that the perturbations be bounded and uni-
formly continuous, we use the Shinozuka (1971) representation
of Gaussian noise, which has the requisite properties

i
G: (1) = (1/2m) 2 (2/DY* 3, cos (Wit + Bio)

(i=1,2,3) 41)

where [ is a parameter of the model (the approximation of a
Gaussian process by the model improves as [ increases), { wi,

Bn0; 7 = 1, .., 1} are independent random variables, {8, n
=1,..,1} are identically uniformly distributed over the interval
{0, 271, {wu; n =1, .., I} are non-negative with common

distribution equal to the spectral density of the process, ¥,
and

L fw Tio(w)dw = 1. (4.2)
27 [i]

In this model all the harmonics have equal amplitude (1/70)"?,
and the number of harmonics with frequencies contained in a
given interval is proportional to the area under the spectral curve
within that interval. Equation (4.1) can approximate a Gaussian
process as closely as desired provided that the finite value of /
is sufficiently large. We assume

8i(x,y,2.t) = gio(x, y, 2) + 0:Gi (?) 4.3)

(i =1, 2, 3). Each realization in Eq. (4.3) has a different set
of random parameters { w;,, 003 7 = 1,.., ! }. Since / is finite,
the arguments presented in the previous section for quasiperi-
odic excitations apply without change for stochastic excitations
approximated by the Shinozuka model as in Eq. (4.2) (Frey
and Simiu, 1993). To each path there corresponds a Melnikov
function similar to Eq. (3.15). We noted earlier that the Melni-
kov function is the sum of the outputs of three linear filters
with inputs g,, g2, g;- For sufficiently large /, each of the three
sums approaches a Gaussian process, the mean and variance of
which can easily be calculated since the filter properties are
known. Therefore in the limit of large / the Melnikov process
is Gaussian, and the probability that it has simple zeros is one—
no matter how small the noise—provided that the time interval
being considered is infinitely long (Frey and Simiu, 1993).
However, the probability that a path of the Melnikov process
has simple zeros during a finite time interval T is pr < 1. Let
the mean and standard deviation of the Melnikov process be
E[m] and o,,. If the ratio k = E[m]/o, is sufficiently large
(say, £ > 2), then pr can be closely approximated by using:
(a) the Kac-Rice formula (Rice, 1958) for the rate of upcross-
ing, E(k), of a threshold % by a standardized Gaussian process
with one-sided spectral density ¥,,(w), and (b) the assumption
that the upcrossing is a rare event described by a Poisson pro-
cess. Then

pr=1—exp[—E(k)T), E(k)=vexp(—k*2) (44a b)

v= (1/27r){[fan wz\I’,,,(w)dw]/
0 .
£ 172
[I \Ilm(w)dw]} . 43)
)
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Let t,, be the mean time spent by the system in a region of
phase space associated with a potential well before it exits from
that region. In the limit of weak perturbations f,. must be at
least as large as 1/v (there can be no exit from that region as
long as the stable and unstable manifolds do not intersect).
Therefore 1/v is a lower bound for ¢,., and pr is a lower bound -
for the probability that 7., > T (Simiu and Frey, 1996).

The case of multiplicative noise involves a simple modifica-
tion of the Melnikov process filter (Frey and Simiu, 1995).

Necessary Conditions for Chaos in a Model of Wind-
Induced Coastal Current

Allen et al. (1991) studied a model of ocean flow over a
continental margin with variable bottorn topography under wind
forcing fluctuating harmonically. Our extension of the results
by Wiggins and Holmes (1987) and Wiggins and Shaw (1988)
to the case of stochastic forcing allows us to examine the model
under the assumption that the wind fluctuations are random.

Fluctuating Wind and Surface Wind Stresses. We con-
sider the horizontal wind speed fluctuations spectrum developed
by Van der Hoven (1957). The spectrum has three main parts:
one with a peak at a period of about four days, a second, known
as the spectral gap, having negligible energy and extending over
periods of about five hours to three minutes, and a third, with
a peak at a period of about one minute, where fluctuations have
relatively small spatial coherence and therefore a negligible
overall effect at the scale of our problem (Simiu and Scanlan,
1986). The relevant part of the spectrum is, approximately,

0.2823 In (w) + 1.300 0.01 = w = 0.10
04072 In (w) + 1.599 0.10 = w = 030 (5.1)
—271[ln (w)]*+ 5 030 =w =385

where w = Q/Q,, Q is the dimensional frequency and {2, ~
27/ (four days) is the dimensional frequency corresponding to
the spectral peak, which occurs at w = 1. The units of S(w)
are m*/s? (Fig. 1). For the spectrum of Eq. (5.1) the standard
deviation of the wind speed fluctuations is o, =~ 1.33 m/s.
Surface wind stresses are proportional to the square of the
wind speeds (Simiu and Scanlan, 1986). We assume that the
effect of thermal stratification and of deviations from the pre-
vailing wind direction is small. Mean wind speeds of about 6
m/s are consistent with the data used to obtain the Van der
Hoven spectrum (NOAA, 1977), so that the coefficient of varia-
tion of the wind speed fluctuations is about 0.20. To a first
approximation, one may therefore neglect the square of the
wind speed fluctuations in the expansion of [ U + «(t)]?, where
U and u(t) are the mean and fluctuating wind speed (Simiu
and Scanlan, 1986; Vaicaitis and Simiu, 1977). The normalized

S(w) =

S(0), m¥s* °

0.0 10 20 3.0 40
Fig. 1 Spectral density of wind speed fluctuations, S(w)
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spectrum of the surface wind stresses is then W¥o(w) =
S(w)/o?, and the wind stresses may be assumed to be
Gaussian.

Offshore Flow Model. The nondimensional equations for
the model flow are given by Eqgs. (1.1), where x is a basic
alongshore speed, y is proportional to the out-of-phase compo-
nent of a stream function for motion due to the topography, and
z is the energy-enstrophy:

& =-—rx+ 1o+ 7(1), &= -ry,

g =~—rz—3rx* + (x = D[1o + 7(2)] (5.2)

H(x,y,2) = 3y* + zx + 3(wd — 2)x* — §x% + ($Hx?,
(5.3)

& is the amplitude of the bottom topography corrugations, er is
a friction coefficient related to the eddy viscosity of the ocean
flow, and e7, and eT(¢) are, respectively, the steady and fluctu-
ating wind stress at the ocean surface (Allen et al., 1991).
We assume 7(2) is a Gaussian process with variance o2 and
one-sided spectral density o*¥,(w), and approximate it as

(1) = oG(2) (5.4)

wi=1+ 6%

where G(t) has an expression similar to that of G;(¢) in Eq.
(4.12). The stochastic excitation is multiplicative (Eq. (5.2¢)).

The dynamics of the unperturbed system was studied by Al-
len et al. (1991), who showed that for z > z. = (3)6*> + §2
— 3 the phase plane diagram x-y (z = const) has a saddle point
and two elliptic centers with coordinates satisfying the expres-
sions

X =3x*+2(wi—-2)x+2z=0, y=0, (55ab)

and contains an asymmetrical eight-shaped homoclinic orbit
which asymptotically approaches the saddle point in forward
and backward time. The two lobes of the homoclinic orbit sepa-
rate three distinct regions of phase space, corresponding to three
oscillatory regimes: one inside each lobe of the separatrix and
a third outside the separatrix. The saddle point corresponds to
the intermediate root of Eq. (5.5¢). The saddle point and the
separatrix depend continuously on z and form, respectively, a
one-dimensional manifold y(z) of (x, y, z) points and a two-
dimensional manifold of (x, y, z) points.

The existence of an oscillatory solution—a hyperbolic 7'~
torus—among the solutions of the invariant manifold M, of the
perturbed system is established by solving Egs. (3.9). Since
the integrals of the harmonic terms vanish, Egs. (3.9) yield
exactly the same solution as in the harmonic perturbation case,
that is,

z= —%xz + (x = D7o/r, (5.6)

dlgs(v(2))]/dz <0 (3.7)

(Allen et al., 1991). The coordinates (xo, ¥, Zo) that define to
first order the hyperbolic T*-torus on the invariant manifold
M! are obtained from Egs. (5.5) and (5.6), and from Eq. (5.7)
it follows that the orbit restricted to M. is linearly stable.

For harmonic excitation 7(¢}) = 7, cos (wt), Allen et al.
(1991) obtained for the Melnikov function the expression

(5.8)
Ci=CY = (x — 1o/r)[8d tan™" (V,/(2ko)) — kob] (5.9)

sinh [w cos ™! (@) ko]
sinh (wn/ky)

m(s, 0p) = rC; + 7,C(w) cos (ws + 8p)

C(w) = C3(w) = —4nd

(5.10)
ko= (20— wi+ 3% — (x>0  (511)
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bV,
d=k + (x— 1), a.=—",
G =% e =gy
b=4(x—1), (5.124, b, c)
Ve = 31—b = (b% + 16k%)'72]. (5.12d)

C,(w) may be interpreted as a linear transfer function. It is also
referred to as scaling actor (Beigie et al., 1991). From the
linearity of Eq. (3.15) with respect to the perturbative terms it
follows that, if the perturbation is given by Egs. (5.2) and (5.4),
the expression for the Melnikov process is

-5 Bro)

1
=7rC, + [(1727)(2/1)1"%0 3, Cy(wy)

n=1

m(sa 610’ 920)

X c0s [wyt + (wys + B,0)]. (5.13)

The expectation and variance are (Frey and Simiu, 1993):
E[m(s, 619, 029, - ., B10)] = rC;. (5.14)
Var [m(s, 610, 020, . ., 010)]

2 0o
=E_f Ci(w)¥e(w)dw. (5.15)
27 Jo

Example. We consider the case, also studied by Allen et
al. (1991), 6 = 0.3003, 7o/r = 3.236 X 107>, The unperturbed
system has the fixed points {0, 0}, {1.236, 0}, and {1.764, 0}
(Egs. (5.5)). From Egs. (5.9) to (5.12), C{ = 2.524, Cy =
—-7.076, and

C7(w) = —4.8 sinh (2.064w)/sinh (5.500w) (5.16)
C3(w) = —4.8 sinh (3.436w)/sinh (5.500w). (5.17)

For harmonic forcing (Eq. (5.7)) with w = 1 (a case examined
by Allen et al., 1991), and assumed therein also to correspond
to a dimensional time T, ~ four days), C; = —0.152, C; =
—0.609, and the necessary condition for exits from the region
corresponding to the interior of the left lobe is satisfied for o/
r > 8.22, where o is the standard deviation of the harmonic
forcing, i.e., ¢ = 7,/(2)2. The inequality o/r > 11.74 obtains
for the right well. If o/r < 8.22 there can be no exits from the
left region and, a fortiori, from the right region as well. Note
that, for w = 1, the excitation needed to satisfy the necessary
condition for the occurrence of chaos is stronger for the right
well (which is the smaller of the two wells) and weaker for the
larger well.

Gy

20

Fig. 2 Square of transfer function, [C3 (w)]?
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Fig. 3 Spectral density of Melnikov process ¥, (w)

We now consider the case of random forcing with spectrum
o2y (w). Figures 2 and 3 show, respectively, the square of the
transfer function, [C5(w)]?, and the spectral density of the
Melnikov process for o = 1, U, (w) = [C3(w)]*Fo(w).
Figures 4 and 5 represent [C:(w)}* and V,.(w) =
[C5(w)1*¥o(w), respectively. Equation (4.5) applied to
¥, (w) and ¥, (w) yields v~ = 0.0702 and v* = 0.0534,
respectively. The transfer functions are seen to suppress or con-
siderably reduce the spectral components of the wind stress
with frequencies w > 1 or so, and to amplify lower frequency
components. The standard deviations of the Melnikov process
are oms = 0.359¢ and o,- = 0.7780, respectively, so k_, =
|E{m_Yo,-) =91ric and k, = {E[m.} o) = 7.037/0.
We assume o/r < 8.22, say, o/r = 4, so k. = 2.275 and &,
= 1.76. From Eq. (4.4b), E(k-) = 0.0053 and E(k.) = 0.0113.
We have 1/E(k.) = 188.6 (i.e., 188.6 X 4/(2x) = 119.7 days)
and 1/E(k,) = 88.5 (56.3 days), so 1/E(k.) > 1/E(k.), as
one would intuitively expect (the left well is larger than the
right well). For 7 = 1 month (i.e., 47.1 nondimensional time
units), Pr-cime = 0.22 (Eq. (4.4a)); for one year pr_-y, =
0.95. Also, Pre=1mo = 0.41, Pro=ipr = 0.998.

Suppose a decision would hinge on whether, given the wind
spectrum (5.1), the probability of nonoccurrence of chaotic
jumps in the current would be at least 0.5 during one month.
The lower bounds 1 — pr_cjme = 1 — 022 = 078 and 1 ~
Pre=1mo = 0.59 would provide a conservative basis for such a
decision.

To recapitulate, the possibility of chaos was assessed using
the Melnikov approach for two cases for which the values of §

{C(w)P

[} 05 1 15 2
Fig. 4 Square of transfer function, [C3 (@)]?
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Fig.5 Spectral density of Melnikov process ¥ . ()

and 7o/r were the same. In the first case the excitations induced
by wind were harmonic with standard deviation ¢ = 8.22r and
frequency w = 1 (dimensional period T = four days), that s,
the entire energy of the wind stresses was concentrated at the
frequency of the wind stress spectral peak. From the Melnikov
approach it follows that no exits are possible in this case.

In the second case the wind stress fluctuations were random
and were derived from the Van der Hoven wind spectrum whose
peak is at T, = four days. The standard deviation of the wind
stresses was o = 4r, that is, less than half as large as that of
the largest harmonic forcing that precludes the occurrence of
exits (o = 8.2r). In this case the necessary conditions for the
occurrence of chaos were satisfied with relatively high probabil-
ity for an interval of one year, and with probability of the order
of about 0.4 for an interval of one month. The probabilities
would be considerably higher if the standard deviation of the
wind stresses were assumed to be ¢ = 8.2r.

Tllustrations of chaotic motions for § = 0.3003, ¢ = 0.001,
Tofr = 3.236 and r = 0.01 are shown in Figs. 6(a) and 6(d).
Figures 6 show time histories of x(#) for (a) periodic forcing,
o = 2121 (ry = 30), w = 1, x(0) = 1.236, y(0) = z(0) =
0, and (b) stochastic forcing (see Appendix), o = 8, x(0) =
1073, y(0) = z(0) = 0. We note that while theoretical proofs
require the use of uniformly bounded and uniformly continuous
noise, the method used to generate a noise realization numeri-
cally need not conform to this requirement. The time histories
were obtained by numerical integration with tolerances 107¢.
The sensitivity to initial conditions was verified numerically by
following the evolutions in time of small separations introduced

3.236

1.236
»l13
-2.764

3.100 2.273% 2.43%0
time (1E32

Fig. 6(a)"

9.875
time C1X3)

Fig. 6(b)

Fig.6 Record of chaotic motion for {(a} harmonic forcing; (6) realization
of random forcing
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in the initial values of the equations of motion—see, e.g., Bergé,
Porneau, and Vidal, 1984, p. 129.

Summary and Conclusions

For stochastically perturbed systems, the applicability of the
Melnikov approach can be extended from a class of two-dimen-
sional oscillators (Frey and Simiu, 1993) to a class of slowly
varying oscillators studied by Wiggins and Holmes (1987) and
Wiggins and Shaw ( 1988) for periodic perturbation. This exten-
sion was applied to a model of offshore currents driven by
wind speed fluctuations, studied by Allen et al. (1991) for the
periodic fluctuation case. The following results were obtained:
(1) necessary conditions for chaos induced by stochastic pertur-
bations depend on the shapes of both the spectra of the stochas-
tic excitations and the transfer functions in the expression for
the Melnikov transform; (2) the development of a stochastic
Melnikov process allows the estimation of (a) a lower bound
for the mean time of exit from each of the regions of phase
space associated with a potential well; and (b) provided that
the excitation is sufficiently small in relation to the damping,
of an upper bound for the probability of occurrence of exits
from each well during a specified time interval.

We then applied the Melnikov approach to a model of wind-
driven coastal currents. If the wind fluctuations were assumed
to be deterministic, the Melnikov approach led to the conclusion
that for a certain range of parameters exits could not occur. For
the same system, with the same parameters, but assumed to be
excited by randomly fluctuating winds, the stochastic Melnikov
approach led to the conclusion that the necessary conditions for
the occurrence of exits during various specified time intervals
were in fact satisfied with relatively high probabilities. Applying
a deterministic Melnikov approach to a stochastic system may
thus yield the result that exits cannot occur under conditions in
which their occurrence is in fact possible.
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APPENDIX
For the record of Fig. 6(b), G(t) = £ a, cos w,t) + b, sin
(wpt), wheren=1,2,..,8,w, =0.2nand a,, b, were obtained
by simulation (Rice, 1957). The values {a,, b;; a5, b3; . .;
ag, bg} were {.27, —.27;, —.96, —.87; .84, .48; .33, —-.68;
.69, .58; .52, .34; .75, —.24; —.09, 1.31}.
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